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To study the activated dynamics of mean-field glasses, which takes place on times of order exp(N ), where N

is the system size, we introduce a new model, the correlated random energy model (CREM), that allows for a
smooth interpolation between the REM and the p-spin models. We study numerically and analytically the CREM
in the intermediate regime between REM and p-spin. We fully characterize its energy landscape, which is like a
golf course but, at variance with the REM, has metabasins (or holes) containing several configurations. We find
that an effective description for the dynamics, in terms of traps, emerges, provided that one identifies metabasins
in the CREM with configurations in the trap model.
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I. INTRODUCTION

When approaching the glass transition, supercooled liquids
undergo an extraordinary slowing down [1,2]. This phe-
nomenon is argued by many to be related to some kind of
activated dynamics [3].

Mean-field models of glasses have been particularly in-
fluential to study the glass transition: First, they capture the
first decades of the slowing down by providing a micro-
scopic realization of the so-called mode coupling transition
(MCT) [4], as shown, e.g., by the p-spin spherical model
which displays an MCT transition at a certain temperature Td

[5]. Second, they provide a basis for the random first-order
transition theory [6], which is one of the most prominent
approaches to understand the formation of glasses and provides
a sound phenomenological explanation of activated dynamics
of glass-forming liquids.

To construct a full first-principles microscopic theory of
activated dynamics, a promising strategy consists of under-
standing first activated dynamics in mean-field models and
then extending this approach to finite-dimensional systems.
Pioneering results were obtained more than a decade ago
by Crisanti and Ritort, who numerically studied mean-field
models on times which diverge exponentially with the system
size N (since barriers are extensive in mean-field models) [7,8].
Analytical results have been hampered by the nonperturbative
character of the activated processes.

A successful workaround to this issue has been the intro-
duction of the Trap model (TM) [9–11] (see also Ref. [12]). It
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is a further simplification of usual mean-field glasses, which
captures the main features of activation and is analytically
tractable. The TM is based on a drastic simplification of
the dynamics: The energy landscape is envisioned as a golf
course characterized a large amount of separate minima at
the bottom of which the system spends most of the time.
Transitions between these local minima require reaching a
high threshold energy Eth = 0 with an Arrhenius rate of order
e(E−Eth )/kBT [13]. From Eth any part of the phase space can
be attained with equal probability and in negligible time. This
leads to simple and appealing description of the dynamics. For
instance, the aging following a quench from high temperature
can be precisely described in terms of an exploration of deeper
and deeper minima: The system spends a substantial fraction
of the time, t , elapsed after the quench, in the deepest minimum
visited along the dynamics. This leads to a logarithmic decrease
of the average energy, E(t ) � −T log(t ) [10,11].

Even though traits of the TM were searched and found in
simulations of realistic glass-formers more than a decade ago
[14,15], only very recently it has been shown that in the limit
of large-enough times and system sizes the activated dynamics
of the simplest mean-field model of the glass transition, the
random energy model (REM) [16], is fully TM-like [17,18],
meaning that in the limit of large times and sizes, the REM
dynamics can be predicted through the TM. On the analytical
side, this result was obtained in Ref. [17] after almost two
decades of effort on simplified versions of the REM [19–23].
On the numerical side [18] (see also Ref. [24]) this was done
by extracting information on the basins through the time series
of the energy, as proposed in Ref. [25].

The REM is thought to represent a limiting case (p → ∞)
of the p-spin model [16,26], which is one of the most studied
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mean-field models of glasses [1,2,5]. A natural question is
therefore whether the TM-like description of the activated
dynamics holds for this richer system as well. As a first step
to solve this interesting but difficult issue, in this paper we
introduce and study a variation of the REM, the correlated
random energy model (CREM). In the CREM, a parameter α

controls the amount of correlations between energy levels. By
tuning the parameter α it is possible to interpolate smoothly and
exactly between the REM and the p-spin model (as discussed
below, the common lore that the p-spin model tends to the REM
for p → ∞ is problematic when studying activated dynamics,
this is the reason why we introduce the CREM). We study
the CREM in the intermediate regime, where energy levels
are weakly correlated, and show that although the energy
landscape structure is richer with respect to the REM, a
description in terms of separate, well-defined traps can still
be done.

II. MODELS

A. The random energy model

In the REM [16], there are N binary variables si = ±1
called spins. Each configuration of the N spins (also called
state) is assigned a random energy from a Gaussian distribution
of mean 0 and variance N . The energies of different states are
independent. Each state has N neighbors, corresponding to
the flipping of a single spin. Typically, i.e., with probability
1 in the large-N limit, the energies of the neighbors are
included in the interval (−√

2N log(N ),
√

2N log(N )), which
corresponds to zero intensive energy [18]. The majority of the
states are also at zero intensive energy. This leads to a landscape
like a golf course where to escape an energy minimum the
system typically must climb up to Eth

REM = −√
2N log(N ),

and configurations at low energy E act like trap with a lifetime
of the order e(Eth−E)/kBT . It was recently shown that in large-
enough systems and on exponentially large time scales, the
equilibrium and aging dynamics of the REM can be effectively
described through the TM [17,18] (see also the previous work
in Refs. [19–21,24,27]).

B. The p-spin model

The Hamiltonian of the p-spin model contains p-body
interactions between N Ising spins si = ±1 and reads [16]:

H = −
∑

1�i1<i2<...<ip�N

Ji1,i2,...,ip si1si2 . . . sip , (1)

where the couplings Ji1,i2,...,ip are extracted from a random
Gaussian distribution with mean zero and variance p!

2Np−1 .
In the p-spin model, as in many other mean-field glassy

systems [1], there exists a threshold energy Eth below which
dynamics become activated and exponentially slow (in the
system size)[28,29]. At variance with the REM, this threshold
energy is extensive and negative [30].

For any p of order 1 and in the large-N limit, the
correlation matrix between two generic configurations �x =
[s (x)

1 , s
(x)
2 , . . . , s

(x)
N ] and �y = [s (y)

1 , s
(y)
2 , . . . , s

(y)
N ] reads [16]

E(�x)E(�y) = Nq(�x, �y )p , (2)

where (. . .) is the average over different instances of the
couplings and q(�x, �y ) = 1

N

∑N
i s

(x)
i s

(y)
i is the overlap between

�x and �y. Thus, contrary to the REM, now energies are
correlated. Note that Eq. (2) is valid at leading order in N

(subleading corrections have been neglected). The REM can
be formally recovered in the p → ∞ limit. In fact, if one
could take p → ∞ before N → ∞ then Eq. (2) would lead to
uncorrelated energies for different configurations. This limit,
however, does not make sense since p = N at most [31]. This
is not an issue for thermodynamics, which was indeed shown to
converge to that of the REM even for N → ∞ first and p → ∞
later [16,26]; it is instead an issue for activated dynamics, since
uncorrelated energies are a key ingredient for the analysis of
the dynamics of the REM. For this reason we consider below
a different model that allows us to interpolate continuously
between the p-spin model with p ∼ O(1) and the REM.

C. The correlated random energy model

We consider a variant of the REM with correlated energi-
esCREM [32]. In the CREM, there are N spins si = ±1, (i =
1, . . . , N ), so there are 2N different states. As in the REM,
each state is assigned a random Gaussian energy of mean 0
and variance 1. However, in the CREM the energies of two
configurations �x and �y are not independent. Their covariance
is

E(�x)E(�y) = Nq(�x, �y )αN , (3)

where α ∈ [0,∞) is a parameter. Contrary to (2), the equation
above is strictly valid for any α and N . The largest covariance is
obtained for nearest-neighboring configurations �x and �x ′. Since
they differ by one spin flip only, in the large-N limit one finds
E(�x)E(�x ′) = Ne−2α . The parameter α allows for a smooth
interpolation between the REM and the p-spin model. In fact,
for α = p

N
, Eq. (3) reduces to Eq. (2), and the p-spin model

is recovered. Whereas if α diverges with N , then the energies
become independent variables at large N , as in the REM. In
the following, to study activated dynamics in an intermediate
case between REM and p spin, we focus on the regime α of
the order of 1.

The study of the CREM can be easily implemented numer-
ically, since its computational complexity does not increase
with p. As a matter of fact, by going to Fourier space on the
hypercube the energies of the CREM become independent,
so one can generate them as Gaussian independent random
variables in Fourier space and then antitransform them back to
real space (see Appendix A).

III. A GOLF COURSE WITH STRUCTURE IN THE HOLES

For α of order 1 and very large N , the correlation matrix
reads

Qxy ≡ E(�x)E(�y) = Ne−2αrxy , (4)

where rxy = 1
2

∑N
i=1 |s (x)

i − s
(y)
i |, the number of spins that are

different between �x and �y, indicates the distance between the
two configurations. The exponential decay of Qxy with the
distance determines a correlation length ξ = 1

2α
for the typical

size of correlated domains on the hypercube. Note that ξ is a
distance in phase space.

012133-2



ACTIVATED DYNAMICS: AN INTERMEDIATE MODEL … PHYSICAL REVIEW E 98, 012133 (2018)

Since the energy distribution is Gaussian, one can easily
obtain, given a configuration �x with energy Ex , the conditional
probability of a configuration �y at distance r from it:

P (Ey |Ex ) = 1√
2πN (1 − ρ2r )

e
− (Ey−ρr Ex )2

2N (1−ρ2r ) , (5)

where we defined ρ = e−2α . From Eq. (5) one can get the
expectation of the energy Ey conditioned to Ex, E[Ey |Ex] =
ρrEx . Thus, we find that for α = p/N → 0, the usual p-spin
case, the energy landscape a finite number of steps away from
a given configuration is flat, with every energy almost equal
to Ex , consistently with an infinite correlation length ξ → ∞.
When α diverges, the REM case, E[Ey |Ex] = 0 and Ey is
independent from Ex , consistently with a vanishing correlation
length. For α ∼ 1, one has instead an intermediate situation in
which the energies of neighboring configurations are typically
higher but do not reach directly zero intensive energy. As we
will show, the energy landscape is still golf-course-like but has
gained some more structure with respect to the REM.

A. Complexity of “critical points” and threshold energy

In analogy with calculations on the spherical p-spin model
[33–36], and with other systems displaying complex energy
landscape [37–39], we focus on the discrete counterparts of
critical points in continuous systems. Given a configuration �x,
we call it “a critical point of order k” if exactly k of its neighbors
have lower energy. For example, local minima correspond to
k = 0. In the case of large funnel-like basins, the analogous of
a saddle of order 1 connecting them would be a configuration
with k = 2. Note, however, that even though two local minima
must be connected by a configuration with k � 2, it is not
true that every configuration with k � 2 connects different
minima [40]. The choice of considering only nearest-neighbor
configurations to define “critical points” makes sense for the
CREM and the REM where the energy changes substantially
by one spin flip.

The probability that a configuration with negative energy E

be a “critical point of order k” is

Pk (E) =
(

N

k

){
erfc [B(E)]

2

}k{
1 − erfc [B(E)]

2

}N−k

, (6)

where B(E) = −E

√
(1−ρ)

2N (1+ρ) and erfc(x) is the complemen-

tary error function. As shown in Appendix B, this equation can
be easily established by realizing that after conditioning on the
value of the energy E of a given configuration, the energies
of all its nearest neighbors are independent. For large N , one
can use Eq. (6) to calculate the entropy of “critical points of
order k,” which we call complexity �k in analogy with the one
of the spherical p spin [33–36]. To leading order one gets (see
Appendix B 2)

�k (E)

N
= log(2) − E2

2N2

(
1 + k

1 − ρ

1 + ρ

)
. (7)

We plot �k for several k in Fig. 1 to stress its qualitative
similarity with the complexity in the p-spin model (with the
already-mentioned caveat on the analogy with saddle points).

Even though at present, nonminimum configurations are
exponentially fewer than minima for any E < 0, indicating
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FIG. 1. Complexity curves �ks in the CREM for α = 1.

that the intensive threshold energy is zero, as in the REM but
differently from the p spin [1,18]. This also implies that for
any E < 0, to leading order in N , the entropy is equal to the
complexity of the minima: S(E) = �0(E). Since S(E) is the
same as in the REM [16], the thermodynamics is the same in
both models (even though the �ks for k > 0 are different).

To calculate more precisely the threshold energy, we say
that a configuration of energy E is at Eth if the lowest-lying
among its neighbors has energy E

(neigh)
min (E) = E. The quantity

E
(neigh)
min (E) is found by combining Eq. (5) with common results

from extreme statistics (see Appendix B 3), resulting in

Eth = −
√

2
1 + ρ

1 − ρ
N log(N ) =

√
1 + ρ

1 − ρ
Eth

REM . (8)

As expected from the “complexity” calculation, even though
correlations have the effect of lowering the threshold energy
with respect to the REM, Eth is still intensively zero for large
N .

B. Size and structure of metabasins

We now focus on metabasins, defined as sets of config-
urations connected by paths that do not overcome Eth. The
threshold energy can be used to define a typical linear size
dth of the metabasins, as the typical minimum number of spin
flips required, starting from a local energy minimum, to reach
Eth. In the REM case, one needs just a spin flip, i.e., the
typical metabasin consists of a single configuration. This is
no longer the case for the CREM. Since every configuration
has N neighbors, as long as dth � N , a rough estimate of the
phase-space volume �b of a basin is �b ∼ Ndth . According
to Eq. (5), given an energy minimum �x at energy Ex = E,
configurations �y at distance r from it have in average an energy
Ey = ρrEx . The linear size dth(Ex ) is therefore found by
imposing that Ey reach the threshold level: ρdth (Ex )Ex = Eth.
The resulting linear metabasin size is therefore:

dth(E) = 1

2α
log

(
E

Eth

)
. (9)
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From this equation one sees that deep configurations (meaning
with negative intensive energy) are in metabasins made of
multiple configurations and that the metabasins become larger
and larger as α decreases [41].

To obtain further information on the structure of the
metabasins, we focus on the distance dsad(E) between a
local minimum at energy E and the closest configuration of
order k � 2. In a continuous system, this second definition
would correspond to the distance between a local minimum
and the nearest saddles Since to leading order there are Nd

configurations at distance d, the typical distance dsad from the
minimum at which one finds a saddle is obtained by imposing
Ndsad (E)Pk[ρdsad (E)E] ∼ 1. As we previously showed [Eq. (7)],
the saddles of order k = 2 are overwhelmingly more common
that those of higher order, and thus one can impose the simpler
condition Ndsad (E)P2[ρdsad (E)E] ∼ 1, which to leading order
yields dsad ∼ 1

2α
log( E

Eth
). This shows that one has to climb up

to Eth before finding a “saddle,” thus implying that a metabasin
contains several configurations but no additional higher local
minima. This is in agreement with Eq. (5), which implies that
energy typically increases by going further away from a given
low-energy configuration.

C. Trap dynamics

The previous analysis shows that when α ∼ 1 the energy
landscape of the CREM is more complex than the one of the
REM. Nevertheless, the golf-course structure of the landscape
still holds with the additional characteristic that the holes
actually contain a large number of configurations. Since to
escape from a hole (or metabasin) the system has to climb
up to a zero intensive threshold energy, as in the REM, an
effective description in terms of trap dynamics should hold if
the motion at E > Eth is rapid and decorrelates quickly as it
happens in the REM. The difference with the REM is that one
needs to coarse grain the energy landscape: The counterpart of
configurations of the trap model are metabasins in the CREM.
As a check of Trap dynamics, we have studied the energy
as a function of time for quenches at different temperatures.
The resulting curves are given in Fig. 2 for α = 1 and agree
with the behavior E(t ) � −T log(t ). The linear logarithmic
decrease combined with the prefactor equal to the temperature
are a strong indication that a description in terms of Trap
dynamics holds [10,18,24], as recalled in the Introduction (the
final plateau for T = 0.75 is a finite-size effect due to the
fact that the system is small enough to eventually equilibrate).
We did not study aging functions or distributions of trapping
times since these observables present strong finite-size and
finite-time effects, which makes the comparison with the trap
model problematic [42] even in the REM where it is rigorously
known that trap predictions hold [17,18].

IV. DISCUSSION AND CONCLUSION

A central question in the study of glasses is the nature of
activated dynamics. The dynamics of mean-field models on
time scales diverging with N provides a useful and interesting
paradigm. Yet, although some results are known [7,8,43],
the behavior of simple models such as the one with p-spin
interactions or variants of it has not been fully elucidated.
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FIG. 2. Energy as a function of time in the CREM in the aging
regime induced by a quench from T = ∞ to T = 0.25 (and 0.75) for
α = 1, N = 15. Curves are averaged along trajectories of 3 × 108

time steps on 2250 (and 900) different instances of the disorder.
The straight lines correspond to a slope −T . Especially at high
temperatures, where the equilibrium energy 〈E(T )〉 is higher, finite-
size effects on the slope are expected [18] due to the convergence
to 〈E(T )〉. The inset portrays the finite-size dependence of E(t ) for
T = 0.25.

Only the dynamics of the REM was completely worked out.
The new model we introduced and studied in this work, the
correlated REM, provides a way to bridge the gap between
these systems. We studied it in an intermediate regime between
REM and p spin and found that its energy landscape and its
dynamics are traplike provided that one identifies metabasins
with single configurations of the trap model. The next crucial
step is therefore to understand to what extent trap dynamics
hold in the p-spin case, too. A likely possibility is that during
the activated dynamics the system does not have to climb up to
Eth, i.e., that a more complex structure of activated paths arises
in the p-spin case. Nevertheless, some features of TM-like
dynamics, such as partial equilibration at all energies above the
one reached at time t during aging [24], could still effectively
hold. Another aspect worth future analysis is the effective
temperature description of the aging dynamics [44], which has
been found to hold also in the activated regime of mean-field
systems [45] but it is known to be violated in trap models
[46,47]. To address these and other questions, further studies
of the CREM dynamics can provide very valuable insights.
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APPENDIX A: GENERATING THE ENERGIES OF
THE CREM IN FOURIER SPACE

In this section we show how to generate the energy levels of
the CREM by passing through Fourier space, where the energy
levels are independent.

The overlap between two configurations �x and �y is
q(�x, �y ) = 1

N

∑N
i s

(x)
i s

(y)
i , where s

(x)
i = ±1 are the spins of

configuration �x. The spins can be rewritten as s
(x)
i = (−1)xi ,

with xi = 0, 1. This way, the overlap becomes q(�x, �y ) =
1
N

∑N
i (−1)xi+yi . The xi (i = 1, . . . , N ) are coordinates of a

hypercube of size L = 2, with periodic boundary conditions,
so −xi = xi . As a consequence, the overlap can be written as
a difference of the degrees of freedom,

q(�x, �y) = 1

N

N∑
i

(−1)xi−yi = q(�x − �y) ≡ q(�z) , (A1)

where we defined �z = �x − �y.
We now want to show that random energies E(�x), with

the correlations defined by Eq. 3, are independent in Fourier
space and calculate their wave-vector-dependent variance

E(�k)E(−�k). Therefore, to generate the full set of energies
of a sample, it is enough to generate the E(�k) as independent

Gaussian random variables with variance E(�k)E(−�k) and then
take the antitransform to have the energies in real space,

E(�x) = 1

2N

∑
�k

ei�k·�xE(�k), (A2)

where the wave vectors take the form �k = 2π
L

(n1, . . . , nN ), and
ni = 0, 1, so, since L = 2, the antitransform can be simplified
to E(�x) = 2−N

∑
�k (−1)�n·�xE(�k).

Since the discrete Fourier transform of the energies reads

E(�k) =
∑

�x
e−i�k·�xE(�x) , (A3)

the energy correlation matrix in Fourier space is

E(�k)E(�k′) =
∑
�x,�y

e−i�k·�x−i�k′ ·�y E(�x)E(�y), (A4)

= N
∑
�x,�y

e−i�k·�x−i�k′ ·�yq(�x − �y)αN . (A5)

We can now define �u = (�x + �y)/2 and �v = (�x − �y)/2, so that

= N2N

[
2−N

∑
�v

ei�v·(�k′−�k)

] ∑
�u

e−i(�k′+�k)·�uq(2u)αN , (A6)

where the term in square brackets is a representation of the
Kronecker delta, δ�k�k′ , so there is no correlation for any �k �= �k′.

Consequently, the variance can be written as

E(�k)E(−�k) = N2N
∑

�z
e−i�z·�kq(�z)αN , (A7)

which can be simplified to a form that is easily implemented
numerically,

E(�n)E(−�n) = N2N
∑

�z
(−1)

∑
i zini

[
1

N

N∑
i=1

(−1)zi

]αN

.

(A8)

APPENDIX B: DETAILS OF THE CALCULATIONS

In this section we calculate explicitly some of the relations
written in the main paper.

1. Order of a configuration

The order of a configuration �x is the number of neighboring
configurations with energy E(neigh) < E. Since each configu-
ration has N neighbors, the probability of a configuration of
energy E having order k reduces to the probability that it have
exactly k neighbors with lower energy, and N − k neighbors
with E(neigh) > E.

This amounts to taking the joint distribution of N + 1
energies: the one of state �x, and its N neighbors. Calling
(E0, . . . , EN ) the vector representing these N + 1 energies,
the joint distribution can be written as

[(E0, . . . , EN )]

=
√

det(Q)

(2π )N+1
exp

⎡
⎢⎢⎢⎣(E0, . . . , EN )Q−1

⎛
⎜⎜⎜⎝

E0

.

.

.

EN

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦.

(B1)

Q has a diagonal band structure, and its inverse Q−1 is tridi-
agonal [48]. As a consequence, its only nonzero nondiagonal
elements are those relating each neighbor to �x. This means that
once the energy E ≡ E0 of the configuration �x is fixed, all the
neighbors are mutually independent.

Therefore, the probability of a state being of order k takes
the binomial form

Pk (E) =
(

N

k

)
P [E(neigh) > E]N−k P [E(neigh) < E]k.

(B2)

As shown in the main Eq. (5), given a configuration �x with
energy Ex , the conditional probability of a configuration �y at
distance r from it is

P (Ey |Ex ) = 1√
2πN (1 − ρ2r )

e
− (Ey−ρr Ex )2

2N (1−ρ2r ) . (B3)

Through Eq. (B3), Eq. (B2) can be rewritten as

Pk (E) =
(

N

k

)[
1√

2πN (1 − ρ2)

∫ ∞

E

e
− (E′−ρE)2

2N (1−ρ2 ) dE′
]N−k

×
[

1√
2πN (1 − ρ2)

∫ E

−∞
e
− (E′−ρE)2

2N (1−ρ2 ) dE′
]k

. (B4)
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Through a variable change, the first integral can be rewritten
as 1

2 erfc[B(E)], with

B = −E

√
(1 − ρ)

2N (1 + ρ)
, (B5)

whereas the second one is equal to 1
2 erfc[−B(E)] = 1 −

1
2 erfc[B(E)]. Consequently,

Pk (E) =
(

N

k

){
erfc [B(E)]

2

}k{
1 − erfc [B(E)]

2

}N−k

.

(B6)

2. Complexity

We now calculate the intensive (i.e., for E ∼ −N ) com-
plexity, which is defined as

�k = log[2NP (E)Pk (E)], (B7)

where P (E 1√
2πN

e− E2

2N is the distribution of the energies defin-
ing the model.

We are interested in finite k, with diverging N . In this limit,
the binomial coefficient reduces to Nk . Also, since we focus
on intensive energies, the term B(E) in Eq. (B6) is large, and
one can make an asymptotic expansion of the complementary

error function. To first order, for large x, erfc(x) � e−x2

√
πx

, so,

keeping only the dominant order, one has

�k (E) = N log(2) − E2

2N
− kB2, (B8)

= N log(2) − E2

2N

(
1 − k

1 − ρ

1 + ρ

)
. (B9)

3. Threshold energy

A configuration at Eth typically has its lowest neighbor at
its same energy:

E
(neigh)
min (E) = Eth. (B10)

In fact, this means that if E < Eth, a configuration is typically
a minimum, whereas for E > Eth it typically is not.

As shown in Eq. (B3), given a configuration at energy E,
its neighbors’ energies follow a Gaussian distribution centered
in ρE, with variance σ 2 = N (1 − ρ2).

The typical minimum of N Gaussians of variance σ 2

and mean μ is positioned at μ − √
2σ 2 log(N ) (finite-size

corrections to this result are of order log[log(N )], see, e.g.,
Ref. [49]). Therefore, the lowest neighbor of a configuration
with energy E has energy

E
(neigh)
min (E) = ρE −

√
2(1 − ρ2)N log(N ). (B11)

By solving condition (B10) for Eth, one obtains

Eth = −
√

2
1 + ρ

1 − ρ
N log(N ). (B12)
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