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X X Z-Ising model on the triangular kagome lattice with spin 1 on the decorated trimers
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We consider the triangular kagome XXZ-Ising model (TKL XXZ-Ising model) formed by inserting small
triangles (“a-trimers”) with XXZ spin-1 inside the triangles of the kagome lattice (“b-trimers”). It is a mixed
spin system and can be solved exactly by transforming into the kagome lattice with the general transformation
method for decorated spin systems. In the absence of an external field, we integrate out the quantum spins of the
a-trimers and map the TKL model to the kagome Ising model exactly. We obtain the full phase diagram and their
zero-temperature entropies (e.g., smax = 5.48895 per unit cell is given for the phase with the maximum entropy).
When an external field is applied, 20 phases are found due to the quantum fluctuations of a-trimers. Moreover, the
high spins in the a-trimers can lead to a stable quantized growth of the magnetization process in the Heisenberg
limit.
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I. INTRODUCTION

Introducing quantum fluctuations into a classical model
has both fundamental and practical importance for finding
new quantum phases at low temperature. Especially, it can
lead to a multitude of new quantum phases and nontrivial
phase transitions in frustrated systems with a large ground
state degeneracy, for example, the tetramer-dimer and dimer-
monomer phases in the frustrated Heisenberg diamond chain
[1] or kagome loop gas in the triangle kagome lattice [2]. It is
known that these unusual phases are the result of the interplay
between quantum fluctuations and geometric frustrations [3].
Since the degenerate states in such systems have the same
energy levels and all perturbations are singular, any linear
combination of the classically degenerate states is a candidate
for new quantum ground states [4]. Moreover, this effect plays
an important role in frustrated mixed spin systems, which
includes both spin-1/2 and higher spins. Sorts of classical
degenerate states exist in such spin systems.

Theoretical interest in mixed spin systems has been in-
creasing in recent years. Most of the mixed spin systems are
constructed by inserting high spin decorated parts in the stan-
dard Ising spin systems. For instance, the high spin decorated
parts in a diamond chain exhibits outstanding magnetization
properties [5]. Among them, the triangle kagome lattice (TKL)
is a typical structure formed by inserting small triangles into
the large triangles in the kagome lattice (see Fig. 1). It was
found in Cu9X2(cpa)6 · xH2O in the 1990s [6–9]. Previous
researches have revealed that the TKL XXZ-Ising model with
the spin-1/2 on the decorated trimers can be solved exactly
[2,4,6–16]. However, in the presence of mixed spin case, the
TKL XXZ-Ising model calls for farther investigations.

*yaodaox@mail.sysu.edu.cn

One of the most important way to study decorated spin
system is the general transformation method. It was first
introduced by Fisher in the 1950s [17] and developed in recent
years [18,19]. And it has been widely applied in studying the
decorated spin system, in both one [20–22] and two [23–26]
dimensions. With this method, the TKL XXZ-Ising model
remains solvable when changing the decorated parts with
higher spins, which makes it serve as an ideal candidate for
observing the effects of quantum fluctuations in the mixed spin
systems with geometric frustrations.

In this paper, we investigate the TKL XXZ-Ising model
decorated by the spin-1 trimers (spin-1 TKL model). By
comparing the pure spin-1/2 and the mixed spin cases,
we give a picture of how the phase diagram of the TKL
XXZ-Ising model evolves when the decorated spins turn
higher.

The rest of this paper is organized as follows. In Sec. II, we
give the Hamiltonian of the TKL XXZ-Ising model decorated
by the spin-1 trimers and introduce the transformation method.
In Sec. III, we discuss the zero temperature phase diagram
without the external field and compare with the spin-1/2 TKL
case. In Sec. IV, we present the zero temperature phase diagram
in the presence of a finite magnetic field and discuss the effect
of the higher spin decorated parts. In Sec. V, we present our
final discussion and conclusion.

II. MODEL AND METHOD

The TKL XXZ-Ising model has two different kinds of
sublattices, which are the a-trimers (the red triangle in Fig. 1)
and the b-trimers (the blue triangle in Fig. 1). In this model, we
consider that the exchange couplings between the a-spins (the
spins in the a-trimers) are of the XXZ type, and the couplings
between the neighboring a-spins and b-spins (the spins in the
b-trimers) are of the Ising type. The Hamiltonian of the spin-1

2470-0045/2018/98(1)/012127(13) 012127-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.012127&domain=pdf&date_stamp=2018-07-20
https://doi.org/10.1103/PhysRevE.98.012127


ZHOU, FENG, RUAN, AND YAO PHYSICAL REVIEW E 98, 012127 (2018)

b

bb

a

aa

JabJaa

FIG. 1. The XXZ-Ising model of the triangular kagome lattice
(TKL) formed by introducing small triangles [“a-trimers,” red (dark)]
with XXZ spins on the kagome lattice [“b-trimers,” blue (light)] with
Ising spins.

TKL model is given by

H = −J xy
a

∑
ai,aj∈a

(
Sx

aiS
x
aj + S

y

aiS
y

aj

) − J z
a

∑
ai,aj∈a

Sz
aiS

z
aj

− J z
ab

∑
ai∈a,bi∈b

Sz
aiS

z
bi − h

∑
ai∈a

Sz
ai − h

∑
bi∈b

Sz
bi, (1)

in which the spins carry S = 1/2 and 1 for the b-spins and the
a-spins respectively. J z

ab denotes the Ising coupling between
the a-spins and the b-spins. J z

a (J xy
a ) is the coupling of the

a-spins in the z (x and y) direction, respectively. h is the applied
external field. We set |J z

ab| to be unit of energy in the following
analysis. The Hamiltonian (1) can be written as a sum of the
hexamers (see Fig. 2), which is

H =
∑

n

Hn, (2)

Hn = −J xy
a

∑
ai,aj∈a

(
Sx

aiS
x
aj + S

y

aiS
y

aj

) − J z
a

∑
ai,aj∈a

Sz
aiS

z
aj

− J z
ab

∑
ai∈a,bi∈b

Sz
aiS

z
bi − h

∑
ai∈a

Sz
ai − h

2

∑
bi∈b

Sz
bi. (3)
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FIG. 2. A hexamer contains three spins on the a-sublattice and
three spins on the b-sublattice. Each b-spin is shared by two hexamers
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FIG. 3. The effective trimer after transformation. L0
0 corresponds

to the coefficient of effective background energy, L1
1, L1

2, and L1
3

correspond to the coefficients of one spin coupling, L2
4, L2

5, and L2
6

correspond to the coefficients of two spins coupling, L3
7 correspond

to the coefficients of three spin coupling (not shown in Fig. 3).

Note that the Hamiltonian of each hexamer [Eq. (3)] commutes
with each other. And each a-spin appears just in one hexamer.
Therefore, the eigenvector of each hexamer has the form as

|hexamer〉 = ∣∣Sz
bi, S

z
bj, S

z
bk

〉 ⊗ ∣∣Sz
ai, S

z
aj, S

z
ak

〉
. (4)

Hence, the decorated trimers are localized, and it is reason-
able to trace over all the a-spins for each hexamer. The partition
function of each hexamer is given by

Z
(
Sz

b1, S
z
b2, S

z
b3

) = Tre−βHn(Ŝai,S
z
bi ). (5)

The trace can be evaluated by diagonalizing Hamiltonian
Eq. (3) for each configuration of the enclosing b-spins. When
considering the C3 symmetry in the spin-1 TKL model
(Z(↓↑↑, h) = Z(↑↓↑, h) = Z(↑↑↓, h)), there are only four
different configurations: Z(↑↑↑, h), Z(↓↓↓, h), Z(↓↑↑, h),
and Z(↑↓↓, h). We give their explicit form in Appendix A.

Since it is just a function of the b-spins, it is available
to transform the hexamer into an effective trimer, which
contains only the b-spins (see Fig. 3). According to the general
transformation method for the decorated spin systems [18,19],
the Hamiltonian of the effective trimer can be assumed as

H ′
n = −L0

0 − L1
1σ

z
b1 − L1

2σ
z
b2 − L1

3σ
z
b3 − L2

4σ
z
b1σ

z
b2

−L2
5σ

z
b2σ

z
b3 − L2

6σ
z
b1σ

z
b3 − L3

7σ
z
b1σ

z
b2σ

z
b3. (6)

Here we use σ z
bi = ±1 for consistency with the Ising

model literature. L0
0 stands for the parameter of the effective

background energy. L1
1, L1

2, and L1
3 represent the coefficients

of each b-spin coupling with the effective fields. L2
4, L2

5, and
L2

6 are the coefficients of two b-spins’ effective couplings.
L3

7 carries the coefficient of three b-spins’ effective coupling.
Since the effective trimer is classical, the partition function of
each b-spin’s configuration can be written as

Z
(
σ z

b1, σ
z
b2, σ

z
b3

) = exp
[−βH ′

n

(
σ z

b1, σ
z
b2, σ

z
b3

)]
. (7)

To keep the partition function, Z(Sz
b1, S

z
b2, S

z
b3) =

Z(σ z
b1, σ

z
b2, σ

z
b3) when they share the same b-spin

configuration. Hence,

Z
(
Sz

b1, S
z
b2, S

z
b3

) = exp
[−βH ′

n

(
σ z

b1, σ
z
b2, σ

z
b3

)]
. (8)

As a result, the effective couplings can be expressed by the
partition functions of each hexamer. To give their formulas, it
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is more convenient to take the logarithm of both sides of Eq. (8)
[18],

ln[Z] = V
1
2 ⊗ V

1
2 ⊗ V

1
2 βL, (9)

where

ln[Z] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ln[Z(↑↑↑)]

ln[Z(↓↑↑)]

ln[Z(↑↓↑)]

ln[Z(↓↓↑)]

ln[Z(↑↑↓)]

ln[Z(↓↑↓)]

ln[Z(↑↓↓)]

ln[Z(↓↓↓)]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, βL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

βL0
0

βL1
3

βL1
2

βL2
5

βL1
1

βL2
6

βL2
4

βL3
7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (10)

V
1
2 =

(
1 1
1 −1

)
. (11)

Here (↑↑↑), for instance, represents one possible configuration
of the b-spins. Finally, the effective couplings can be expressed
as

βL=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ln[Z]

8
.

(12)

In the TKL model, we can simplify the effective couplings
with its C3 symmetry, which is

ln(Za ) = βL0
0 = ln[[Z(↑↑↑, h)Z(↓↓↓, h)]

1
8

× [Z(↓↑↑, h)Z(↑↓↓, h)]
3
8 ], (13)

βhb = βL1
1 = βL1

2 = βL1
3

= 1

8
ln

[
Z(↑↑↑, h)Z(↓↑↑, h)

Z(↓↓↓, h)Z(↑↓↓, h)

]
, (14)

βJbb = βL2
4 = βL2

5 = βL2
6

= 1

8
ln

[
Z(↑↑↑, h)Z(↓↓↓, h)

Z(↓↑↑, h)Z(↑↓↓, h)

]
, (15)

βJbbb = βL3
7 = 1

8
ln

[
Z(↑↑↑, h)Z(↑↓↓, h)3

Z(↓↓↓, h)Z(↓↑↑, h)3

]
. (16)

It is worth noting that hb should be doubled when con-
sidering the whole model since each b-spin is shared by two
hexamers. Eventually, the Hamiltonian of the effective trimer
becomes

H ′
n

(
σ z

bi

) = − ln(Za )/β − hb

∑
bi∈b

σ z
bi − Jbb

∑
〈bi,bj〉

σ z
biσ

z
bj

− Jbbb

∑
〈bi,bj,bk〉

σ z
biσ

z
bjσ

z
bk. (17)

With Eq. (17), the spin-1 TKL model can be exactly
mapped to the classical kagome model with an extra three-spin
coupling. Consequently, we can obtain the zero-temperature
ground state of the b-spins in the usual manner, which is
searching for the lowest energy state of each unit cell. We
present the phase diagram and discuss the effect of the
interplay between the quantum fluctuations and the geometric
frustrations in the spin-1 TKL model in the following sections.

III. ZERO FIELD

A. Mapping to the kagome Ising model

Due to the time-reversal symmetry (Z(↑↑↑, h) = Z(↓↓↓,

−h), Z(↓↑↑, h) = Z(↑↓↓,−h)), the effective couplings of
the spin-1 TKL model can be farther simplified as

H ′
n = − ln(Za )/β − Jbb

∑
bi,bj∈b

σ z
biσ

z
bj, (18)

in which

Za = Z(↑↑↑)
1
4 Z(↓↑↑)

3
4 , (19)

βJbb = 1

4
ln

[
Z(↑↑↑)

Z(↓↑↑)

]
, (20)

βhb = βJbbb = 0. (21)

After the transformation, the TKL model is mapped to the
kagome Ising model exactly, in which all the parameters (Jbb

and Za) are the functions of the original couplings (J z
ab, J z

a ,
and J

xy
a ).

B. Free energy and entropy

Since the spin-1 TKL model has been mapped to the kagome
Ising model, it is rational to compute the partition function, free
energy, internal energy, and entropy per unit cell of the spin-1
TKL model by applying the exact solution of the kagome Ising
model [27,28]. For convenience, we define the f as f = ln(Z)
associating with free energy. Then in the spin-1 TKL model, it
can be written as a sum of f from the effective kagome Ising
model and from the a-trimers,

fTKL
(
J xy

a , J z
a , J z

ab

) = fb(βJbb ) + 2fa, (22)

in which fa = ln(Za ). The factor 2 in Eq. (22) comes from the
fact that one unit cell of the spin-1 TKL model contains one
b-trimer and two a-trimers (see Fig. 4), which is different from
the hexamers.

The internal energy per unit cell is

uTKL = −dfTKL

dβ

= −dfb

dβ
− 2

dfa

dβ

= ub + ua, (23)

where

ua = −2
dfa

dβ
= u↑↑↑ + 3u↓↑↑

2
, (24)

ub = −dfb

dβ
= u↓↑↑ − u↑↑↑

4
ukag(βJbb ). (25)
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FIG. 4. A unit cell is shown as the blocked area.

Here we define u↑↑↑ = [E↑↑↑ exp(−βE↑↑↑)]/Z, for in-
stance, which agrees with Ref. [2]. And ukag(βJbb ) is the
internal energy per unit cell of the effective kagome Ising
model. Finally, it becomes

uTKL = u↑↑↑ + 3u↓↑↑
2

+ u↓↑↑ − u↑↑↑
4

ukag(βJbb ). (26)

The entropy per unit cell is

sTKL = fTKL + βuTKL. (27)

Since u↑↑↑ and u↓↑↑ are dominated by the lowest energy
of each hexamer at zero temperature, we can compute the free
energy and entropy of the spin-1 TKL model with the exact so-
lutions of the kagome Ising model [27–29]. In the meanwhile,
βJbb serves as the most important effective coupling since it
is the decisive parameter in the kagome Ising model.

C. Phase diagram at zero temperature and ground
state properties

Since the Hilbert space of the hexamers can be divided into
a-spins’ space and b-spins’ space [see Eq. (4)], the best way
to present its phase diagram is investigating the states of the
b-spins and the a-spins, respectively.

For the b-spins, βJbb determines their behaviors. When
T → 0, βJbb becomes

βJbb = 1

4

[
ln

(
D1

D2

)
+ β[E0(↓↑↑) − E0(↑↑↑)]

]
. (28)

Here E0(↑↑↑)(E0(↓↑↑)) and D1(D2) denote the ground
state energy and the ground state degeneracy of each hexamer
when the b-spin’s configuration is (↑↑↑)((↓↑↑)) at zero
temperature, respectively. We also define D as the degeneracy
of each hexamer in the following discussion. Since β → ∞
when T → 0, the sign of βJbb is determined by the competition
between E0(↑↑↑) and E0(↓↑↑).

For the a-spins, we describe their ground states by calculat-
ing

Sz
atot =

∑
ai∈a

Sz
ai, (29)

V VI VII IV III II I

E( )
E( )

−3 −2 −1 1 2 3
Ja
xy

−10

−5

5

10

Ej

FIG. 5. The energy levels of each hexamer when the b-spin
configuration is (↑↑↑) (dotted blue line) or (↓↑↑) (dotted red line)
with J z

a = 0.2, J z
ab = −1, h = 0 and different J xy

a in Fig. 5. We
also highlight the lowest ground state energy level of each b-spin’s
configuration with the full lines and point out each phase with the
same marks as in Fig. 6.

in which Sz
ai stands for the a-spins in the same hexamer. Since

[Sz
atot,H ] = 0, Sz

atot is compatible with the Hamiltonian.
By investigating Sz

atot and the energy level of each hexamer
(Fig. 5 for instance), we present the phase diagram at zero
temperature in Fig. 6 and Table I. The phase diagram can be
divided into two major regions according to the sign of βJbb,
which are Region P for positive and Region N for negative (see

FIG. 6. Phase diagram at T = 0 is identified by the energy of each
hexamer whenh = 0 andJ z

ab = −1. The phase diagram is divided into
two main regions by the sign of βJbb, which are denoted as Region P
(for βJbb is positive) and Region N (for βJbb is negative). We mark
the phases in Region N as I and V and the phases in Region P as II, III,
IV, VII, and VI. We also mark some of the highly degenerate points
and plot their effective βJbb as functions of temperature
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TABLE I. The effective βJbb, Sz
atot and degeneracy D of each

phase for h = 0 at zero temperature.

βJbb Sz
atot D Phase

Region N −∞ Antiferromagnetic phase
Region N including:
Phase I −∞ 0 1 Antiferromagnetic phase
Phase V −∞ 0 2 Antiferromagnetic phase
Region P ∞ Ferrimagnetic phase
Region P including:
Phase II ∞ −1 1 Ferrimagnetic phase
Phase III ∞ −2 1 Ferrimagnetic phase
Phase IV ∞ −3 1 Ferrimagnetic phase
Phase VI ∞ −1 2 Ferrimagnetic phase
Phase VII ∞ −2 2 Ferrimagnetic phase

Fig. 6). The boundaries between these regions are denoted as
BL:II, BL:III, and BL:IV (see Table II) according to the phases
on each side of them. Also, Table II gives the entropies of these
phase boundaries at zero temperature. Note that the BP:I keeps
the highest entropy, which satisfies the intuition that the entropy
of a system at transition lines or dots should be higher than that
of the surrounding phases.

In Region P, the ground state energies of each hexamer
obey E0(↑↑↑) < E0(↓↑↑), and βJbb tends to infinity. In this
case, the b-spins have a perfect ferromagnetic long-range order
because βJbb exceeds the critical point of the ferromagnetic
kagome Ising model [βJkag = (ln[3 + √

12])/4] [28]. More-
over, this region is divided into five phases corresponding to
different states of the a-trimers. Their eigenvectors is given in
Appendix B. Although there is a ferromagnetic order for the
b-spins, Region P is in the ferrimagnetic phases since Sz

atot < 0.
Last, when J z

a increases, Sz
atot decreases to −3 gradually in

Region P.
In Region N, the ground state energies obey E0(↑↑↑) >

E0(↓↑↑), meaning that βJbb tends to negative infinity. It
leads to an antiferromagnetic phase for the b-spins [4]. This
region can also be divided into two phases, but both of them
correspond to Sz

atot = 0.
At the boundaries between Region P and Region N, the

ground state energies are equal, E0(↑↑↑) = E0(↓↑↑). In
addition, E0(↑↑↑) and E0(↓↑↑) can also be equal in BL:I,
BP:I, and BP:II (see Table II). In these cases, the value of βJbb

depends on the ratio of the degeneracies D1/D2. For different
boundaries, the possible values of βJbb can be positive (BL:III,

TABLE II. The βJbb and entropy per site of the TKL model for
phase boundaries when h = 0 at zero temperature. All of them have
the finite correlation length.

Boundary Boundary about βJbb s0/9

BL:I Phase I and Phase V (1/4) ln (3/5) 0.407945
BL:II Phase I and Phase II 0 0.231049
BL:III Phase V and Phase VI (1/4) ln 2 0.280644
BL:IV Phase V and Phase VII (1/4) ln 2 0.280644
BP:I Phase I, V, and IV (1/4) ln (7/5) 0.609883
BP:II Phase V, VI, and VII (1/4) ln 4 0.356169

a
b
c
d

0.5 1.0 1.5 2.0 2.5 3.0T

−0.1

0.1

0.2

0.3

Jbb

FIG. 7. The effective βJbb does not tend to infinity in some of the
highly degenerate points at T = 0. We plot some of their effective
βJbb as functions of temperature here. The blue (middle dashed) line
is for point a in Fig. 6 with J z

a = −0.5, J xy
a = 0, the orange (lower

dashed) one is for point b with J z
a = −3, J xy

a = 0, the green (upper
dashed) one is for point c with J z

a = −0.259402, J xy
a = −1, the red

(solid) one is for point d with J z
a = −0.223591, J xy

a = 2.

BL:IV, BP:I, BP:II) and negative (BL:I) or even zero (BL:II)
(see Fig. 7) at zero temperature, and most of them are not
monotonic with temperature.

Last, Fig. 8 gives the finite-temperature phase diagram as a
function of J

xy
a , J z

a , and critical temperature TC by investigat-
ing the critical point of the effective model [βJkag = (ln[3 +√

12])/4]. This fits with the intuition that the disordered phases
should become the largest part of the phase diagram when
the temperature increases. Moreover, the ferrimagnetic phases
with lower Sz

atot have a higher critical temperature of the
spontaneous order. Actually, higher decorated spins in the TKL
model can cause a stronger effective coupling between the
b-spins.

D. Physical explanation and comparison with
the spin-1/2 TKL model

To explain how the quantum fluctuations cause these
quantum phases, we consider J

xy
a = 0 first. There is a phase

transition point between the disordered phase and the ordered
phase, which is J z

a = −0.5 (see Fig. 6). Each hexamer is
nondegenerate in the ordered phase while it is eightfold
degenerate in the disordered phase, which are D = 3 for the
b-spins configuration (↑↑↑) with Sz

atot = −1 and D = 5 for
(↓↑↑) with Sz

atot = ±1, 0. However, it is 12-fold degenerate at
the phase transition point, which is higher than the sum of the
degeneracies in the disordered phase and the ordered phase.
Such a difference comes from an intermediate state [(↑↑↑)
with Sz

atot = −2] at the phase transition point.
When we consider J

xy
a , quantum fluctuations appear and

several phases emerge. J
xy
a causes this evolution in two

different ways. First, it introduces the fluctuation of Sz
atot.

Second, it influences the values of βJbb, which may change
the ground state of the b-spins.

As a result, in the disordered phase, the energy degeneracy
between (↑↑↑) and (↓↑↑) vanishes when we consider J

xy
a .

And (↓↑↑) with Sz
atot = 0 is favored. Then it evolves into
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Ja
z=2

Ja
z=1.5

Ja
z=1

Ja
z=0.5
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FIG. 8. Finite-temperature phase diagram of the spin-1 TKL
model with the |J z

ab| = 1 as the unit of energy. (a) The finite
temperature phase diagram and (b) the critical temperature TC as a
function of J xy

a when J z
a runs from −0.5 to 2.

(↑↑↑) with Sz
atot = −1 as J z

a increases. Furthermore, at the
phase transition point (J z

a = −0.5, J
xy
a = 0), the intermediate

state above [(↑↑↑) with Sz
atot = −2] becomes stable interme-

diate phase III or phase VII (see Fig. 6). The appearance of
these intermediate phases is due to the decrease of quantum
fluctuations and the disentanglement of the a-trimers. Finally,
as J z

a increases, the spin-1 TKL model changes from the
antiferromagnetic phase with Sz

atot = 0 to the ferrimagntic
phase with Sz

atot = −1. Then, in the ferrimagntic case, Sz
atot

of each hexamer decreases from −1 to −3 step-by-step. This
leads to some small magnetization plateaus.

Looking at further details, the sign of J
xy
a also makes a dif-

ference. We list both the eigenvector and the spin-configuration
schematic diagrams of these ferrimagnetic phases in Appendix
B (see Fig. 12). When J

xy
a is positive, the a-trimers stay in the

singlet trimerized states in both phase II and phase III. When

J
xy
a is negative, the a-trimers tend to be in a dimerized state.

In phase VII, two a-spins become a dimer in each a-trimer.
Moreover, in phase VI, it is an anisotropic trimerized state
which can be viewed as a two-step dimerizing. In this case,
two of the a-spins become a dimer. Then this dimer dimerizes
with the last a-spin in each a-trimer. As result, this trimerized
state leads to a twofold degeneracy to each hexamer.

Compared to the pure spin-1/2 TKL model, the spin-1 TKL
model has an antiferromagnetic effective coupling for the b-
spins, which makes the geometric frustration of the b-spins
play a much more important role and causes a much larger
area of the disordered phases in its phase diagram.

IV. FINITE EXTERNAL FIELD IN THE ZERO
TEMPERATURE LIMIT

A. Mapping to the kagome Ising model with
the three-spin coupling

We now consider the spin-1 TKL model with a finite
magnetic field, which is parallel to the axis of the b-spins. The
transformation method above is also applicable to this case. As
a result of the time-reversal symmetry breaking, the odd spin
effective coupling terms in the effective Hamiltonian cannot
vanish. Finally, it becomes

H ′
n = − ln(Za )/β − Jbb

∑
bi,bj∈b

σ z
biσ

z
bj

− Jbbb

∑
bi,bj,bk∈b

σ z
biσ

z
bjσ

z
bk − hb

∑
bi∈b

σ z
bi, (30)

in which

Za = [Z(↑↑↑, h)Z(↓↓↓, h)]
1
8 [Z(↓↑↑, h)Z(↑↓↓, h)]

3
8 ,

(31)

βJbb = 1

8
ln

[
Z(↑↑↑, h)Z(↓↓↓, h)

Z(↓↑↑, h)Z(↑↓↓, h)

]
, (32)

βJbbb = 1

8
ln

[
Z(↑↑↑, h)Z(↑↓↓, h)3

Z(↓↓↓, h)Z(↓↑↑, h)3

]
, (33)

βhb = 1

8
ln

[
Z(↑↑↑, h)Z(↓↑↑, h)

Z(↓↓↓, h)Z(↑↓↓, h)

]
. (34)

In this case, the parameters in the effective model (Za , hb,
Jbb, and Jbbb) are the functions of the original couplings in the
spin-1 TKL model (J z

ab, J z
a , J

xy
a , and h).

B. Phase diagram at zero temperature and ground
states properties

Although the odd spin couplings make it hard to obtain a
rigorous solution of the model, it is still possible to deduce a full
phase diagram of the spin-1 TKL model at zero temperature
since its effective model is classical [2,4]. The phase diagram
can be achieved in the usual manner by searching for which b-
spins configurations of each hexamer keeps the lowest energy.
These energies can be written as

E(↑↑↑) = − ln(Za )/β − 3Jbb − Jbbb − 3hb, (35)

E(↓↓↓) = − ln(Za )/β − 3Jbb + Jbbb + 3hb, (36)
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E(↓↑↑) = − ln(Za )/β + Jbb + Jbbb − hb, (37)

E(↑↓↓) = − ln(Za )/β + Jbb − Jbbb + hb. (38)

Here we obtain the ground state of the spin-1 TKL model by
finding the ground state of each hexamer numerically for each

FIG. 9. The phase diagram of the TKL model with spin-1 deco-
rated trimers at zero temperature identified by calculating the energy
of each hexamer when the spin-1 TKL model is in its classical limit
(J xy

a = 0, J z
ab = −1, and T = 0) and Heisenberg limit (J z

a = J xy
a ,

J z
ab = −1, and T = 0).

TABLE III. The energy of the hexamers at some points in each
phase with J z

a = J xy
a , J z

ab = −1 and different h in Fig. 9(b). We also
highlight (the underlined numbers) which configuration of b-spins
has the lowest energy in each phase at zero temperature.

Phase J xy
a = J z

a h E(↑↑↑) E(↓↑↑) E(↓↓↓) E(↑↓↓)

Phase I −3 1 −9.75 −9.46005 −8.25 −8.96005
Phase II −2 3.552 −9.216 −9.03515 −6.44 −7.664
Phase III −1.184 3.856 −8.604 −8.39904 −8.124 −8.052
Phase IV 5 5 −30.75 −30.25 −29.25 −29.75
Phase V −1.2 3.4 −7.35 −7.37237 −7.05 −6.95
Phase VI 2 2 −10.5 −11.5 −13.5 −12.5
Phase VII −1 1.2 −3.9 −4.16246 −3.5 −3.9
Phase VIII −1 0.3 −3.225 −3.55619 −3.075 −3.40619
Phase IX −0.64 0.544 −2.328 −2.67641 −2.68 −2.688
Phase X −0.48 0.32 −1.88 −2.19117 −2.4 −2.2

combination of parameters. When the ground state energy of
the b-spin configuration (↑↑↑) or (↓↓↓) is favored, the spin-1
TKL model is in ferromagnetic phase or ferrimagnetic phase,
which depends on the a-trimer states. For the (↓↑↑) or (↑↓↓)
case, the macroscopic ground state of its effective model can be
achieved by enumerating the ways of tilling the corresponding
effective trimers in the kagome plane, which is equivalent to
placing dimers on the bonds of a honeycomb lattice [2,4].

Figure 9 is the phase diagram when J
xy
a = 0, J z

ab = −1
[Fig. 9(a)] and J z

a = J
xy
a , J z

ab = −1 [Fig. 9(b)] at zero temper-
ature. Table III lists the ground state energy of each hexamer
at selected points in each phase of Figs. 9(a) and 9(b). The
phase diagram is divided into 8 parts when J

xy
a = 0 but 20 in

the J z
a = J

xy
a case. Both of them are symmetric about h = 0.

The phase diagram Fig. 9(a) is similar to its counterpart in
the pure spin-1/2 TKL model. However, Fig. 9(b) case is quite
different, including the absence of the kagome loop gas phase
[2] and the presence of some unstable phases (Phase V, Phase
IX, and Phase X).

C. Physical explanation and the effect of the a-trimer
quantum fluctuations

To explain how these unstable phases come from the quan-
tum fluctuations of the a-trimers, we start with the classical
limit (J xy

a = 0). In Fig. 9(a) the phase diagram is divided into
four different phases when h is positive, including saturated
ferromagnetic phase (Phase B), ferromagnetic phase with
Sz

atot = 1 (Phase A), ferrimagnetic phase with Sz
atot = 3 (Phase

D), and honeycomb dimer phase (Phase C). It is quite similar
to the spin-1/2 TKL case [2]. Their boundary conditions can
be given by 2J z

a + h = 1 for the boundary between Phase A
and Phase B, h = 4 for the boundary between Phase A and
Phase C or between Phase B and Phase D, and h + 4J z

a = −2
for the boundary between Phase C and Phase D.

Figure 10 tells how the phase diagram evolves with the
localized quantum fluctuations of the a-trimers, in which h

and J z
ab are constants, and J

xy
a /J z

a and J z
a serve as parameters.

We present these phase diagrams with J z
ad = −1 and h = 4.5

in Fig. 10(a) and J z
ad = −1 and h = 0.544 in Fig. 10(b). The

former contains ordinary stable phases while the latter includes
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FIG. 10. These figures present the phases changing as J xy
a /J z

a

increases from 0 to 1. These phase marks here are same as in Fig. 9(b).
J z

ad = −1 and h = 4.5 in Fig. 10(a), while J z
ad = −1 and h = 0.544

in Fig. 10(b), which is crossing through the unstable Phase IX. The
boundary line in the figures is crossing through the transition point in
the classical limit with the same values of J z

ad . These figures present
a better view of how phases emerge.

the most unstable phase (Phase IX) in its Heisenberg limit
(J z

a = J
xy
a ).

In Fig. 10(a), the spin-1 TKL model changes into Phase IV
(see Table IV) directly in its classical limit as J z

a increases. As a
result, there is a phase transition at J z

a = −1.75 and J
xy
a /J z

a =
0 in Fig. 10(a). When J

xy
a /J z

a increases, Phase III emerges from
its phase transition point. If we set a boundary line crossing this
phase transition point, we can see that Phase III evolves along
with this boundary line [see Fig. 10(a)]. Meanwhile, Phase I

TABLE IV. Each phase in Fig. 9 identified by calculating the
configuration of b-spins and Sz

atot in the ground state of each hexamer.

Phase mark b-spins Sz
atot D Phase

J xy
a = 0 J z

ab = −1
Phase A ↑↑↑ 1 3 Ferrimagnetic
Phase B ↑↑↑ 3 1 Saturated ferromagnetic
Phase C ↓↑↑ 1 1 Honeycomb dimer liquid
Phase D ↓↓↓ 3 1 Ferrimagnetic

J z
a = J xy

a J z
ab = −1

Phase I ↑↑↑ 0 1 Ferrimagnetic
Phase II ↑↑↑ 1 3 Ferrimagnetic
Phase III ↑↑↑ 2 2 Ferrimagnetic
Phase IV ↑↑↑ 3 1 Saturated ferromagnetic
Phase V ↓↑↑ 2 2 Honeycomb dimer liquid
Phase VI ↓↓↓ 3 1 Ferrimagnetic
Phase VII ↓↑↑ 1 1 Honeycomb dimer liquid
Phase VIII ↓↑↑ 0 1 Honeycomb dimer liquid
Phase IX ↓↓↑ 1 1 Honeycomb dimer liquid
Phase X ↓↓↓ 2 2 Ferrimagnetic

emerges from the left side of the phase diagram. Eventually,
in its Heisenberg limit, the spin-1 TKL model changes from
phase I, to Phase II, then to Phase III, and finally to Phase IV.
This phase transition corresponds to a gradual disentanglement
of the a-trimers microscopically and leads to a stable growth
of magnetization plateaus macroscopically as h increases (see
Fig. 11) [30], which is shown in Appendix B and Fig. 13.

Unlike the Fig. 10(a) case, J z
a already makes the b-spin’s

ground state change from (↓↑↑) to (↓↓↓) in the classical limit
[see Fig. 10(b)]. We also set a boundary line crossing through
the phase transition point in Fig. 10(b). Around this boundary
line, the b-spin’s ground state tends to change. First, when
J

xy
a increases, it causes the a-trimers to evolve independently,

which makes Phase VIII and Phase X emerge. Second, as J
xy
a

increases, Phase VIII and Phase X come close to the boundary
line. When they are close enough to each other, Phase IX
emerges around the boundary line due to the unstable b-spins
ground state around the boundary line. Phase IX can be viewed
as an intermediate phase of the phase transition from Phase
VIII to Phase X. Finally, in the Heisenberg limit, the b-spin’s

I

1/5
II

7/15 III

11/15
IV

1

5 10 15 20
h

0.2

0.4

0.6

0.8

1.0
m/ms

FIG. 11. This figure shows the stably growth of magnetization
plateaus with h running from 4 to 20 when J z

a = J xy
a = −5. These

phases marked here are the same with those in Fig. 9(b).
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configuration of the hexamers changes from (↓↑↑), to (↓↓↑),
and lastly to (↓↓↓) as J z

a increases. Similarly, those unstable
phases (Phase V, Phase IX, and Phase X) are the intermediate
phases in Fig. 9(b).

D. Comparison with the spin-1/2 TKL model and discussion
of the higher spin TKL model

We now compare the phase diagram of the spin-1 TKL
model with the spin-1/2 case and find that the spin-1 TKL
model has a much more diversified phase diagram at zero
temperature. These differences mainly come from the richer
possible states of the a-trimers under the interplay between its
geometric frustration and quantum fluctuations.

In the classical limit, there are four main phases both
in the spin-1/2 and in the spin-1 cases, including the Sat-
urated Ferrimagnetic phase (↑↑↑), the Honeycomb Dimer
Liquid phase (↓↑↑), the Ferrimagnetic phase (↑↑↑), and
the Ferrimagnetic phase (↓↓↓). When J

xy
a appears, phases

emerge from the boundary between these main phases. Last,
the spin-1 TKL model has stable magnetization plateaus in
the Heisenberg limit. Such an effect can also be obtained in
the Heisenberg-Ising diamond chain [1,5].

Although it is hard to give an exact picture of how the
phase diagram of the TKL model develops when the spins
in the a-trimers tend to infinity, it is still possible to give its
simple description. First, the four main phases above still exist
in their classical limit. These main phases also remain in their
Heisenberg limit. Besides, more phases with different a-trimer
states emerge from the phase boundaries between these four
main phases when we consider higher spins in the a-trimers.
This is due to the larger Hilbert space of the decorated trimers.
Moreover, when considering higher spins in the a-trimers,
some of these phases may appear more compactly around these
phase boundaries. Eventually, if the decorated spins tend to
infinity, they would tend to become a line or dot with high
degeneracy and the phase diagram in the Heisenberg limit at
zero temperature should approach its classical limit.

V. CONCLUSION

In conclusion, we have discussed the TKL XXZ-Ising model
decorated by the spin-1 a-trimers and computed its phase
diagram by transforming into an effective kagome Ising model
with or without the three-spin coupling according to the
presence of the finite external field. The transformation method
is an essentially algebraic method and can be applied even in
more general cases.

For h = 0, the effective model can be simplified with
the C3 symmetry and the time-reversal symmetry. And the
spin-1 TKL model is mapped to the kagome Ising model
exactly. In the zero temperature phase diagram, there are two
main regions corresponding to the ferromagnetic effective

coupling and antiferromagnetic case respectively. Each main
region is divided into several phases corresponding to different
entangled states of the a-trimers. Compared to the spin-1/2
TKL model, one of the most interesting differences of the
spin-1 TKL model is that the spin-1 decorated trimers introduce
the antiferromagnetic effective coupling of the b-spins to the
TKL model.

When there is a finite external field, only the C3 symmetry
can be applied to simplify the effective model, which means
that we can map the spin-1 TKL model to the kagome Ising
model with the three-spin coupling. We give its phase diagram
at zero temperature since its effective model is classical
[2,4,31]. For the classical limit (J xy

a = 0), there are four
main phases, which is similar to the spin-1/2 TKL case.
However, in the presence of J

xy
a , more phases emerge in the

spin-1 TKL model than in the spin-1/2 case. Finally, in the
Heisenberg limit (J xy

a = J z
a ), the spin-1 TKL model has several

stable magnetization plateaus which correspond to the gradual
disentanglement of the a-trimers.

The higher spins in the decorated a-trimers can give a
larger dimension of Hilbert spaces. In the spin-1/2 case,
the possible values of Sz

atot are ±1/2 and ±3/2 in both the
classical limit and the Heisenberg limit. However, in the
spin-1 case, the possible values of Sz

atot are ±1 and ±3 in
the classical limit but 0, ±1, ±2, and ±3 in the Heisenberg
limit. This leads to more plentiful states for the a-trimers and
more complicated effective couplings. Therefore, the phase
diagram becomes more diversified for the spin-1 TKL model
compared with the spin-1/2 case. This is strong evidence that
the quantum fluctuations can create new phases in the highly
frustrated spin systems, and help us to understand how the
XXZ-Ising decorated model evolves into its classical limit when
S increases for the decorated spins.

ACKNOWLEDGMENTS

We thank E. W. Carlson, Y. L. Loh, Y.-R. Shu, M.
Lake, and N. Raper for useful discussions. This project is
supported by NKRDPC-2017YFA0206203, NSFC-11574404,
NSFC-11275279, NSFG-2015A030313176, Special Program
for Applied Research on Super Computation of the NSFC-
Guangdong Joint Fund, Three Big ConstructionsSupercom-
puting Application Cultivation Projects, and the Leading Talent
Program of Guangdong Special Projects.

APPENDIX A

Here we give the explicit formulas of Z(↑↑↑, h), Z(↓↓↓,

h), Z(↓↑↑, h), and Z(↑↓↓, h). We use the time reversal
symmetry to simplify our description, which is given by
Z(↑↑↑, h) = Z(↓↓↓,−h) and Z(↓↑↑, h) = Z(↑↓↓,−h):

Z(↑↑↑, h) = 2e− 1
4 β(−4J

xy
a +4J z

a −3h) + 2e− 1
4 β(4J

xy
a +4J z

a −3h) + e− 1
4 β(8J

xy
a +4J z

a −3h) + 2e− 1
4 β(4J

xy
a −4J z

a +8J z
ab+5h)

+ 2e− 1
4 β(4J

xy
a −4J z

a −8J z
ab−11h) + e

3
4 β(4J z

a −4J z
ab−3h) + e− 1

4 β(−8J
xy
a −4J z

a +8J z
ab+5h) + e− 1

4 β(−8J
xy
a −4J z

a −8J z
ab−11h)

+ e
3
4 β(4J z

a +4J z
ab+5h) + 2e− 1

4 β[2J
xy
a +2J z

a +4J z
ab+h−2

√
5(J xy

a )2+(J z
a )2−2J

xy
a J z

a ]
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+ 2e− 1
4 β[2J

xy
a +2J z

a +4J z
ab+h+2

√
5(J xy

a )2+(J z
a )2−2J

xy
a J z

a ] + 2e− 1
4 β[2J

xy
a +2J z

a −4J z
ab−7h−2

√
5(J xy

a )2+(J z
a )2−2J

xy
a J z

a ]

+ 2e− 1
4 β[2J

xy
a +2J z

a −4J z
ab−7h+2

√
5(J xy

a )2+(J z
a )2−2J

xy
a J z

a ] + e− 1
4 β[−4J

xy
a +2J z

a −3h−2
√

28(J xy
a )2+(J z

a )2−4J
xy
a J z

a ]

+ e− 1
4 β[−4J

xy
a +2J z

a −3h+2
√

28(J xy
a )2+(J z

a )2−4J
xy
a J z

a ] + e− 1
4 β[−4J

xy
a +2J z

a −4J z
ab−7h−2

√
20(J xy

a )2+(J z
a )2+4J

xy
a J z

a ]

+ e− 1
4 β[−4J

xy
a +2J z

a −4J z
ab−7h+2

√
20(J xy

a )2+(J z
a )2+4J

xy
a J z

a ] + e− 1
4 β[−4J

xy
a +2J z

a +4J z
ab+h−2

√
20(J xy

a )2+(J z
a )2+4J

xy
a J z

a ]

+ e− 1
4 β[−4J

xy
a +2J z

a +4J z
ab+h+2

√
20(J xy

a )2+(J z
a )2+4J

xy
a J z

a ], (A1)

Z(↓↓↓, h) = Z(↑↑↑,−h), (A2)

Z(↓↑↑, h) = e− 1
4 β(−12J z

a −4J z
ab−13h) + e− 1

4 β(4J
xy
a −4J z

a −4J z
ab−9h) + e− 1

4 β(−12J z
a +4J z

ab+11h) + e− 1
4 β(4J

xy
a −4J z

a +4J z
ab+7h)

+ e− 1
4 β[−2J

xy
a −4J z

a +2J z
ab+7h−2

√
−2J z

abJ
xy
a +9(J xy

a )2+(J z
ab )2] + e− 1

4 β[−2J
xy
a −4J z

a +2J z
ab+7h+2

√
−2J z

abJ
xy
a +9(J xy

a )2+(J z
ab )2]

+ e− 1
4 β[−2J

xy
a −4J z

a −2J z
ab−9h−2

√
2J z

abJ
xy
a +9(J xy

a )2+(J z
ab )2] + e− 1

4 β[−2J
xy
a −4J z

a −2J z
ab−9h+2

√
2J z

abJ
xy
a +9(J xy

a )2+(J z
ab )2]

+ e− 1
4 β[2J

xy
a +2J z

a −2J z
ab−5h−2

√
2J z

abJ
xy
a +5(J xy

a )2−2J z
abJ

z
a +(J z

a )2−2J
xy
a J z

a +(J z
ab )2]

+ e− 1
4 β[2J

xy
a +2J z

a −2J z
ab−5h+2

√
2J z

abJ
xy
a +5(J xy

a )2−2J z
abJ

z
a +(J z

a )2−2J
xy
a J z

a +(J z
ab )2]

+ e− 1
4 β[2J

xy
a +2J z

a +2J z
ab+3h−2

√
−2J z

abJ
xy
a +5(J xy

a )2+2J z
abJ

z
a +(J z

a )2−2J
xy
a J z

a +(J z
ab )2]

+ e− 1
4 β[2J

xy
a +2J z

a +2J z
ab+3h+2

√
−2J z

abJ
xy
a +5(J xy

a )2+2J z
abJ

z
a +(J z

a )2−2J
xy
a J z

a +(J z
ab )2]

+ e− βx1
1

4 + e− βx1
2

4 + e− βx1
3

4 + e− βx2
1

4 + e− βx2
2

4 + e− βx2
3

4 + e− βx2
4

4 + e− βx3
1

4 + e− βx3
2

4 + e− βx3
3

4

+ e− βx3
4

4 + e− βx4
1

4 + e− βx4
2

4 + e− βx4
3

4 + e− βx4
4

4 , (A3)

Z(↑↓↓, h) = Z(↓↑↑,−h). (A4)

In Eq. (A3), {x1
1 , x

1
2 , x1

3} correspond to the roots of a cubic function, which is

x3 + a1x
2 + b1x + c1 = 0

a1 = −8J xy
a − 12J z

a + 3h

b1 = −16hJ xy
a − 24hJ z

a + 64J xy
a J z

a − 16
(
J xy

a

)2 + 48
(
J z

a

)2 − 16
(
J z

ab

)2 + 3h2

c1 = −8h2J xy
a − 12h2J z

a + 64hJ xy
a J z

a − 16h
(
J xy

a

)2 + 48h
(
J z

a

)2 + 64
(
J xy

a

)2
J z

a − 128J xy
a

(
J z

a

)2 + 128
(
J xy

a

)3

− 64J 3z
a + h3 + 64J z

a

(
J z

ab

)2 + 16h
(
J z

ab

)2
. (A5)

The analytical roots for Eq. (A5) can be reached with the general solution to the cubic equation with real coefficients.
Meanwhile, {x2

1 , x2
2 , x2

3 , x2
4 }, {x3

1 , x3
2 , x3

3 , x3
4}, and {x4

1 , x4
2 , x4

3 , x4
4 } are the roots of the quartic equations Eqs. (A6), (A7), and

(A8), respectively, which are

x4 + a2x
3 + b2x2 + c2x + d2 = 0

a2 = 8J xy
a − 12J z

a + 4hb2 = 24hJ xy
a − 36hJ z

a − 64J xy
a J z

a − 112
(
J xy

a

)2 + 48
(
J z

a

)2 − 16
(
J z

ab

)2 + 6h2

c2 = 64J z
a

(
J z

ab

)2 + 24h2J xy
a − 36h2J z

a − 128hJ xy
a J z

a − 224h
(
J xy

a

)2 + 96h
(
J z

a

)2 + 832
(
J xy

a

)2
J z

a + 128J xy
a

(
J z

a

)2

− 128
(
J xy

a

)3 − 64
(
J z

a

)3 − 32h
(
J z

ab

)2 + 4h3

d2 = 64hJ z
a

(
J z

ab

)2 + 512
(
J xy

a

)2(
J z

ab

)2 + 8h3J xy
a − 12h3J z

a − 64h2J xy
a J z

a − 112h2(J xy
a

)2 + 48h2(J z
a

)2 + 832h
(
J xy

a

)2
J z

a

+ 128hJ xy
a

(
J z

a

)2 − 128h
(
J xy

a

)3 − 64h
(
J z

a

)3 − 1536
(
J xy

a J z
a

)2 + 1536
(
J xy

a

)4 − 16h2
(
J z

ab

)2 + h4, (A6)

x4 + a3x3 + b3x
2 + c3x + d3 = 0

a3 = 4J xy
a − 8J z

a + 4J z
ab + 20hb3 = 16J xy

a J z
ab − 32J z

a J z
ab + 60hJ xy

a − 120hJ z
a − 32J xy

a J z
a − 112

(
J xy

a

)2 + 16
(
J z

a

)2
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+ 60hJ z
ab − 16

(
J z

ab

)2 + 150h2

c3 = 160hJ xy
a J z

ab − 320hJ z
a J z

ab − 64J xy
a

(
J z

ab

)2 − 128
(
J xy

a

)2
J z

ab − 128J z
abJ

xy
a J z

a + 64
(
J z

a

)2
J z

ab + 300h2J xy
a − 600h2J z

a

−320hJ xy
a J z

a − 1120h
(
J xy

a

)2 + 160h
(
J z

a

)2 + 576
(
J xy

a

)2
J z

a + 64J xy
a

(
J z

a

)2 + 128
(
J xy

a

)3 + 300h2J z
ab

−160h
(
J z

ab

)2 − 64
(
J z

ab

)3 + 500h3

d3 = 400h2J xy
a J z

ab − 800h2J z
a J z

ab − 320hJ xy
a

(
J z

ab

)2 − 640h
(
J xy

a

)2
J z

ab − 640hJ z
abJ

xy
a J z

a + 320h
(
J z

a

)2
J z

ab − 256J xy
a

(
J z

ab

)3

+ 256
(
J xy

a

)2(
J z

ab

)2 − 512
(
J xy

a

)3
J z

ab + 768J z
ab

(
J xy

a

)2
J z

a + 256J z
abJ

xy
a

(
J z

a

)2 + 500h3J xy
a − 1000h3J z

a − 800h2J xy
a J z

a

− 2800h2
(
J xy

a

)2 + 400h2
(
J z

a

)2 + 2880h
(
J xy

a

)2
J z

a + 320hJ xy
a

(
J z

a

)2 + 640h
(
J xy

a

)3 − 512
(
J xy

a

)3
J z

a − 512
(
J xy

a J z
a

)2

+1024
(
J xy

a

)4 + 500h3J z
ab − 400h2

(
J z

ab

)2 − 320h
(
J z

ab

)3 + 625h4, (A7)

x4 + a4x
3 + b4x

2 + c4x + d4 = 0

a4 = 4J xy
a − 8J z

a − 4J z
ab − 12h

b4 = −16J xy
a J z

ab + 32J z
a J z

ab − 36hJ xy
a + 72hJ z

a − 32J xy
a J z

a − 112
(
J xy

a

)2 + 16
(
J z

a

)2 + 36hJ z
ab − 16

(
J z

ab

)2 + 54h2

c4 = 96hJ xy
a J z

ab−192hJ z
a J z

ab−64J xy
a

(
J z

ab

)2+128
(
J xy

a

)2
J z

ab+128J z
abJ

xy
a J z

a −64
(
J z

a

)2
J z

ab+108h2J xy
a −216h2J z

a +192hJ xy
a J z

a

+ 672h
(
J xy

a

)2 − 96h
(
J z

a

)2 + 576J xy
a J z

a + 64J xy
a

(
J z

a

)2 + 128
(
J xy

a

)3 − 108h2J z
ab + 96h

(
J z

ab

)2 + 64
(
J z

ab

)3 − 108h3

d4 = −144h2J xy
a J z

ab + 288h2J z
a J z

ab + 192hJ xy
a

(
J z

ab

)2 − 384h
(
J xy

a

)2
J z

ab − 384hJ z
abJ

xy
a J z

a + 192h
(
J z

a

)2
J z

ab + 256J xy
a

(
J z

ab

)3

+ 256
(
J xy

a

)2(
J z

ab

)2 + 512
(
J xy

a

)3
J z

ab − 768J z
ab

(
J xy

a

)2
J z

a − 256J z
abJ

xy
a

(
J z

a

)2 − 108h3J xy
a + 216h3J z

a

− 288h2J xy
a J z

a − 1008h2
(
J xy

a

)2 + 144h2
(
J z

a

)2 − 1728h
(
J xy

a

)2
J z

a − 192hJ xy
a

(
J z

a

)2 − 384h
(
J xy

a

)3

− 512
(
J xy

a

)3
J z

a − 512
(
J xy

a J z
a

)2 + 1024
(
J xy

a

)4 + 108h3J z
ab − 144h2

(
J z

ab

)2 − 192h
(
J z

ab

)3 + 81h4. (A8)

All of them can be solved analytically by applying the general solution to the quartic equation with real coefficients. In practice,
it is more convenient to find these roots numerically.

APPENDIX B

The hexamer eigenvectors in ordered phases are listed
as follows. With Eq. (4) we express these eigenvectors as
|↑↑↑〉b ⊗ |↓↓↓〉a , for instance, where ↑ donates Sz

b = 1
2 and ↓

stands for Sz
a = −1. Here are the eigenvectors (and schematic

figures in Fig. 12) in the ferrimagnetic phases in Fig. 6, with
the same phase numbers in Table I:

For Phase IV,

|IV〉 = |↑↑↑〉b ⊗ |↓↓↓〉a,
EIV = −1 − 3J z

a . (B1)

For Phase III,

|III〉 = |↑↑↑〉b ⊗ 1√
3

(|0 ↓↓〉a + |↓ 0 ↓〉a + |↓↓ 0〉a ),

EIII = −2 − J z
a − 2J xy

a . (B2)

For Phase VII,

|VII〉1 = |↑↑↑〉b ⊗ 1√
2

(|↓↓ 0〉a − |0 ↓↓〉a ),

|VII〉2 = |↑↑↑〉b ⊗ 1√
2

(|↓ 0 ↓〉a − |0 ↓↓〉a ),

EVII = −2 − J z
a + J xy

a . (B3)

For Phase II,

|II〉 = |↑↑↑〉b⊗ 1√
3

[cos θII(|↑↓↓〉a+|↓↓↑〉a + |↓↑↓〉a )

+ sin θII(|00 ↓〉a + |0 ↓ 0〉a + |↓ 00〉a )],

EII = 1

2

[−2+J z
a −2J xy

a −
√(

J z
a

)2 + 4J z
a J

xy
a + 20

(
J

xy
a

)2]
,

(B4)

where arctan θII = J z
a +2J

xy
a +

√
(J z

a )2+4J z
a J

xy
a +20(J xy

a )2

4J
xy
a

.
For Phase VI,

|VI〉1 = |↑↑↑〉b ⊗ 1√
2

[sin θVI1(|0 ↓ 0〉a − |00 ↓〉a )

− cos θVI1(|↓↑↓〉a − |↓↓↑〉a )],

|VI〉2 = |↑↑↑〉b ⊗ 1√
2

[cos θVI2(|↓ 00〉a − |0 ↓ 0〉a )

− sin θVI2(|↑↓↓〉a − |↓↑↓〉a )],

EVI = 1

2

[−2+J z
a +J xy

a −
√(

J z
a

)2 − 2J z
a J

xy
a + 5

(
J

xy
a

)2]
,

(B5)

where arctan θVI1 = J z
a −J

xy
a +

√
(J z

a )2−2J z
a J

xy
a +5(J xy

a )2

2J
xy
a

and

arctan θVI2 = −J z
a +J

xy
a +

√
(J z

a )2−2J z
a J

xy
a +5(J xy

a )2

2J
xy
a

.
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FIG. 12. We plot the schematic diagrams of the spin configuration
of each hexamer when there is no external field (Fig. 6). For instance,
the arrow ↑ represents S = 1 or S = 1/2. The red (thick or dashed)
lines are the entangled relationships of the a-spins. (a) The spin
configuration when the model is in Phase IV in Fig. 6. Panels
(b) and (d) denote the trimerized states in Phase II and Phase III,
respectively. (c) The ordinary dimerized state in Phase VII, and (e) the
anisotropic trimerized state in Phase VI. The anisotropic trimerized
state can be viewed as a two-step dimerizing. The thick line is for
the first step dimerizing, and the dashed line denotes the second step
dimerizing.

When h �= 0, we give the eigenvectors, ground state energy
of each hexamer (schematic figures in Fig. 13) and magneti-
zation of each unit cell in those ordered phases in Fig. 9(b)
(Phases I, II, III, and IV in Table IV):

|I〉 = |↑↑↑〉b ⊗ 1√
6

(|0 ↑↓〉a + |↑↓ 0〉a + |↓ 0 ↑〉a

− |↑ 0 ↓〉a − |0 ↓↑〉a − |↓↑ 0〉a ),

EI = 3

4

(
h − 4J z

a

)
,

mI = 3

2
. (B6)

Each a-trimer in Phase I is in a singlet trimerized state. Then

|II〉 = |↑↑↑〉b ⊗ 1√
3

(|↑↑↓〉a − |0 ↑ 0〉a + |↓↑↑〉a ),

EII = 1

4

(
4 − 7h + 8J z

a

)
,

mII = 7

2
, (B7)

|III〉 = |↑↑↑〉b ⊗ 1√
2

(|0 ↑↑〉a − |↑↑ 0〉a ),

mIII = 11

2
. (B8)

In Phase II and Phase III, the a-trimers are in the dimerized
state. We don’t give their C3 symmetry counterparts here,
which cause the macroscopic degeneracy. Then

|IV〉 = |↑↑↑〉b ⊗ |↑↑↑〉a,

EIV = 3

4

(−4 + 5h + 4J z
a

)
,

mIV = 15

2
.

(B9)

The a-trimers in Phase IV are in the classical state. The
spin-1 TKL model meets its saturation magnetization in
Phase IV

b

bb
a

aa

Satot
z =0

(a)

b

bb
a

aa

Satot
z =1

(b)

b

bb
a

aa

Satot
z =2

(c)

b

bb
a

aa

Satot
z =3

(d)

FIG. 13. We plot the schematic diagrams of the spin configuration
of each hexamer in the ordered phases when h �= 0 (Fig. 9). Also, the
arrow ↑ represents S = 1 or S = 1/2 and the red (thick or dashed)
lines are the entangled relationships of the a-spins. (a) The spin
configuration when the model is in Phase I in Fig. 9, which is a singlet
trimerized state. (b, c) The dimerized states in Phase II and Phase III,
respectively. (d) The classical state in Phase IV. As h increases, the
spin arrangement of each hexamer changes from (a) to (b) and (c) and
finally to (d), which is a step-by-step disentangled process.

012127-12



XXZ-ISING MODEL ON THE TRIANGULAR KAGOME … PHYSICAL REVIEW E 98, 012127 (2018)

As h increases, the spin-1 TKL model changes from
Phase I to Phase IV [see Fig. 9(b)]. These phase transitions
correspond to that each a-trimer develops from the trimerized

state, to the dimerized state, and finally to the classical state.
It is also responsible for the stable magnetization plateaus
(see Fig. 11).
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