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Quantum corrections of work statistics in closed quantum systems

Zhaoyu Fei,1 H. T. Quan,1,* and Fei Liu2,†
1School of Physics, Peking University, Beijing 100871, China

2School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China

(Received 9 April 2018; published 24 July 2018)

We investigate quantum corrections to the classical work characteristic function (CF) as a semiclassical
approximation to the full quantum work CF. In addition to explicitly establishing the quantum-classical
correspondence of the Feynman-Kac formula, we find that these quantum corrections must be in even powers of
h̄. Exact formulas of the lowest corrections (h̄2) are proposed, and their physical origins are clarified. We calculate
the work CFs for a forced harmonic oscillator and a forced quartic oscillator respectively to illustrate our results.
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I. INTRODUCTION

Recently, the statistics of quantum work has attracted con-
siderable attention [1–4]. This issue was initially motivated by
theoretical efforts on extending classical fluctuation theorems
[5–15] into quantum regimes. The practical feasibility of
manipulating and/or controlling the energy of small quantum
systems further boosted these research interests [16–19].

In closed quantum systems, quantum work is defined by the
two-energy-measurement scheme (TEM) [20,21]. Although
this definition has been criticized because of the destruction
of possible initial coherence [22,23], several works support
its justification from the aspect of the quantum-classical
correspondence principle [24–26]. Obviously, this classical
correspondence is not the ultimate goal of these studies; the
quantum characteristics of quantum work are the main con-
cerns. A possible improvement to full classical work statistics
is to develop semiclassical approaches. In addition to academic
interest, we expect these semiclassical approaches to provide
practical methods to compute complex quantum work statistics
of general quantum systems. In this paper, we present such an
approach. We follow the idea of Wigner [27] and represent
an evolution equation for the characteristic function (CF) of
quantum work in the phase space of a system. By expanding the
equation in powers of the Planck constant, h̄, the classical work
statistics and their quantum corrections are clearly revealed.

This paper is organized as follows. In Sec. II, we briefly
review the CF method of quantum work in closed quantum
systems. In Sec. III, a quantum-classical correspondence of the
Feynman-Kac formula is established. In Sec. IV, we present
the lowest quantum corrections to the classical CF. Forced
harmonic and quartic oscillators are used to illustrate our
results in Sec. V. Section VI presents the conclusion.

II. OVERVIEW OF THE CF METHOD

Let us begin with the quantum work definition of a closed
quantum system with Hamiltonian Ĥ (t ). Throughout this
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paper, all operators are denoted by a hat in order to distinguish
them from their classical correspondences in the phase space
of a system. Because the aim of this work is to illustrate
the idea, our discussion is limited to the simplest single
particle and one-dimensional situations. According to the
two-energy-measurement (TEM) scheme [20,21], given that
the instantaneous energy eigenvectors and eigenvalues of the
Hamiltonian are

Ĥ (t )|εn(t )〉 = εn(t )|εn(t )〉, (1)

the quantum work done by various external agents on the quan-
tum system is defined as Wnm = εn(t ) − εm(0). By repeating
this measurement scheme many times, one can construct the
probability distribution of the stochastic work as

P (W ) =
∑
n,m

δ(W − Wnm)|〈εn(t )|U (t )|εm(0)〉|2Pm(0), (2)

where U (t ) is the time evolution operator of the system,
and Pm(0) is the probability of finding the system of the
eigenvector |εm(0)〉 at time 0. We assume that the system
is initially in the thermal equilibrium state, that is, Pm(0) =
exp[−βεm(0)]/Z(0), where Z(0) is the partition function at
time 0 and is equal to Tr{exp[−βĤ (0)]}, and β is the inverse
temperature. Because the Dirac function is involved, Eq. (1)
is not the most convenient form to analyze the statistical
properties of the work distribution. An alternative way is to
resort to its Fourier transform or CF [1–4,20], and it can be
re-expressed by taking the trace over an operator:

�(η) = Tr[eiηĤ (t )U (t )e−iηĤ (0)ρ0U
†(t )] ≡ Tr[K̂ (t )]. (3)

We call K̂ (t ) the work characteristic operator (WCO) [4]. It is
easy to prove that the operator satisfies the following evolution
equation [28]:

∂t K̂ (t ) = 1

ih̄
[Ĥ (t ), K̂ (t )] + [∂te

iηĤ (t )]e−iηĤ (t )K̂ (t )

≡ 1

ih̄
[Ĥ (t ), K̂ (t )] + �̂(t )K̂ (t ). (4)

Note that the initial condition is K̂ (0) = exp[−βĤ (0)]/Z(0).
The collection of Eqs. (2)–(4) is called the quantum
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Feynman-Kac (FK) formula since it is fully consistent with the
spirit of the original paper by Kac [29] on the establishment of
the CF method for evaluating the distributions of the classical
stochastic functional [4].

III. QUANTUM-CLASSICAL CORRESPONDENCE
OF THE FK FORMULA

Following the idea of Wigner [27], we reformulate Eq. (4)
in the phase space representation [27,30,31]: let K (z, t ) be the
Weyl symbol of K̂ (t ), where z = (x, p) is the phase point,
and x and p are the position and momentum of the particle,
respectively. Then,

∂tK = − 2

h̄
H sin

(
h̄�

2

)
K + � exp

(−ih̄

2
�

)
K, (5)

where the symplectic operator is [30]

� = ←−
∂p

−→
∂x − ←−

∂x

−→
∂p , (6)

and the arrows indicate which direction the derivatives act
upon. �(z, t ) is the Weyl symbol of �̂:

�(z, t ) = [∂te
iηĤ (t )]w exp

(−ih̄

2
�

)
[e−iηĤ (t )]w. (7)

Here, the subscript “w” is used to indicate the Weyl symbols
of these exponential operators. If one solves Eq. (5), the CF of
the quantum work is then evaluated directly as

�(η) =
∫ +∞

−∞
dzK (z, t ). (8)

Equation (7) appears to be very complicated. Importantly,
Wigner [27] obtained the Weyl symbol of the exponential
Hamiltonian by expanding it in powers of h̄ when investigating
the quantum corrections to the classical thermodynamical
quantities:1

[e−iηĤ (t )]w = e−iηH (z,t )[1 + (ih̄)2f (iη, z, t ) + o(h̄2)], (9)

where

f (iη, z, t ) = (iη)2

8m

[
∂2
xU − iη

3
(∂xU )2 − iη

3m
p2∂2

xU

]
. (10)

For simplicity, we restrict our discussion to a simple system
The Hamiltonian of the quantum system is

Ĥ (t ) = p̂2

2m
+ U (x̂, t ), (11)

where m is the mass of the single particle system. Substituting
Eqs. (7) and (9) into the right-hand side of Eq. (5) and
expanding it to the second power of h̄, we have

∂tK = −H�K + iη∂tHK + ih̄

2
[(iη)2(∂tH�H )

− iη∂tH�]K + (ih̄)2(· · ·K · · · ) + · · · . (12)

1Different from this case, Wigner studied the expansion of
exp(−βĤ ) in powers of h̄. However, his formulas remain valid, and
we simply replace β by iη in his results.

The exact expression of (· · · ) is presented in Appendix A.
We do not include terms with higher powers of h̄, which can
be calculated in a similar way in principle. To investigate
the quantum-classical correspondence and possible quantum
corrections, we expand K in powers of h̄ as follows:

K = K (0) + (ih̄)K (1) + (ih̄)2K (2) + · · · . (13)

Substituting Eq. (13) into Eq. (5) and collecting all terms with
the same powers of h̄, we obtain

∂tK
(0) = −H�K (0) + iη∂tHK (0), (14)

∂tK
(1) = −H�K (1) + iη∂tHK (1)

+ 1
2 [(iη)2(∂tH�H ) − iη∂tH�]K (0), (15)

∂tK
(2) = −H�K (2) + iη∂tHK (2) + 1

2 [(iη)2(∂tH�H )

−iη∂tH�]K (1) + (· · · K (0) · · · ). (16)

The initial conditions are

K (0)(z, 0) = Peq (β, z, 0), (17)

K (1)(z, 0) = 0, (18)

K (2)(z, 0) = Peq (β, z, 0)δf (β, z, 0), (19)

respectively, where the classical canonical distribution is

Peq (β, z, 0) = e−βH (z,0)

ZC (0)
, (20)

ZC (0) is the classical partition function of the system at
time 0,

δf (β, z, 0) = f (β, z, 0) − 〈f (0)〉eq , (21)

and 〈f (0)〉eq is an average of f (β, z, 0) with respect to
the canonical distribution (20). Here, we explicitly mark the
parameter β since we replace it by other parameters in the next
section. Equation (19) originates from the quantum corrections
to the classical distribution [27]. We immediately find that
Eq. (14) (the zeroth power of h̄) is nothing but the celebrated
FK formula for the classical work [8,32–36]

W =
∫ t

0
∂sH [z(s), s]ds, (22)

and the solution is

K (0)(z, t ) = 〈eiη
∫ t

0 ∂sH [z(s),s]dsδ(z − z(t ))〉
= eiη[H (z,t )−H (ψ−1

0 (z,t ),0)]Peq

(
β,ψ−1

0 (z, t ), 0
)
. (23)

The angular brackets indicate an average over all classical
phase trajectories that started from the initial canonical distri-
bution weighted by the exponential work. The second equation
is valid only for closed classical systems, where ψ−1

0 is the
inverse of the flow map of the classical Hamiltonian system,

z = ψt (z0, 0). (24)

That is, the phase points z0 at time 0 and z at time t are on the
same phase trajectories connected by the map ψt . Therefore,
a quantum-classical correspondence of the FK formula is
explicitly established. Obviously, the corresponding principle
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of the work statistic is then a natural consequence. This is the
first important result obtained in this paper.

Given the flow map (24), we can also easily construct the
solution of Eq. (15) (the first power of h̄):

K (1)(z, t ) =
∫ t

0
dt ′eiη[H (z,t )−H (z′,t ′ )]

×1

2
{(iη)2[∂t ′H (z′, t ′)�′H (z′, t ′)]

− iη∂t ′H (z′, t ′)�′}K0(z′, t ′)|z′=ψ−1
t ′ (z,t ), (25)

where z′ is the phase point at time t ′, which is connected to
the phase point z at time t , namely, z = ψt (z′, t ′). The reader
is reminded that the operator �′ in this equation is defined
with respect to z′ = (x ′, p′). A very analogous expression for
K (2)(z, t ) can also be obtained, and it obviously depends on
the initial condition (19) in addition to functions K (0) and K (1).
Based on these above observations, we arrive at the series
expansion of the CF (3) in powers of h̄ as follows:

�(η) = �(0)(η) + (ih̄)�(1)(η) + (ih̄)2�(2)(η) + · · · , (26)

where

�(0)(η) = 〈eiη
∫ t

0 ∂sH (z(s),s)ds〉, (27)

�(1)(η) = (iη)(iη + β )

2

∫
dzeiη[H (ψt (z,0),t )−H (z,0)]Peq (z, 0)

×
∫ t

0
dt ′∂t ′H (ψt ′ (z, 0), t ′)�H (z, 0)

= (iη)(iη + β )

2

〈
eiη

∫ t

0 ∂sH (z(s),s)ds

×
∫ t

0
ds∂sH (z(s), s)�H (z(0), 0)

〉
. (28)

In the derivations of these equations, we used the Liouville
theorem. In addition, we did not write �(2)(η) temporally since
its current form is too long to be useful.

IV. LOWEST ORDER QUANTUM CORRECTION

As we noted at the beginning, the ultimate goal of studying
the quantum-classical correspondence of work statistics is to
deepen our understanding of the quantum characteristics of
work. Hence, we are interested in the quantum corrections
of the CF with higher orders of h̄, e.g., �(1)(η) and above.
However, Eq. (28) implies that the work moments, which are
calculated by taking different orders of derivatives of the CF
with respect to iη, are complex numbers. Hence, �(1)(η) must
be zero. This fact is not very apparent if we simply look at
Eq. (25). After carefully revisiting Eqs. (14), (15), we find that
there is a key relation between their solutions:

K (1) = − iη

2
H�K (0). (29)

Obviously, the above equation ensures that the first-order
quantum correction �(1) is exactly zero. As a result, if one
wants to obtain meaningful quantum corrections, we must
expand the quantum CF at least to the second order of h̄.

In principle, Eq. (16) has provided the answer. However, this
equation is too complicated to solve.

In fact, the quantum CF (3) has an alternative expression,

�(η) = Tr[eiηĤ (t )U (t )e−iηĤ (0)ρ0U
†(t )] ≡ Tr[eiηĤ (t )ρ̂(t )].

(30)

We call ρ̂(t ) the heat characteristic operator (HCO) [4]. The
operator satisfies the Liouville-von Neumann equation

∂t ρ̂(t ) = 1

ih̄
[Ĥ (t ), ρ̂(t )] (31)

with the modified initial condition

ρ̂(0) = e−(iη+β )Ĥ (0)

Z(0)
. (32)

We may write Eq. (31) in the phase space representation
as well: let the Weyl symbol [ρ̂(t )]w = P (z, t ); then, the
following equation is satisfied:

∂tP (z, t ) = −H (z, t )�P (z, t )+(ih̄)2 1
24∂3

xU∂3
pP (z, t )+· · ·,

(33)

and the initial condition is

P (z, 0) = Peq (iη + β, z, 0) + (ih̄)2Peq (iη + β, z, 0)

×δf (iη + β, z, 0) + · · · . (34)

The reader is reminded that Eqs. (33) and (34) contain only
terms of even powers of h̄. If one can solve Eq. (33), the CF is
evaluated by

�(η) =
∫ +∞

−∞
dz{exp[iηĤ (t )]}wP (z, t ). (35)

In general, to solve Eq. (33) is a very difficult task. Hence, we
have to resort to the h̄ series expansion again. Expanding the
solution of Eq. (33) in even powers of h̄,2

P (z, t ) = P (0)(z, t ) + (ih̄)2P (2)(z, t ) + · · · , (36)

we obtain the following solutions:

P (0)(z, t ) = Peq

[
iη + β,ψ−1

0 (z, t ), 0
]
, (37)

P (2)(z, t ) = Peq

[
iη+β,ψ−1

0 (z, t ), 0
]
δf

[
iη+β,ψ−1

0 (z, t ), 0
]

+ 1

24

∫ t

0
dt ′∂3

x ′U∂3
p′P

(0)(z′, t ′)|z′=ψ−1
t ′ (z,t ). (38)

According to Eq. (35), P (0)(z, t ) obviously gives the zeroth-
order CF, Eq. (27). If we substitute P (2)(z, t ) and collect all
terms of the second power of h̄, we find that the quantum
correction of the second order of h̄ is composed of three terms,

�(2)(η) = �(2)
m (η) + �

(2)
i (η) + �

(2)
d (η), (39)

2The reason for this is that the evolution equation and initial
condition contain only even powers of h̄.
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where

�(2)
m (η) = 〈eiη

∫ t

0 ds∂sH [z(s),s]f [−iη, z(t ), t]〉, (40)

�
(2)
i (η) = 〈eiη

∫ t

0 ds∂sH [z(s),s]δf [iη + β, z(0), 0]〉, (41)

�
(2)
d (η) =

〈
eiη

∫ t

0 ds∂sH [z(s),s]
∫ t

0
dsQ[z(s), s, iη + β]

〉
. (42)

The integrand in the last equation is

1

24
∂3
xU

[−(iη + β )∂3
pH̃ + 3(iη + β )2

(
∂2
pH̃

)
(∂pH̃ )

−(iη + β )3(∂pH̃ )3] (43)

and

H̃ (z, s) ≡ H
[
ψ−1

0 (z, s), 0
]
. (44)

Although these terms seem complicated in form, particularly
Eq. (42), their physical origins are very clear: �(2)

m (η) is the
quantum effect of the second energy projective measurement,
�

(2)
i (η) arises from the quantum correction of the initial

condition, and�
(2)
d (η) is the quantum correction to the classical

dynamical equation. Therefore, these quantum effects manifest
themselves independently in the corrections of the second
power of h̄. Before closing this section, we want to present two
comments. One is that Eq. (29) has a simple explanation based
on the dynamics about P (z, t ); see Appendix B. The other is
the observation that quantum corrections to the classical CF of
work only include terms with even powers of h̄. The reason
is obvious if one notes that all P (n)(z, t ) with odd powers of
h̄ are exactly zero; see Eq. (36). This is the second important
result in this paper.

V. TWO EXAMPLES

A. A forced harmonic oscillator

We use a driven harmonic oscillator to analytically illustrate
these quantum corrections, where the Hamiltonian of the
system is simply

Ĥ = p̂2

2m
+ mω2x̂2

2
+ F (t )x̂, (45)

where ω is the angular frequency and F (t ) is the external
driving force, which we assume to be zero at time 0. The
quantum CF of this system has an analytical formula [37]:

�HO(η) = exp

[
− iηF (t )2

2mω2
+ c(t )

(eiηh̄ω − 1)

h̄ω

− 4c(t )
sin(h̄ωη/2)2

h̄ω(eβh̄ω − 1)

]
, (46)

where

c(t ) = 1

2mω2

∣∣∣∣
∫ t

0
dsḞ eiωs

∣∣∣∣
2

, (47)

and the dot denotes a derivative with respect to time. We use
the subscript ‘HO’ to denote that it is the exact of the quantum
harmonic oscillator. Expanding Eq. (46) in powers of h̄ to the

second order, we have

�
(0)
HO(η) = exp

[
− iηF (t )2

2mω2
+ iηc(t ) − η2c(t )

β

]
, (48)

�
(2)
HO(η) = (β + iη)2η2ω2c(t )

12β
�

(0)
HO(η). (49)

Moreover, if we expand the quantum CF [Eq. (46)] in higher
powers of h̄, we can easily verify that there are only h̄2n-terms.
Hence, the model of the forced harmonic oscillator confirms
our results.

Now we are in position to check whether Eqs. (27) and (39)
can be used to reproduce Eqs. (48) and (49), respectively. Using
Eq. (23) and the exact flow map of the classical harmonic oscil-
lator (see Appendix C), we can straightforwardly calculate the
zeroth-order CF, �(0)(η), and the result agrees with Eq. (48).
The calculation of �(2)(η) is relatively complicated. Because
the potential of the harmonic oscillator is

U (x, t ) = mω2x2

2
+ F (t )x, (50)

the dynamical correction term, �(2)
d (η), is zero. In addition, in

this specific system,

〈f (0)〉eq = ω2β2

24
. (51)

Substituting all relevant quantities into Eqs. (40) and (41) and
after some algebraic calculations, we obtain the two corrections
as follows:

�
(2)
i (η) =

[
− ω2(iη + β )3(2β − 2η2c(t ))

24β2

+ ω2(iη + β )2

8
− ω2β2

24

]
�

(0)
HO(η), (52)

�(2)
m (η) =

[
ω2(iη)3(2β − 2η2c(t ))

24β2
+ (iη)4ω2c(t )

6β

+ ω2(iη)3c(t )

12
− ω2η2

8

]
�

(0)
HO(η). (53)

Their sum is exactly �
(2)
HO(η) given in Eq. (49). Some useful

formulas in the derivation are presented in Appendix C.
To explicitly show the importance of the h̄2-quantum cor-

rection, we show the CFs in panel (a) of Fig. 1, which includes
the exact quantum CF, the classical CF, and the classical
CF with the quantum corrections. We apply a linear force,
F (t ) = t (0 � t � 1) therein. Although the semiclassical CF
cannot completely recover the exact one, particularly at large
η values in lower temperature case, it indeed improves in
comparison with the classical CF. If we check their work
moments, this improvement is more prominent; see panel (c) in
the same figure. We also would like to emphasize our scheme
is not restricted to the specific example. To illustrate this, we
calculate the CFs for a forced quartic oscillator as a second
example.
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FIG. 1. Real (in red online) and imaginary (in blue online) parts of the CFs of the forced harmonic oscillator (a) and the forced quartic
oscillator (b) at β = 2. The solid and dashed lines are the results of the quantum and classical CFs, respectively. The circles and squares are the
results of the classical CFs with the h̄2-quantum corrections. (c) and (d) and their insets are the work moments versus the inverse temperature
β for the forced harmonic oscillator and the forced quartic oscillator, respectively. They are evaluated by using these CFs. We do not show
the first work moment (or the mean work) for the harmonic oscillator since these CFs give the same results for the special model. We set
m = h̄ = ω = 1 for the harmonic oscillator, while m = 1/2 for the quartic oscillator.

B. A forced quartic oscillator

Here, we want to consider a forced quartic oscillator [24],
of which the Hamiltonian is

Ĥ = p̂2

2m
+ F (t )x̂4, (54)

where we apply F (t ) = 1 + t . The model is distinct from the
harmonic oscillator since in this case the dynamical correction
(42) does not vanish. And to our knowledge, the analytical
expression of the quantum CF is not available. Hence, we have
to do numerical simulations. Data of the quartic oscillator are
shown in Figs. 1(b) and 1(d). We see again that the quantum
correction terms are significant in bridging the quantum and
the classical CFs in lower temperature case.

VI. CONCLUSION

In this paper, we studied the quantum corrections of the
work statistics in closed quantum systems by expanding the
quantum CF of work in powers of h̄. The forced harmonic oscil-
lator and the forced quartic oscillator clearly verify the validity
of the our formulas, particularly in the range of moderate and
high temperatures. We think that our results will be useful when
studying complicated quantum systems. The phase trajectory
of classical system and the thermal equilibrium state can be
efficiently simulated by molecular dynamics and/or Monte
Carlo methods, so h̄2 corrections provide a rigorous alternative
to full quantum work statistics.

There are several possible theoretical extensions of the cur-
rent work. For instance, if we take into account higher powers
of h̄, it should be interesting to see whether these additional
quantum corrections can lead to significant improvements of
the quantum CF of work. In addition, if there are many iden-
tified particles in quantum systems, quantum statistics have to
be taken into account. Finally, for open quantum systems, we
have established the quantum FK formula as well [4,38,39].
The exact meaning of quantum-classical correspondence in
these situations is worth investigating in detail.
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APPENDIX A: THE SECOND POWER
OF h̄ IN EQ. (12)

The term (· · ·K · · · ) is complicated since it includes the
contributions from both the commutator [, ] and �̂:

(· · ·K · · · ) = 1

24

∂3U

∂x3

∂3K

∂p3
+

{
iη

8

(
∂H

∂t
eiηH

)
�2(e−iηH )

+iη
∂H

∂t
[f (z, t, iη) + f (z, t,−iη)]
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+ ∂

∂t
f (z, t,−iη) − (iη)2

4

(
∂H

∂t
�H

)
�

+ iη

8

∂H

∂t
�2

}
K, (A1)

where

�2 =
←−
∂2
p

−→
∂2
x − 2

←−−
∂x∂p

−−→
∂p∂x −

←−
∂2
x

−→
∂2
p . (A2)

APPENDIX B: AN ALTERNATIVE UNDERSTANDING
OF EQ. (29)

According to the definitions of K̂ and ρ̂, we have

ρ̂ = eiηĤ (t )K̂. (B1)

Expressing them in the phase space representation and expand-
ing them to the second power of h̄, we have

P (0)(z, t ) + (ih̄)2P (2)(z, t ) + · · ·
= e−iηH (z,t )K (0)(z, t ) + (ih̄)e−iηH (z,t )

×
[
K (1) + iη

2
H (z, t )�K (0)(z, t )

]
+ · · · . (B2)

The term proportional to h̄ on the left-hand side is zero, so we
immediately reobtain Eq. (29). Of course, this result is imposed
by the Liouville–von Neumann equation and the specific initial
condition.

APPENDIX C: SEVERAL USEFUL FORMULAS
FOR THE FORCED HARMONIC OSCILLATOR

The flow map ψ of the classical harmonic oscillator with
the Hamiltonian

H (z, t ) = p2

2m
+ mω2x2

2
+ F (t )x (C1)

has the following analytical expressions:

x(t ) = x0 cos(ωt ) + p0

mω
sin(ωt ) − l(t ), (C2)

p(t ) = −mωx0 sin(ωt ) + p0 cos(ωt ) − l̇(t ), (C3)

where the function l(t ) is

l(t ) = 1

mω

∫ t

0
F (s) sin(ω(t − s))ds. (C4)

Hence, the difference of the Hamiltonian at two phase points
along the same phase trajectory is

H (z(t ), t ) − H (z0, 0) = a(t )x0 + b(t )p0 + c(t ) − F (t )2

2mω2
,

(C5)

where

a(t ) = mω sin(ωt )l̇(t ) − mω2 cos(ωt )l(t ) + F (t ) cos(ωt ),

(C6)

b(t ) = − cos(ωt )l̇(t ) − ω sin(ωt )l(t ) + F (t )

mω
sin(ωt ). (C7)

To determine these results, we used the following relation:

c(t ) = [F (t ) − mω2l(t )]2

2mω2
+ ml̇(t )2

2
= mb(t )2

2
+ a(t )2

2mω2
.

(C8)

These equations are used in deriving the concrete expressions
of �

(2)
i (η) and �(2)

m (η).
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