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Diffusion of a particle in the Gaussian random-energy landscape: Einstein relation and analytical
properties of average velocity and diffusivity as functions of driving force
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We demonstrate that the Einstein relation for the diffusion of a particle in the random-energy landscape with the
Gaussian density of states is an exclusive one-dimensional property and does not hold in higher dimensions. We
also consider the analytical properties of the particle velocity and diffusivity for the limit of weak driving force and
establish a connection between these properties and dimensionality and spatial correlation of the random-energy
landscape.
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I. INTRODUCTION

A fundamental feature of a simple diffusion process is the
validity of the Einstein relation (ER) between the diffusivity D

and drift mobility μ. A particular but very important example
of the diffusive transport is the motion of charge carriers in
amorphous semiconductors under the action of the applied
electric field E, where the ER takes form

D = kT

e
μ. (1)

Relation (1), apart from the clear fundamental importance,
serves as a very useful tool for the estimation of D in many
materials demonstrating hopping charge transport. Indeed, the
mobility could be rather easily measured in experiments, e.g.,
by the time-of-flight technique, while the direct measurement
of D is much more difficult. At the same time, in many
materials the mobility depends on E and the simple Einstein
relation (1) is not valid. It was found that for the case of the
one-dimensional (1D) transport in disordered materials with
the Gaussian density of states (DOS) the properly modified
Einstein relation is valid [1,2]:

D = kT

e

∂V

∂E
, (2)

where V is the average carrier velocity. This relation may
be rewritten in a more beautiful form. Indeed, if we let the
magnitude of disorder goes to zero while keeping all other
relevant parameters the same, then for the resulting system the
simple Einstein relation D0 = kT μ0/e is certainly valid (here
the corresponding diffusivity and average velocity are D0 and
v = μ0E), so Eq. (2) is equivalent to

D

D0
= ∂V

∂v
. (3)

In this form the modified Einstein relation (mER) contains no
parameters such as e, T , etc. In the future we will use this
form of the mER. A natural question is whether Eq. (3) could
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be extended to the multidimensional case. In this paper we
demonstrate that the mER is strictly the 1D relation, which
could not be extended to higher dimensions.

We consider the continuous model of the carrier diffusion
in the random-energy landscape U (�x). It provides a proper
description of the long-time behavior of the hopping charge
carrier transport. In fact, in the strict sense neither ER nor
mER is valid for the lattice model of the hopping transport.
Indeed, let us consider the simplest model of the hopping to
the nearest neighbors only for the 1D chain without disorder
and for the Miller-Abraham hopping rate [3]. In this case a
simple calculation gives for the velocity v and diffusivity D:

v = ν0a sgn(E)(1 − e−|λ|), (4)

D = 1

2
a2ν0(1 + e−|λ|). (5)

Here ν0 is the scale of the hopping rate, a is the lattice scale,
λ = eEa/kT . Both Eqs. (1) and (2) are invalid for this model,
apart from the limit λ � 1. This phenomenon is not a specific
property of the Miller-Abraham hopping rate, because the use
of an arbitrary hopping rate leads to the substitution ν0 →
ν0f (|E|), with some function f (|E|) going to a constant at
E → 0. Again, Eq. (1) or (2) hold only in the limit λ � 1. We
may conclude that the ER or mER are not valid for the lattice
hopping models even in the ideal case of an absolutely ordered
1D lattice. For this reason we limit our consideration to the
continuous diffusion model.

To avoid a possible confusion we mention here another
generalization of the Einstein relation, typically called the
generalized ER (gER), which is specifically tailored for the
charge transport in the case of not very low charge density
[4–8]. The gER for the Gaussian DOS has the form

D = g(n, T )
kT

e
μ, (6)

where the enhancement factor g depends on the carrier density
n and T . In contrast to Eq. (6), the relation (2) is valid for n → 0
and arbitrary E, while the relation (6) is valid only in the case
of field-independent μ, which typically implies E → 0.
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In addition we consider the dependence of D and V on
v for v → 0 (or, equivalently, for E → 0). In recent papers
by Nenashev et al. a striking difference was found for the
dependence of the hopping carrier velocity and diffusivity
for the well-known Gaussian Disorder Model (GDM) on v

for different dimensionality of space [9,10]. In the first paper
the exact solution of the lattice 1D version of GDM has
been extensively studied, and it was found that V and D are
nonanalytical functions of v:

V = Av (T )v + Bv (T )|v|v + · · · ,

D = AD (T ) + BD (T )|v| + · · · (7)

instead of the expected behavior

V = Av (T )v + Bv (T )v3 + · · · ,

D = AD (T ) + BD (T )v2 + · · · . (8)

At the same time, for the two-dimensional (2D) and three-
dimensional (3D) cases the careful numerical simulations
and approximate analytic consideration suggest that Eq. (8)
provides the proper description of the dependence of V and
D on v [10]. The reason for the exceptional behavior in the
1D case is not clear. We clarify the situation and try to answer
the question whether the 1D case is indeed exceptional. In
addition, we study how the analytical properties of V (v) and
D(v) depend on the correlation properties of the random-
energy landscape. There is a natural reason to expect such
a connection because in the 1D case it is well known that the
functional dependence of V and D on v is directly governed
by the correlation function C(x) = 〈U (x)U (0)〉/σ 2 [11], and
computer simulation supports that connection in the 3D case
too [12,13] [here σ 2 = 〈U 2〉 is the variance of the disorder
and we define the correlation function in such a way that
C(0) = 1]. From the general point of view the GDM is just
one particular case of the correlated disorder where for site
energies Ui the binary correlation function is zero for different
sites: 〈UiUj 〉 ∝ δij .

A major limitation of our approach is the use of perturbation
theory (PT). Yet we will see that the PT approach for the 1D
case gives the proper functional dependence of V and D on v,
and the corresponding perturbative coefficients A

pt

v,D and B
pt

v,D

could be obtained by the expansion of the exact coefficients in
series in the disorder strength parameter g = (σ/kT )2.

At the same time, the result of Ref. [9] provides a reliable
anchor point for the comparison of our results with the exact
solution of the particular model. Indeed, the general structure
of the functional dependence V (v) and D(v) for the 1D GDM
in the limit casev → 0 does not depend on the disorder strength
parameter g. We will see that this is a general phenomenon for
1D hopping transport for any type of the correlation function.
There is a general agreement that the effect of disorder on
the charge carrier transport is the most prominent in the
1D case because in this case the path is predetermined and
the carrier inevitably has to move across all fluctuations of
the random-energy landscape. As a result, for all transport
parameters (V, D, etc.) the effect of the strength of disorder
becomes weaker when the dimensionality of space d becomes
higher. For example, the renormalization group analysis gives

the leading asymptotics for μ and D for v → 0 [14]:

ln μ,D � − 1

d

( σ

kT

)2
, (9)

which agrees well with the exact solution of the 1D case
[2,11] and computer simulation for 3D case [13,15,16]. For
this reason we may expect that if the functional form of V (v)
and D(v) for v → 0 does not depend on the strength of disorder
in the 1D case and, hence, the PT approach provides the true
functional form of V (v) and D(v) for v → 0, then the same is
true for any d.

II. EINSTEIN RELATION

Let us consider diffusion of a particle in d-dimensional
space with the random-energy landscape U (�x) having the spa-
tially correlated Gaussian DOS. For the particular realization of
U (�x) the particle Green function GU (�x, t ) obeys the equation

∂GU

∂t
= D0 �∇ · [ �∇GU + βGU

�∇U ] − �v · �∇GU,

GU (�x, 0) = δ(�x), β = 1

kT
. (10)

We are going to consider the perturbation theory expansion
for the Green function G(�k, s) = 〈GU (�k, s)〉 averaged over
static disorder [G(�k, s) is the Fourier transform of the Green
function on �x and Laplace transform on t]; the corresponding
approach and diagrammatic expansion are briefly described in
Appendix A. We limit our consideration to the stationary state
s = 0 and will not write the argument s hereafter. The averaged
Green function at s = 0 is perfectly suitable for the description
of the dynamics of the particle in a well-established transport
regime where the initial relaxation is over and experimentally
measured particle velocity and diffusivity no longer depend on
time. Introducing the self-energy �(�k) and taking into account
the usual representation of G,

G−1(�k) = D0k
2 + i�v · �k − �(�k), (11)

we may calculate the corrections to the effective diffusivity
D = D0 + δD and average velocity V = v + δV as

δ �V = i
∂�

∂ �k

∣∣∣∣�k=0

, δDab = −1

2

∂2�

∂ka∂kb

∣∣∣∣�k=0

. (12)

Using the first-order correction to self-energy [Eq. (A3)], we
obtain

δ �V (1) = i
gD2

0

(2π )d

∫
d �pC( �p)G0(− �p)p2 �p, g = (σβ )2,

(13)

δD
(1)
ab = − gD2

0

(2π )d

∫
d �pC( �p)G2

0(− �p)

[
(D0p

2 + i�v · �p)papb

− i

2
p2(vapb + vbpa )

]
. (14)

A diffusion tensor for d > 1 in the coordinate sys-
tem where one axis is parallel to �v is diagonal D =
diag(D||,D⊥, . . . , D⊥), where D|| and D⊥ are lateral and
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transversal diffusion coefficients, correspondingly. Hence,∑
a

δDaa = δD|| + (d − 1)δD⊥,

∑
a,b

δDabvavb = δD||v2, (15)

and

δD
(1)
|| = − gD2

0

(2π )d

∫
d �pC( �p)G2

0(− �p)

×
[

(D0p
2 + i�v · �p)

(�v · �p)2

v2
− ip2(�v · �p)

]
, (16)

δD
(1)
⊥ = − gD2

0

(2π )d (d − 1)

∫
d �pC( �p)G2

0(− �p)(D0p
2 + i�v · �p)

×
[
p2 − (�v · �p)2

v2

]
. (17)

Let us try to extend the mER to the multidimensional case.
It is easy to check that the proper extension for the mER is

1

D0

∑
a

Daa =
∑

a

∂Va

∂va

(18)

or, in the proper coordinate system with one axis parallel to �v,

1

D0
[D|| + (d − 1)D⊥] = ∂V

∂v
. (19)

This relation is indeed valid for the first-order PT, demon-
strates a reasonable tensor structure, and is the only proper
valid extension of the mER which is linear in D and V and does
not explicitly depend on the effective charge g. Unfortunately,
this relation does not hold for the second-order PT (see
Appendix B) ∑

a

(
Daa

D0
− ∂Va

∂va

)
= O(g2). (20)

If the mER is invalid even in the second-order PT, then we may
safely conclude that the mER is a strict 1D relation having no
reasonable extension to the multidimensional case.

Why is the 1D mER valid and what is the difference in the
multidimensional case? A diagrammatic approach provides a
very clear explanation of this phenomenon. For example, for
the 1D case the relation for δ�2 simplifies

δ�2(�k) = k
g2D4

0

(2π )2

∫ ∞

−∞
dp1dp2C(p1)C(p2)(p1p2)2

× G̃0(k − p1)G̃0(k − p1 − p2)[G̃0(k − p1)

+ G̃0(k − p2)], (21)

where G̃0(k) = (D0k + iv)−1. Transformation of kG0(k) to
G̃0(k) for every diagram of the PT is the specific feature of the
1D case. An important property of G̃0(k) is

∂G̃0

∂k
= −D0G̃

2
0,

∂G̃0

∂v
= −iG̃2

0, (22)

i.e., these derivatives are proportional to each other, and
the proportionality coefficient does not contain k. Another
important property of every diagram is that k (apart from being

the common multiplier) is contained here in the arguments of
G̃0 functions and not in the factors such as k − p1, k − p2

in the nominator. In the 1D case a general structure of the
contribution A(k) of any particular diagram of the nth order to
�(k) is

A(k) ∝ k

∫ n∏
j=1

dpjp
2
jC(pj )

2n−1∏
m=1

G̃0

⎛
⎝k −

∑
lm

plm

⎞
⎠, (23)

where every set of lm is a subset of (1, . . . , n) and depends
on the structure of the diagram. Calculating the corresponding
derivatives in Eq. (12) and taking into account Eq. (22), it is
easy to see that the mER is valid, in fact, for any individual
diagram.

At the same time, for the 1D case there is an exact expression
for the average stationary velocity V of the particle,

V = D0∫ ∞
0 dx exp {−γ x + g[1 − C(x)]} , γ = v/D0, (24)

which is equivalent to the full summation of the PT series for V

and demonstrates no singularities for any reasonable real-space
correlation function C(x) [i.e., when C(0) = 1, |C(x)| � 1
for x > 0, and C(x) → 0 for x → ∞] [11]. Obviously, the
corresponding derivative ∂V/∂v is not singular as well. Hence,
the equality between corresponding contributions to D and
∂V/∂v for every diagram leads to the validity of the full mER
(3) for the 1D case. If needed, we may assume the proper
regularization for p → ∞ in every PT order; it does not affect
the equality between corresponding contributions to D/D0 and
∂V/∂v, and the subsequent removal of regularization again
leads to the desired mER.

We see that the diagrammatic technique gives a new proof
of the validity of the mER, in addition to the original derivation
[2]. This new proof is valid for any Gaussian random landscape
and significantly extends the area of validity of the mER. Our
derivation clearly shows that the mER is an exclusively 1D
phenomenon as it holds because of a very specific symmetry
of the diagrams, where every scalar product of vectors is
equivalent to a trivial multiplication of real numbers. In the
multidimensional case the only possibility is to to derive a
series of relations between transport coefficients explicitly
taking expansion into the powers of the effective charge in
a manner close to that of Ref. [4].

III. BEHAVIOR OF δV AND δ D FOR v → 0

Now let us consider the behavior of δD and δV for small v.
In this section we will restrict our approach to the first-order
PT, so we drop the corresponding index. We consider here
only the isotropic random medium with a spherically sym-
metric correlation function C( �p) = C(p), and the functional
dependence of δD and δV on v is governed by the correlation
function C(p). For v → 0 the most important is the long-range
behavior of C(r ) and, therefore, behavior of C(p) for p → 0.
It is easy to show that all variety of reasonable correlation
functions [we assume that C(r ) is a monotonously decreasing
function of r] falls in three different classes. For example, if
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C(r ) ∝ 1/rα for r → ∞, then for p → 0

C(p) ∝
⎧⎨
⎩

1/pd−α, α < d,

ln(1/p), α = d,

const, α > d.

(25)

Correlation functions with more faster decay (e.g., exponential
or Gaussian) fall in the same class as the power law correlations
with α > d, i.e., C(p) ∝ const for p → 0.

We should emphasize that in our consideration we exclude
very long-range correlations where C(p) demonstrates even
stronger divergence for p → 0 leading to the anomalous
diffusion [17,18]. Such random-energy landscapes are not
expected to appear in amorphous semiconductors. Probably
the correlation of the dipolar type C(r ) ∝ 1/r demonstrates
the slowest possible decay in such materials [11,19].

Let us consider in detail the correction for δV , and then just
summarize briefly the analogous results for δD⊥ and δD||. Let
us start with the 1D case.

A. 1D case

δV = i
gD2

0

2π

∫ ∞

−∞
dpC(p)

p2

D0p − iv

= i
gD0

2π

∫ ∞

−∞
dpC(p)

(
p + iγ − γ 2

p − iγ

)
(26)

where γ = v/D0 and we assume that C(p) is an even function
of p. Finally

δV = −gv + gv2

D0

∫ ∞

0
dxC(x)e−γ x . (27)

Hence, if the integral
∫ ∞

0 dxC(x) converges, then the
leading correction to the first term in Eq. (27) is ∝ v2. If the
integral diverges [for example, this is the case for the dipolar
glass model with C(x) ∝ 1/x], the correction is different.
If C(x) ∝ 1/xα and α � 1, then the integral in Eq. (27) is
effectively cut off at xc = 1/γ , and it is proportional to ln(1/γ )
for α = 1 and 1/γ 1−α for α < 1. Diffusivity δD may be
obtained from δV using the mER.

At the same time, for the 1D case we may calculate the
asymptotics of V at v → 0 for the exact relation (24). The
asymptotics is formed at large x where C(x) → 0, so

D0

V
≈ eg

∫ ∞

0
dxe−γ x[1 − gC(x)]

= veg

[
1 + gv

D0

∫ ∞

0
dxe−γ xC(x)

]
. (28)

We see that behavior for γ → 0 in Eq. (27) and Eq. (28) is the
same, the only difference being that Eq. (27) gives the expan-
sion of Eq. (28) in g. As we already noted in the Introduction,
we may expect that this very behavior remains intact in higher
dimensions. In addition, the very structure of the 1D result for
v → 0, i.e., the possibility to use expansion in gC(x), hints
at the importance of the regime of effectively small g for the
formation of the functional type of the dependence V (v) and
D(v) for low v and, thus, for the possibility to use the PT for
the evaluation of this dependence.

B. 2D and 3D cases

Isolating the maximal power of p in integral (13), it is easy
to see that δV could be written as

�v · δ �V = −gv2�d

(2π )d

∫ ∞

0
dppd−1C(p)

[
1

d
+ Mv (p/γ )

]

= −gv2

(
1

d
+ �

)
,

� = �d

(2π )d

∫ ∞

0
dppd−1C(p)Mv (p/γ ). (29)

Here we performed the integration in Eq. (13) over angles
for the isotropic correlation function, �d = 2πd/2/�(d/2) is
the area of the d-dimensional sphere with unit radius and
kernel Mv (x) → −Cd/x

2 for x → ∞, while Mv (0) = −1/d.
Separation of the term 1/d in Eq. (30) is motivated by vanishing
of the kernel Mv (x) for x → ∞. For δD|| and δD⊥ the results
which may be easily obtained by the corresponding integration
of Eq. (16) and Eq. (17) have the same structure apart from
the trivial replacement v2 ⇒ D0, and, of course, constants
Cd > 0 are different for δV, δD||, and δD⊥. We see that
�(v) provides the estimation for the mobility field dependence
because δμ ∝ �v · δ �V /v2.

For the 2D case

Mv (x) = −1

2
+ x2

(
1 − x√

x2 + 1

)
, Cv

2 = 3

8
, (30)

and for the 3D case

Mv (x) = −1

3
+ x2

(
1 − x arcsin

1√
x2 + 1

)
, Cv

3 = 1

5
.

(31)

We may obtain a very rough estimation of � subdividing
the integral over p in two regions: from 0 to γ and from γ to pc

(pc � 1/l is the effective cutoff for some microscopic length
scale l, e.g., the intermolecular distance). In the first region we
set M (x) ≈ M (0), and in the second one M (x) ≈ −Cd/x

2. In
both cases we may use for the correlation function C(p) the
asymptotics of small p from Eq. (25). Then we get

� = �1 + �2 � − �d

(2π )d

[
1

d

∫ γ

0
dppd−1C(p)

+ Cv
dγ 2

∫ pc

γ

dppd−3C(p)

]
. (32)

Hence, for the short-range correlations with C(p) ≈ C(0) we
have (keeping only the leading terms for γ → 0)

�1 � − �d

(2π )dd2
C(0)γ d, (33)

�2 � − �d

(2π )d
C(0)Cv

d

{
γ 2 ln(pc/γ ), d = 2,

γ 2pc, d = 3,
(34)

for the marginal case C(p) ≈ A ln(pc/p) in Eq. (25):

�1 � − �d

(2π )dd2
Aγ d ln(pc/γ ), (35)

�2 � − �d

(2π )d
ACv

dγ 2

{
1
2 [ln(pc/γ )]2, d = 2,

pc, d = 3,
(36)
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and for the long-range correlation C(p) ≈ A/pd−α

�1 � − �d

(2π )ddα
Aγ α, (37)

�2 � − �d

(2π )d
ACv

dγ 2

⎧⎨
⎩

1
2−α

(pc/γ )2−α, α < 2,

pc ln(pc/γ ), α = 2,
1

α−2 , α > 2.

(38)

Analogous results for δD⊥ and δD|| are

M⊥
2D (x) = − x√

x2 + 1
(1 + 3x2) + 3x2 − 1

2
, C⊥

2 = 5/8,

(39)

M
||
2D (x) = x√

x2 + 1

(
1 + 3x2 + x2

x2 + 1

)
− 3x2 − 1

2
,

C
||
2 = 7/8, (40)

M
||
3D (x) = −5x2 + x2

x2 + 1

+x(5x2 + 1) arcsin
1√

x2 + 1
− 1

3
,

C
||
3 = 1/3, (41)

M⊥
D (x) = 5

2
x2 − x

2
(5x2 + 1) arcsin

1√
x2 + 1

− 1

3
,

C⊥
3 c = 1/3. (42)

Hence, the corrections for the field dependences of δD⊥ and
δD|| could be obtained from the corresponding corrections for
�v · �V by the trivial replacement of the constant C and v2 ⇒ D0.

We see that the behavior for the 3D GDM agrees well with
the result of the computer simulation [10], but the 2D case
does differ and contains an additional logarithmic factor. It is
rather difficult to catch such a slowly varying factor in addition
to the major contribution ∝ γ 2 while analyzing the simulation
data, especially taking into account the limited accuracy of
the simulation data. For this reason the logarithmic factor
has not been found in Ref. [10]. To support this statement
we provide the fit of the data for 2D longitudinal diffusivity
borrowed from Ref. [10] using Eq. (34) (see Fig. 1). We do
not pretend to provide a proper description of the data from
Ref. [10] with our formula, as this is clearly impossible due to
the limitation (σ/kT )2 � 1 for our approach. In Fig. 1 we just
demonstrate the difficulty in distinguishing the dependences
∝ const + E2 ln E and ∝ const + E2 for E → 0. Indeed, a
significant difference between both dependences arises only
for fields where parameter eaE/σ becomes comparable to 1.

IV. EXPERIMENTAL EVIDENCE FOR THE VALIDITY OR
INVALIDITY OF THE EINSTEIN RELATION IN
AMORPHOUS ORGANIC SEMICONDUCTORS

The Gaussian DOS is considered the most appropriate
model for amorphous organic materials [20]. Validity of the ER
in amorphous organic semiconductors demonstrating hopping
charge transport is still a controversial question. There are
reliable theoretical results showing that the ER cannot hold
for the materials having the Gaussian DOS and demonstrating

10-6

10-5

10-4

10-3

10-3 10-2 10-1 100

D
l/D

0

eEa/σ

FIG. 1. Fit of data from Ref. [10] (filled squares) for the depen-
dence D/D0 = A + B(eEa/σ )2 ln(E/E0 ) (solid line), eE0a/σ ≈
4, A ≈ 8.8 × 10−7, B ≈ −7.8 × 10−4. The broken line demon-
strates the best fit of the data for the dependence D/D0 = A +
B(eEa/σ )2.

the nonlinear average velocity dependence on E or having a
non-negligible concentration of charge carriers [2,5]. Invalidity
of the Einstein relation in amorphous materials is supported
also by computer simulation [21].

For the experimental test of the validity of the ER the most
suitable is the so-called quasi-equilibrium transport regime
where all initial carrier relaxation is over and carrier velocity
(averaged over short time intervals) becomes constant. One of
the widely used techniques for a direct measurement of the
charge carrier velocity is the time-of-flight experiment [20]. In
this experiment the quasi-equilibrium regime manifests itself
by the development of the plateau of the current transient
indicating the constant average carrier velocity.

A recent paper by Wetzelaer et al. (Ref. [8]) states that
in quasi-equilibrium regime the simple ER perfectly holds
if we remove the influence of deep traps. They made the
conclusion using rather indirect experimental evidence on the
luminance of the organic light-emitting diodes. Very probably,
the approximate validity of the simple ER is due to the low
applied electric field, where the ER indeed holds (see Fig. 3
in Ref. [8], where E < 7 × 104 V/cm which is rather weak
field). We should note also that for some materials studied in
Refs. [8] and [22] [for example, for poly(9,9-dioctylfluorene)]
the reported mobility differs by approximately two orders
of magnitude from the previously reported values [23,24].
This difference hints at the rather unusual structure of the
thin transport layers used in light-emitting diodes (maybe the
structure of the layer is not spatially uniform), which provides
an additional complicating factor.

We believe that the papers of the Nishizawa group provide
much clearer direct evidence on the validity of the ER [25–29].
They extracted μ and D by fitting the experimental time-of-
flight transients in various molecularly doped polymers with
the solution of classic diffusion-drift equation. Typically, the
quality of fits is rather good (see Refs. [25,26,28]). Moreover,
obtained transport parameters μ and D show no dependence
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FIG. 2. Field dependence of the diffusivity in molecularly doped
polymer. Points are borrowed from Ref. [25]; the temperature is
indicated at the left. Dotted lines are shown as a guide for the eye. Solid
lines show the diffusivity calculated from the experimental mobility
values assuming ln μ = A + B

√
E and using the mER (2). Broken

lines show the diffusivity calculated using the simple ER (1).

on the thickness of transport layers, thus indicating a well-
established quasi-equilibrium transport regime [26]. At the
same time, the difference between fitted D and calculated using
the simple or modified ER is about two orders of magnitude
(see Fig. 2). Such a huge difference strongly supports the idea
of the invalidity of any variant of Einstein relation for 3D charge
transport in amorphous materials with the Gaussian DOS.

Unfortunately, the direct comparison of our results for the
behavior of V and D in the limit of a weak driving force with
the experimental data on charge carrier transport cannot be
done due to the total lack of reliable data for the very weak
field region.

V. CONCLUSION

We considered the diffusive motion of a particle in the ran-
dom spatially correlated energy landscape having the Gaussian
DOS. For such a system the average particle velocity in the
quasi-equilibrium regime is a nonlinear function of the driving
force, and the simple Einstein relation is certainly not valid.
Using perturbation theory we found that the modified Einstein
relation [2] is an exclusively 1D property and does not hold for
higher dimensions d > 1. For this reason a usual estimation
of the diffusivity from the mobility could be approximately
valid only for a low force region because the simple Einstein
relation, which is certainly valid at zero driving force, serves
as a kind of anchor point here.

We provide also a new proof of the mER for 1D case
which is completely different from the previous one [1,2]. This
proof extends the validity of the mER to an arbitrary Gaussian
random landscape and does not depend on the assumption
of the particular type of correlation function, thus covering
a wider variety of possible random landscapes.

We obtained also the leading corrections for the average
velocity and diffusivity in the limit of a weak driving force

G0(k, s) =

(a)

σ2C(p) =

(b)

βD0(k · p) =

(c)

FIG. 3. (a) Bare Green function G0(�k, s ). (b) Correlation function
of the Gaussian random field. (c) Interaction vertex βD0(�k · �p).

and demonstrated how such corrections depend on the dimen-
sionality and correlated properties of the random landscape.
For the short-range correlation we obtain results which agree
well with the corresponding dependences for the lattice model
[9,10]. At the same time, the results show that the case d = 1 is
not exceptional one and the functional form of the corrections
varies in some regular way with the variation of d.
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APPENDIX A: DIAGRAMMATIC TECHNIQUE FOR THE
PARTICLE DIFFUSION IN RANDOM MEDIUM

We consider the diffusion of the charged particle in the
random environment having the spatially correlated Gaussian
DOS. For the particular realization of the random potential
U (�x) the particle Green function GU (�x, t ) obeys Eq. (10). If
we consider the Laplace transform according to t and Fourier
transform for �x, then the corresponding equation becomes

GU (�k, s) = G0(�k, s)

[
1 − βD0

(2π )d

×
∫

d �pGU (�k − �p, s)U ( �p)(�k · �p)

]
,

G−1
0 (�k, s) = s + D0k

2 + i�v · �k, (A1)

where G0(�k, s) is the Green function for the zero disorder.
In the future we are going to consider the stationary case
s = 0 only and use the simplified notation GU (�k, 0) = GU (�k).

δΣ1 =

FIG. 4. First-order contribution to �(�k).
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δΣ2 = +

FIG. 5. Second-order contribution to �(�k).

Considering the PT expansion of Eq. (A1) and making the
average over disorder, we may write the diagram expansion for
the averaged over disorder Green function G(�k) = 〈GU (�k)〉.
Details of the diagram technique may be found in the excellent
Bouchaud and Georges review [30]. The trivial difference
between our and their notations is that they used the random
force �F = −�∇U instead of U .

The basic building blocks of a diagram are shown in Fig. 3.
For every inner moment �p there is an integration 1

(2π )d
∫

d �p,
and dotted line with �p going into the vertex provide − �p for
the vertex weight because of the momentum conservation

〈U (�k1)U (�k2)〉 = (2π )dσ 2δ(�k1 + �k2)C(�k1), (A2)

where C(�k) is the Fourier transform of the spatial correlation
function C(�x) = 〈U (�x)U (0)〉/σ 2. We assume that the inte-
grals converge at p → ∞, as is the case for fast decaying
C(p). Moreover, keeping in mind the possible application of
the theory to the diffusion of particles in amorphous material,
we should expect an inevitable cutoff at p � 1/l, where l is
some typical atomic or molecular scale.

Here we briefly show only the expansion for the self-energy
�(�k) = G−1

0 (�k) − G−1(�k) where only the strongly connected
diagrams should be taken into account (the diagrams which
cannot be disconnected by cutting a G0 line). The first-order
contribution to �(�k) is (see Fig. 4)

δ�1 = − gD2
0

(2π )d

∫
d �pC( �p)G0(�k − �p)(�k · �p)[(�k − �p) · �p],

g = (σβ )2, (A3)

and the second-order one is (see Fig. 5)

δ�2 = g2D4
0

(2π )2d

∫
d �p1 d �p2C( �p1)C( �p2)G0(�k − �p1)

×G0(�k − �p1 − �p2)(�k · �p1)[(�k − �p1) · �p2]

×{[(�k − �p1 − �p2) · �p1]R(�k, �p2)

+ [(�k − �p1 − �p2) · �p2]R(�k, �p1)},
R(�k, �p) = (�k − �p) · �pG0(�k − �p). (A4)

We mostly use the first-order approximation for �(�k), and the
second-order one is used only for the test of the validity of the
modified Einstein relation.

APPENDIX B: SECOND-ORDER PT APPROXIMATION

Calculation of the second-order PT corrections to average velocity and diffusivity is rather straightforward but produces
complicated expressions, so we write here only the relevant ingredients for the test of the validity of the mER (18):

∑
a

∂δV (2)
a

∂va

= g2D4
0

(2π )2d

∫
d �p1d �p2C( �p1)C( �p2){[ �F ( �p1) · �F ( �p2)][ �p1 · �F ( �p1 + �p2)] �p 2

2 ( �p1 · [ �F ( �p1) + �F ( �p1 + �p2) + �F ( �p2)])

+ [ �p1 · �F ( �p1)][ �p2 · �F ( �p1)][ �p2 · �F ( �p1 + �p2)]( �p1 · [2 �F ( �p1) + �F ( �p1 + �p2)])},
�F ( �p) = �pG0(− �p), (B1)

1

D0

∑
a

δD(2)
aa = g2D4

0

(2π )2dD0

∫
d �p1d �p2C( �p1)C( �p2){ �p1 · [ �K ( �p1)

+ �K ( �p1 + �p2) + �K ( �p2)][ �p2 · �F ( �p1)][ �p1 · �F ( �p1 + �p2)][ �p2 · �F ( �p2)]

+ �p1 · [2 �K ( �p1) + �K ( �p1 + �p2)][ �p2 · �F ( �p1)][ �p2 · �F ( �p1 + �p2)][ �p1 · �F ( �p1)]

− [ �p2 · �F ( �p1)][ �p1 · �F ( �p1 + �p2)][( �p1 + �p2) · �F ( �p2)]

− [ �p1 · �F ( �p1)][ �p2 · �F ( �p2)][ �p1 · �p2G0(− �p1 − �p2)]

− 2[ �p1 · �F ( �p1)][ �p2 · �F ( �p1)][ �p2 · �F ( �p1 + �p2)] − [ �p2 · �F ( �p1)]2 �p 2
1 G0(− �p1 − �p2)},

�K ( �p) = G0(− �p)(2D0 �p − i�v). (B2)

The right parts of Eq. (B2) and (B3) do differ for any d > 1.
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