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From the gambling logs of an online lottery game we extract the probability distribution of various quantities
(e.g., bet value, total pool size, waiting time between successive gambles) as well as related correlation coefficients.
We view the net change of income of each player as a random walk. The mean-squared displacement of these net
income random walks exhibits a transition between a superdiffusive and a normal diffusive regime. We discuss
different random-walk models with truncated power-law step lengths distributions that allow us to reproduce
some of the properties extracted from the gambling logs. Analyzing the mean-squared displacement and the
first-passage time distribution for these models allows us to identify the key features needed for observing this
crossover from superdiffusion to normal diffusion.
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I. INTRODUCTION

Recent years have seen a tremendous increase in online
gambling, as witnessed by the emergence of numerous online
gambling sites. This surge has yielded numerous recent sci-
entific studies, with a focus on legal, social and psychological
aspects, see Refs. [1–16] for some recent references. In parallel
to this, the quick expansion of the video gaming industry
has resulted in the formation of a huge market for virtual
(in-game) item economy. Due to its easy accessibility, low
entry barrier, and immediate outcome, virtual-item gambling
has become popular among game players. In virtual-item gam-
bling, instead of directly using cash, gamblers place bets with
virtual items as virtual currencies [13–15]. The virtual items
here particularly refer to in-game cosmetic skins from video
games like Counter-Strike: Global Offensive, Team Fortress 2,
DOTA 2, etc., which can be obtained through regular gameplay,
in-game purchase, community market purchase, or trading
among players. Based on current estimations, the virtual-item
gambling industry has reached the multi-billion-dollar level
[17] and is expected to continue increasing. For such a booming
industry, it becomes important to be able to model the complex
virtual-item gambling behaviors at both the individual and
the aggregate levels. Indeed, understanding online gambling
patterns is quickly becoming a pressing need for adolescent
gambling prevention, virtual gambling regulation, and online
irrationality research.

In this paper we apply the methods of statistical physics in
order to develop an understanding of the behavior of online
gamblers. This is supplemented by the study of different
random-walk models that allow to recover some of the features
extracted from the empirical data. While we are not aware of
any previous similar attempts to investigate online gambling,
we point out that related approaches have been used in the past
in the study of horse race betting [18,19]. More recently, online
lowest unique bid auctions have been the subject of different

studies that successfully applied the toolbox of statistical and
nonlinear physics [20–25].

In the following we focus on a specific type of virtual-item
gambling, namely jackpot, a lottery style game which occupies
about half of the virtual-item gambling market [17]. Our
analysis is based on the publicly available gambling logs from
a medium-sized skin gambling site [26]. The rules of jackpot
gambling are simple: players purchase lottery tickets with
skins, there will be only one winning ticket, and the winner
takes it all. In another way of speaking, this is a parimutuel
betting type of gambling, where players place wagers in a pool,
whereas only one player is chosen as the winner and wins all
the wagers in the pool. The chance of winning equals the share
of the player’s wagers to the total wager pool.

In the next section we provide a more in-depth discussion
of jackpot gambling and of the data used in our analysis. We
also discuss the models used for describing the distributions
of different quantities as well as the model selection and
parameter estimation. Section III summarizes results that we
obtain from a statistical analysis of the gambling logs. In
Sec. IV we view the net income of players as random walks,
whereas in Sec. V we discuss some random-walk models that
allow us to understand some of the behavioral data at the
aggregate level. We conclude in Sec. VI.

II. DATA AND METHODS

A. Online jackpot game and gambling logs

The rules of the jackpot game are very simple. The gambling
site constantly hosts a single jackpot game that any player can
attend. A round can last from a few seconds to several minutes.
To take part in the game, a player needs to place a bet with
lottery tickets purchased with one or several in-game skins
deposited to the gambling site. Each ticket is usually equivalent
to 1 U.S. cent, and the values of the skins are calculated based
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FIG. 1. Net income vs. the number of rounds played by an online
gambler. Typically, these curves exhibit a large number of small steps
and a small number of large steps.

on their prices listed in the community market. There is only
one winning ticket in each round of a game. This winning ticket
is drawn when the total number of skins deposited as wagers
in that round exceeds a certain threshold. The draw is based on
a uniformly distributed random number with a range equal to
the total number of tickets purchased in that round. The player
who holds the winning ticket will be the winner. The winner
wins all the wagers, which are the deposited skins in that round,
after a site cut (percentage cut) has been subtracted.

From the rules follows that in each round a player’s winning
chance is determined by the fraction their bet contributes to the
total wager value of that round. With a site cut c the expected
payoff η for one player with bet value b in a round with total
wager j is then

η = (1 − c) j × b

j
− b = −c b, (1)

which is always negative due to the site cut. If the random
number generator is well designed, then winning or losing a
game is totally chance based, with no skill effort, similarly
to roulette in casinos. It is interesting to explore the players’
gambling behaviors knowing that the expected net income is
always negative. Figure 1 provides an example of the total net
income for a typical gambler. The movement consists of a large
number of small steps and a few large jumps which suggest the
use of a random-walk-based model to describe the change of
net income.

The publicly available gambling logs used in the following
are published in the history page of the gambling site [26].
We collected the logs of 118 590 gambling rounds, containing
943 216 bets placed by 105 307 players in 232 days, from
March 10, 2015, the date the site was established, to October
28, 2015. The total wager in our study sums to 2 029 835 330
tickets, which is equivalent to about 20 million U.S. dollars,
as calculated based on the players’ deposited skin values. The
competition is exclusively among players: The gambling site
only takes cuts (3% of the total wager in each round) but is not
directly involved in gambling, except through the drawing of
the winning tickets. In each round, the winning ticket will be

drawn when there are more than 50 skins placed as wagers. The
data set contains information on bet ID, round index, player
ID, time stamp, number of tickets purchased, and winner ID.
Various other quantities, such as current total number and final
total number of purchased tickets, winning chance, net gain or
net loss with and without site cut, can be calculated from these
data.

The gamblers’ wealth data have been collected in June 2017
from the game statistics site CS:GO BACKPACK [27], which
provides the gamblers’ inventory values based on the item
prices listed in the community market in June 2017. The wealth
data therefore have been collected 2 years after the gambling
activities. In this way we obtained information on the wealth
data of 83 249 of the 105 307 players that gambled in the time
frame given above.

B. Ethics of data analysis

The data we analyzed in our study only contain publicly
available information of gambling logs and in-game invento-
ries, with no personally identifiable information included. On
each data set, we performed passive analysis with completely
no interaction with any human subject. Before using the data,
we acquired consent from the website administrators who host
the data. We are not associated with any of those websites in
any way. The purpose of our study is to help future researchers
better understand human gambling behaviors in order to
prevent adolescent gambling and problematic gambling.

C. Distributions and fitting models

Our analysis focuses on the probability distribution func-
tions as well as on the complementary cumulative distribution
functions (CCDF) of various quantities extracted from the
empirical data. Whereas P (X = x) is the probability that a
random variable X takes on the value x, the corresponding
complementary cumulative distribution function is given by

F (x) = 1 − P (X � x) = P (X > x). (2)

Power-law distributions and their variants have been
found in previous studies of very different human activities
[20,28–30]. In online gambling quantities of interest often take
on discrete values, which needs to be taken into account when
selecting possible fitting models.

We consider six different fitting models in our distribution
analysis. The discrete version of a power-law distribution is
given by [31]

P1(x) = 1

ζ (α, xmin)
x−α, (3)

with x � xmin, α > 1, and ζ (·, ·) is the incomplete Zeta
function. Here and in the following x is a positive integer
value taken on by a random variable X. For some data sets
a fat tail is terminated by an exponential decay, which can be
taken into account by the discrete power-law distribution with
exponential cutoff [30]

P2(x) = 1

Liα (e−λ) − ∑xmin−1
k=1 k−αe−λk

x−αe−λx, (4)

where x � xmin, λ > 0, α > 0, and Liα (·) is the polylogarithm
function. Another heavy-tailed distribution is the log-normal
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TABLE I. Basic statistics for the gambling data used in this study.

Mean Minimum Maximum Standard deviation 50% percentile

Bet value 2309.86 2 278 247 8429.46 91
Total net income −578.88 −773 524 751 635 15 513.36 −150
Number of rounds a player attended 8.34 1 1931 31.94 2
Number of players in a round 7.41 1 25 2.15 7
Jackpot value 17 116.41 100 396 760 24 399.50 7548

distribution with the discrete version [30]

P3(x) = �
( ln(x+1)−μ

σ

) − �
( ln(x)−μ

σ

)
1 − �

( ln(xmin )−μ

σ

) , (5)

where x � xmin, σ > 0, and �(·) is the normal cumulative
distribution. A fourth basic model is the discrete exponential
function [31]

P4(x) = (1 − e−λ)eλxmine−λx, (6)

where x � xmin and λ > 0. Finally, we also consider two
more complex models, namely the discrete shifted power-law
distribution with exponential cutoff

P5(x) = C
(x − δ)−α

1 + eλ(x−β )
, (7)

where x � xmin, λ > 0, δ < xmin, β > xmin, and C =
[
∑∞

k=xmin

(k−δ)−α

1+eλ(k−β ) ]
−1

is the normalization factor, and the dis-
crete pairwise power-law model [30],

P6(x) =
{

C x−α, xmin � x < xtrans

Cx
β−α
trans x−β, xtrans � x

, (8)

where α > 0, β > 1, xtrans > xmin, and the normalizing factor

C = [ζ (α, xmin) − ζ (α, xtrans) + x
β−α
trans ζ (β, xtrans)]

−1
.

We note that all these probability distributions contain a
minimal value xmin that defines the range of values used for the
modeling. For most quantities we choose as xmin the value of
x that minimizes the Kolmogorov-Smirnov statistics between
the empirical and fitted distributions [31].

For a given data set we estimate for each distribution the
model parameters with the maximum likelihood method. The
best fitting model is then selected using the Akaike Information
Criterion. We refer the interested reader to Appendix B in
Ref. [30] for a detailed discussion.

III. BEHAVIORAL ANALYSIS

A. Some basic statistics

In Table I we provide some basic statistics for the data used
in our study. The huge diversity of the data is obvious from
the very large values of the standard deviations. A meaningful
analysis of the gambling data needs to consider probability
distributions (or, equivalently, complementary cumulative dis-
tribution functions).

B. Distributions

A fundamental quantity for our analysis is the bet value,
and the distribution of bet values allows one to gain a quick

understanding of betting patterns. As shown in Fig. 2, the
complementary cumulative distribution function for the bet
value at the aggregate level is described by a shifted power
law with an exponential cutoff: Bet values smaller than β ∼
4.6 × 104 follow a power-law distribution, whereas very large
bets are distributed exponentially (such guaranteeing a finite
variance). The heavy-tail property of the bet distribution is also
readily identified when studying the bet value distributions of
individual gamblers. Figure 3 shows the wager distribution for
the nine players who played the largest numbers of rounds
(between 1931 and 1286). While there is some variability in
these distributions, they all exhibit heavy tails in the form of
power laws with exponents typically in the range [1.1, 1.7].

In gambling a player’s wealth provides a natural upper
limit for possible bet values. Studies have shown that the net
wealth distribution in human society follows a distribution that
combines an exponential decay for small values and a power-
law tail for large values [32]. For the online gamblers’ wealth,
this is different, see Fig. 4. We still have a power-law tail for
large values (with an exponent β = 2.442), but for small values
the exponential decay is replaced by a power-law decay with an
exponent α = 1.128. For this figure we computed the wealth
of each player by taking the sum of the values (community
market price) of the skins in each player’s inventory.
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FIG. 2. The complementary cumulative distribution function for
bet values. The best fit is obtained for a shifted power law with an
exponential cutoff, see Eq. (7), with bmin = 25 and the maximum
likelihood estimators α = 1.297, λ = 3.429 × 10−5, δ = 9.905, and
β = 4.629 × 104.
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FIG. 3. Wager probability distributions for the nine players with
the largest numbers of bets (ranging from 1931 bets for player 1 to
1286 for player 9). Heavy tails are present in all nine distributions.

In each round a gambler either loses their wager or wins
the whole pool (minus the site cut), resulting in the random-
walk-like behavior of the net income shown in Fig. 1. The
probability distribution of the pool size is described by a power-
law distribution with an exponent a = 0.650 that ends in an
exponential cutoff, see Fig. 5. The same functional form is
found if we consider the wins instead of the pool sizes (see
Sec. IV).

The available logs also allow to discuss time dependent
quantities, as for example the waiting time tw, defined as the
time measured in seconds between successive bets by the same
user, or the number of rounds r played by individual gamblers.
The waiting time probability distribution shown in Fig. 6 has
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FIG. 4. The complementary cumulative distribution function of
the gambler’s wealth w, where one unit corresponds to 1 US cent.
These data have been collected in June 2017 from the game statistics
site CS:GO BACKPACK [27]. The best fit of the data is achieved with
a pairwise power-law distribution (8) with the maximum likelihood
estimator α = 1.128 and β = 2.442 as well as with the parameters
wmin = 100 and wtrans = 33 928.
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FIG. 5. The complementary cumulative distribution function of
the pool size (i.e., the total wager in one round) p. The fitting curve is
a power law with exponential cutoff (4) with the maximum likelihood
estimators α = 0.650 and λ = 2.577 × 10−5.

some interesting features. The plateau for P (tw ) close to tw =
105 indicates that a sizable portion of gamblers play bets day
after day (24 h corresponds to 86,400 s). The heavy tail of the
distribution reveals that some persons restart gambling after
a month-long hiatus, which illustrates some of the challenges
gambling prevention faces. Figure 7 shows that the number
of rounds played by individual players during the 232 days
covered by the gambling logs is well described by a log-normal
distribution. Remarkably, a sizable number of gamblers placed
a thousand and more bets during the time frame covered by the
logs.

Besides discussing data at the population level, we can also
identify different subgroups of gamblers and discuss differ-
ences between these groups. Figure 8 provides one example
where we confront the distribution of bets of one-time players
with that of heavy gamblers (defined as having played at
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FIG. 6. The probability distribution of the waiting time between
successive gambles. The waiting time is measured in seconds.
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FIG. 7. The complementary cumulative distribution function of
the number of rounds r played by individual players. The data are best
fitted by a log-normal distribution (5) with the maximum likelihood
estimators μ = −1.777 and σ = 2.238.

least 600 rounds). Obviously one-time players are much more
risk-averse and are therefore unlikely to bet large amounts.

C. Correlations

Correlation coefficients help to understand the relationships
between the different quantities. As our quantities, be it out-
comes, bets, and profits, all follow heavy-tailed distributions,
the standard Pearson’s product-moment correlation coeffi-
cient may provide erroneous results. More appropriate are
rank-based correlation coefficients, such as Kendall’s tau [33]
or Spearman’s rho [34]. We verified that the same conclusions
are obtained from these two coefficients. For that reason we
will only discuss Kendall’s tau in the following. Assuming a
set of observations {(xi, yi )} of two joint variables x and y,
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FIG. 8. Comparison of the betting patterns of heavy gamblers
and one-time players. Shown is the complementary cumulative
distribution function for bet values.

Kendall’s tau can be calculated as

τK (x, y) =
∑

i<j sgn[(xi − xj )(yi − yj )]√
1
2n(n − 1) − U

√
1
2n(n − 1) − V

, (9)

where sgn is the signum function, whereas U and V are the
numbers of x-tied pairs and y-tied pairs.

For each player the gambling history can be summarized as
a sequence {(bi, oi )}, where bi is the value of the ith bet and oi

is the outcome of that round. When losing the round, then the
outcome is the negative of the bet value, whereas for a winning
round oi is the total bet value minus the winner’s wager and the
site cut. Focusing on the 2318 players that attended more than
60 rounds, we can obtain from these data different correlation
coefficients.

The correlation between successive bets τK (bi, bi+1) is
positive for most players, with an average value τK = 0.260.
The relative frequency of a given value of τK (bi, bi+1) is
displayed in the left panel of Fig. 9. In order to understand
this graph we remark that a negative value is obtained when
a gambler places larger and smaller bets in turn, whereas
placing bets randomly yields a value close to zero. From
the graph follows that only a few gamblers have these types
of gambling behaviors. Instead, for most gamblers bets are
not independent but indicate some level of memory. Indeed,
positive correlation indicates a consistent betting behavior
without dramatic changes from bet to bet.

Also shown in Fig. 9 are the relative frequencies for the
correlation between the sign of a bet outcome and the next
bet, τK (sgn oi, bi+1), and the correlation between the profit pi

(i.e., the value of the outcome in case it is positive) and the
subsequent bet, τK (pi, bi+1). The first correlation coefficient
helps us to understand how gaining or losing money affects
the next bet, whereas the second one shows whether a bet
value is affected by the value of the previous profit. Profit
corresponds to positive outcome, so that for the computation
of τK (pi, bi+1) we remove all bets with a negative outcome
oi . For both correlations we restrict ourselves to players who
made profit in at least 15 rounds and had negative outcomes
in also at least 15 rounds. This yields 1608 eligible players.
The relative frequencies shown in the center and right panels
of Fig. 9 reveal for most players a weak positive correlation
between the betting value and the outcome or profit. There is
a tendency for gamblers to place larger (respectively, smaller)
bets in case the outcome in the preceding round was positive
(respectively, negative).

IV. NET INCOME VIEWED AS A RANDOM WALK

As we have already seen in Fig. 1, the net income of a
player changes at each round where they place a bet, due to
winning or losing that round. This then generates a time series
where “time” is increased by one at each round played by the
gambler and suggests a description as a random walk in the
one-dimensional space of net income. Of course the random
walkers are not independent as the loss of one gambler will
be part of the gain of another one. Also, the fact that every
gambler has finite wealth will put constraints on the random
walk.
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FIG. 9. The relative frequencies for the three correlation coefficients discussed in the text. Left panel: Correlation between successive bets,
with the mean value 0.260. Center panel: Correlation between the sign of a bet outcome and the next bet, with the mean value 0.181. Right
panel: Correlation between the profit and the subsequent bet, with the mean value 0.107.

The jumps done by our random walkers have the peculiarity
that they follow different distributions depending on whether
they jump “left” (net income decreases after losing a round)
or “right” (net income increases after winning a round). “Left”
and “right” indicate the relative decrease or increase with
respect to the value of the net income before the round is played.
The distribution of losses is very similar to the distribution of
bet values (as in a given round all bets result in losses with
the exception of the winning bet). As shown in Fig. 2, this
distribution is described at the aggregate level by a shifted
power law with an exponential cutoff. Power laws are also
observed in Fig. 3 for individual gamblers. The distribution
of winning amounts shown in Fig. 10 is well described by a
power-law distribution with an exponential cutoff, albeit with a
different power-law exponent α. The fact that the distributions
for jumps in both directions, albeit not identical, are power-law
distributions indicates that the random walk of the net income
should follow a truncated Lévy flight pattern.

Figure 11 shows that the mean-squared displacement of
the net income random walk displays a first regime that is
superdiffusive with an exponent close to 1.45. We show two
curves in that figure, one where we consider as winning amount
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FIG. 10. The complementary cumulative distribution function of
the winning amounts. The fitting curve is a power law with exponential
cutoff (4) with the maximum likelihood estimators α = 1.063 and
λ = 3.192 × 10−5.

the total pool size in a round and one where we subtract the
site cut and take the remaining amount as the length of the
jump. At very late times this first regime goes over into a
normal diffusion regime, with the measured slope close to
1 in the log-log plot. This crossover from superdiffusion to
normal diffusion is in fact expected for truncated power-law
distributions [35,36] and has been observed in a variety of
systems (see, e.g., Refs. [37–39]).

A quantity of much interest is the first-passage time [40],
i.e., the time needed for a stochastic variable (in our case the
net income viewed as a random walker) to take on for the first
time a given value. Indeed, the first-passage time distribution
can help to determine the diffusive behavior of a stochastic
process [35,36]. For our stochastic process Nr , r = 1, . . . , R,
representing the net income with R being the maximum
number of rounds played, the first-passage time is defined by
t = min{r > r0; Xk = ±Nfp}, where Nfp is the target value.
As shown in Ref. [36], the first passage time distribution P (t ),
defined as the survival probability that, starting from r = r0,
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1

FIG. 11. Mean-squared displacement when viewing the net in-
come of the gamblers as a random walk, with time measured in
numbers of rounds played. Independent on whether the site cut is
considered or not, two different regimes are observed, with the early
one being superdiffusive with an exponent close to 1.45, whereas the
later one is close to normal diffusion.
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FIG. 12. First-passage time distribution obtained from the data of
387 players that gambled in more than 200 rounds. The superdiffusive
regime is revealed by a power-law decay with an exponent larger than
3/2. Error bars result from log-binning averaging and indicate 95%
confidence intervals.

the series Nr stays within the range [Nr0 − Nfp, Nr0 + Nfp] up
to the round r = r0 + t , is given by the expression

P (t ) = lim
R−→∞

1

R

R∑
r=1

�(|Nr+t − Nr | − Nfp)

− lim
R−→∞

1

R

R∑
r=1

�(|Nr+t−1 − Nr | − Nfp), (10)

where �(x) is the Heaviside step function.
As Eq. (10) requires sufficiently long time series, we focus

on the 387 players that played at least 200 rounds and choose
Nfp = 500. The resulting first-passage time distribution is still
very noisy. In order to reduce the noise we use the log-binning
technique which yields the distribution shown in Fig. 12.
Inspection of that figure reveals that after some initial time
regime a superdiffusive regime prevails, as indicated by a
slope larger than 3/2, the characteristic value for a Gaussian
process. As already mentioned, for any truncated heavy-tail
distribution the long-time behavior should be normal diffusion,
and we do observe the crossover from a superdiffusive to a
normal diffusive behavior in Fig. 11 for the mean-squared
displacement. For the first-passage time distribution obtained
from the gambling logs the long-time normal diffusion decay
with an exponent 3/2 is not readily observed, due to the
shortness of the available time series.

V. MODELING ONLINE GAMBLING THROUGH
RANDOM WALK MODELS

In order to better understand this switch from a superdiffu-
sive to a normal diffusive behavior in the net income random
walk we discuss in the following three different random-walk
models. The aim of this investigation is not so much to find the
best parameter sets to reproduce the empirical data but instead

to gain insights into the necessary ingredients to obtain from
these models data with qualitative similar properties as those
derived from the gambling logs.

In all three models we consider that at each round four play-
ers interact (this is mostly useful for the numerical simulations;
the analytical results for the simpler models are valid for any
number of gamblers interacting in a round). For each round the
gamblers place a bet with a value taken from the continuous
power-law distribution with exponential cutoff

P (b) = λ1−α

�(1 − α, λbmin)
b−αe−λb (11)

with λ > 0 and b � bmin (we choose bmin = 1), whereas �(·, ·)
is the incomplete Gamma function. This distribution (11),
motivated by the data from the gambling logs that show a
power-law behavior with an exponential cutoff, is the con-
tinuous version of the discrete distribution (4). For the results
discussed in the following we fix the mean 〈b〉 = 100. The
two parameters α and λ are then not independent but related
through that mean bet value as 〈b〉 = �(2−α,λ)

λ�(1−α,λ) . We vary α

between 1.2 and 1.6. We verified that qualitatively our results
are unchanged if instead of using the distribution (11) we use
a power-law distribution with a sharp truncation:

P (b) = C b−α (12)

with b ∈ [bmin, bmax] and C = α−1
b1−α

min −b1−α
max

, where bmax and α are

related when fixing the mean bet value.
Our first two models are focusing on a single gambler with

infinite wealth. In model 1 [41] we fix the winning chance
of this gambler to be 1/4 (in a generalization to n interacting
gamblers, the winning chance would be 1/n). This model does
not take into account that in the online game the winning chance
is proportional to the bet value. We therefore consider a more
realistic model 2 which implements this relationship between
the bet value and the winning chance. Model 3, finally, is a
more sophisticated version of model 2 where, similarly to the
online game, a large pool of gamblers is available (the data
shown below have been obtained for N = 1 000 000) and at
each round n = 4 gamblers are selected randomly to play the
round. We calculate quantities for all players, which are no
longer independent, in contrast to models 1 and 2, and after
each round we update the net income of all 4 players involved
in that round. We also take into account in model 3 that the
wealth of each player is finite: before the first round is played
every gambler is assigned a wealth taken from the power-law
probability distribution

P (w) = 1

wmin

(
w

wmin

)−2

(13)

with wmin = 1. Because of the finite wealth of each gambler,
the individual net income random-walks all have an absorbing
state of zero wealth. As soon as the wealth of a gambler is zero,
this gambler is removed from the pool. While it is tempting to
discuss our random walkers in the context of previous studies
of random-walk-type motion with absorbing boundaries [42–
45], it is crucial to realize that our random walkers are not
independent, but instead at each round the winner’s step length
is correlated to those of the losers.
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FIG. 13. The mean-squared displacement for (a) model 1, (b) model 2, and (c) model 3. For models 1 and 2, the net income of each
gambler performs an independent random walk where the step length is related to the bet distribution (11). In these two cases the mean-squared
displacement increases linearly with time (i.e., the number of rounds played), in agreement with prior results. Model 3, on the other hand,
reveals a crossover from superdiffusion to diffusion. The different curves are for different values of the parameter α in the continuous power-law
distribution with an exponential cutoff (11).

Similarly to our analysis of the empirical data, we compute
in the following for the different models the mean-squared dis-
placement (MSD) of the net income as well as the distribution
of the first-passage time at which the income of a gambler takes
on a given target value.

We start by noting that for models 1 and 2 the mean-squared
displacement as a function of time (i.e., the number of rounds
played) can be computed exactly, see Appendix. For rounds
involving each time n gamblers and a fixed mean bet value
〈b〉, the MSD is given for model 1 by

MSD(t ) =
[

2(n − 1)

n
μ2 + (n − 1)(n − 2)

n
〈b〉2

]
t, (14)

with μ2 being the second moment of the bet distribution,
whereas for model 2 one obtains

MSD(t ) = (n − 1)〈b〉2t. (15)

Figures 13(a) and 13(b) display these curves for three different
values of the parameter α found in the bet distribution (11),
with 〈b〉 = 100 and n = 4.

Several comments are in order. First we note that although
we consider a truncated power-law distribution, we obtain that
the MSD increases linearly with time. This is in agreement with
an early observation of a linearly increasing MSD encountered

in simulations of truncated Lévy flights in two dimensions
[46]. This linear time dependence is very general as the bet
(i.e., step length) distribution only enters through the mean and
the second moment. Especially for model 2, any distribution
with the same mean yields the same MSD as expression (15)
does not depend on the variance. While we are focusing on the
two truncated power-law distributions (11) and (12), even a
distribution with finite mean and infinite second moment yields
for model 2 a finite MSD growing linearly with time. This is
different for model 1 as the second moment explicitly enters
in expression (14). As a result of this dependence, the MSDs
for different values of α, see Fig. 13(a), are shifted vertically,
due to the fact that changing α while keeping 〈b〉 constant
changes the value of the second moment, see Appendix. We
further note that these two models do not allow to obtain a
behavior similar to that observed in Fig. 11 for the empirical
data, namely a transition from a superdiffusive behavior with
an exponent larger than 1 to a normal diffusive behavior
characterized by a linear increase of the MSD. This, however,
is different for model 3, where we indeed observe a crossover
from superdiffusion to normal diffusion, see Fig. 13(c) for data
obtained for one million gamblers playing 50 million rounds,
with each round involving four randomly selected gamblers.
As we cannot compute the MSD analytically for this model,
we can only provide a heuristic argument for this observation.

012126-8



BEHAVIOR ANALYSIS OF VIRTUAL-ITEM GAMBLING PHYSICAL REVIEW E 98, 012126 (2018)

100 101 102 103

t
10-8

10-6

10-4

10-2

100

P(
t)

α=1.2
α=1.4
α=1.6

(a)

-3/2

100 101 102 103

t
10-8

10-6

10-4

10-2

100

P(
t)

α=1.2
α=1.4
α=1.6

(b)

-3/2

100 101 102

t

10-4

10-2

100

P(
t)

α=1.2
α=1.4
α=1.6

(c)

-3/2

FIG. 14. The first-passage time distribution for (a) model 1, (b) model 2, and (c) model 3. For all three models we observe a crossover from
a superdiffusive behavior, revealed by a decay faster than t−3/2, to a normal diffusive behavior proportional to t−3/2. Error bars indicate 95%
confidence intervals. The different curves are for different values of the parameter α in the bet distribution (11).

We note that in model 3 all gamblers have finite wealth taken
from the distribution (13). One of the consequences of this is
that we add an absorbing boundary (a gambler is removed once
their wealth becomes zero); another one is that initially many
players have small wealth and therefore can only bet small
amounts. Consequently, at early rounds the mean bet value of
active players is smaller than the mean of the bet distribution
(11), which makes the MSD smaller than what one obtains for
models 1 and 2. As time increases, some gamblers are elimi-
nated as their wealth hits the absorbing boundary. As a result,
the wealth of the active gamblers increases until their mean bet
values are getting close to the mean value of the bet distribution
(11). At this point the MSD for model 3 shows a crossover from
a superdiffusive behavior to a normal diffusive one.

Figure 14 shows our results for the first-passage time distri-
butions obtained from simulations of the three different models
with the bet distribution (11). For models 1 and 2 we simulate
a gambler who plays 50 million rounds, which yields a time
series of their net income of length 50 million. The data shown
in Fig. 14(a) and 14(b) result from averaging over 300 indepen-
dent runs for α = 1.2, 250 independent runs for α = 1.4, and
75 independent runs for α = 1.6. These difference in the num-
ber of independent runs reflects an increase of computational
costs when α increases, due to a decrease of the acceptance
rates for generating random numbers. For model 3 we only
made one run with 1 million players and 50 million rounds.
For all three models we use n = 4, 〈b〉 = 100, and Nfp = 20.

Interestingly, all three models show in the first-passage
time distribution the expected crossover from a superdiffusive
behavior at early times, characterized by a decay with an
effective exponent larger than 3/2, to a normal diffusive long-
time behavior, where the distribution decays as t−3/2. This
crossover is rather sharp for model 1, whereas it is more gradual
for the other two models. As already mentioned in Ref. [36],
the first-passage time distribution does not suffer from the same
restrictions than the MSD and is therefore the superior quantity
for identifying the crossover between a superdiffusive and a
normal diffusive regime.

VI. SUMMARY

The quickly expanding video gaming industry has led to the
development of other types of online entertainment, the prime
example being online gambling. We considered in this work an
online jackpot game as an example of virtual-item gambling.
Publicly available gambling logs permit behavioral analysis
at both the aggregate and individual levels. We analyzed the
probability distribution functions and correlation coefficients
in order to elucidate the relationships between some quantities
derived from the gambling logs. Viewing the changes of the
net income of a gambler as a random walk, the mean-squared
displacement of the net income displays a transition from
a superdiffusive to a diffusive behavior. We discussed three
different models, two of which are simple random-walk models
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for a gambler with infinite wealth, whereas the third one
considers many gamblers with finite wealth. All three models
show a crossover from superdiffusive to normal diffusive
behavior in the first-passage time distribution, but only the
model with finite wealth displays a similar crossover in the
mean-squared displacement.

ACKNOWLEDGMENT

This work is supported by the U.S. National Science
Foundation through Grant No. DMR-1606814.

APPENDIX: MEAN-SQUARED DISPLACEMENTS

In the following we briefly discuss the exact calculation of
the mean-squared displacements for models 1 and 2. In both
models we consider n players with infinite wealth who gamble
with identically and independently distributed bet values b

taken from a distribution P (b). In the main text we consider a
power-law distribution (11) as well as a power-law distribution
with a sharp truncation (12).

Let A,B,C, · · · be the n players attending one round.
We are going to focus on player A and compute the mean-
squared displacement of their net income. For simplicity, we
will also use A,B,C, · · · to represent the bet values of the
corresponding players. We denote by A1, A2, . . . , At the bet
values of player A in t rounds and call �1,�2, . . . ,�t the
sum of the bet values of the other players in the corresponding
rounds. We use at to represent the net income of player A after
t rounds and note that before the first round played the net
income is zero, i.e., a0 = 0. The mean-squared displacement
is then given by

MSD(t ) = 〈(at − a0)2〉 = 〈a2
t 〉. (A1)

When player A wins round t , then their net income increases
by �t = Bt + Ct + · · · , but the net income decreases by −At

in case of a loss. Models 1 and 2 now differ by the probability
to win the round, with this probability being given by 1/n for
model 1 and by At/(Bt + Ct + · · · ) for model 2.

Let us first look at model 2. In that case the mean-squared
displacement at round t is given by

MSD(t ) =
∫

A1,�1,··· ,At ,�t

P (A1,�1, · · · , At ,�t )

[
A1

A1 + �1
· · · At

At + �t

(�1 + · · · + �t )
2

+ �1

A1 + �1
· · · At

At + �t

(−A1 + · · · + �t )
2 + · · · + A1

A1 + �1
· · · �t

At + �t

(�1 + · · · − At )
2

+ �1

A1 + �1
· · · �t

At + �t

(−A1 − · · · − At )
2

]
dA1d�1 · · · dAtd�t .

After expanding the squared terms most terms cancel out, yielding after some simple algebraic manipulations

MSD(t ) =
∫

A1,�1,··· ,At ,�t

P (A1,�1, · · · , At ,�t )(A1�1 + · · · + At�t )dA1d�1 · · · dAtd�t

=
∫

A1,�1

P (A1,�1)A1�1dA1d�1 + · · · +
∫

At ,�t

P (At,�t )At�t dAtd�t

All these t terms are identical and are given by∫
A,�

P (A,�)A�dAd� =
∫

A,B,C,···
P (A)P (B )P (C) · · · [A(B + C + · · · )]dAdBdC · · ·

=
∫

A

P (A)AdA

[∫
B

P (B )BdB +
∫

C

P (C)CdC + · · ·
]

= μ((n − 1)μ) = (n − 1)μ2,

where μ = 〈A〉 = ∫
A

P (A)AdA. This then yields the final result

MSD(t ) = (n − 1)〈A〉2 + · · · + (n − 1)〈A〉2 = (n − 1)〈A〉2t.

We note that for model 2 the MSD grows linearly in time. As the MSD is independent of the second moment of the bet distribution,
it is the same for any bet distribution with the same mean, including distributions with finite mean and infinite second moment.

The calculation for model 1 closely follows that of model 2, but with the major change that for gambler A the probability of
winning a round is 1/n, whereas the probability of losing that round is (n − 1)/n, with n being the number of gamblers involved
in a round. This then yields the expression

MSD(t ) = 〈a2
t 〉 =

∫
A1,�1,··· ,At ,�t

P (A1,�1, · · · , At ,�t )

[
1

n
· · · 1

n
(�1 + · · · + �t )

2

+ n − 1

n
· · · 1

n
(−A1 + · · · + �t )

2 + · · · + 1

n
· · · n − 1

n
(�1 + · · · − At )

2

+ n − 1

n
· · · n − 1

n
(−A1 + · · · − At )

2

]
dA1d�1 · · · dAtd�t ,
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TABLE II. Mean and second moment for the different bet value distributions.

Distribution model Mean μ Second moment μ2

Power law with exponential cutoff (11) 1
λ

�(2−α,λbmin )
�(1−α,λbmin )

1
λ2

�(3−α,λbmin )
�(1−α,λbmin )

Power law with sharp truncation (12) 1−α

2−α

b2−α
min −b2−α

max

b1−α
min −b1−α

max

1−α

3−α

b3−α
min −b3−α

max

b1−α
min −b1−α

max

and, after some algebraic manipulations,

MSD(t ) =
∫

A1,�1,··· ,At ,�t

P (A1,�1, · · · , At ,�t )

(
n − 1

n
A2

1 + 1

n
�2

1 + · · · + n − 1

n
A2

t + 1

n
�2

t

)
dA1d�1 · · · dAtd�t

=
∫

A1,�1

P (A1,�1)

(
n − 1

n
A2

1 + 1

n
�2

1

)
dA1d�1 + · · ·

∫
At ,�t

P (At,�t )

(
n − 1

n
A2

t + 1

n
�2

t

)
dAtd�t .

Again, these t terms are identical, with∫
A,�

P (A,�)

(
n − 1

n
A2 + 1

n
�2

)
dAd�

=
∫

A,B,C,···
P (A,B,C, · · · )

[
1

n
(B + C + · · · )2 + n − 1

n
A2

]
dAdBdC · · ·

= n − 1

n

∫
A

P (A)A2dA + 1

n

∫
B+C+···

P (B )P (C) · · · (B2 + C2 + 2BC + · · · )dBdC · · ·

= n − 1

n
μ2 + 1

n

[∫
B

P (B )B2dB +
∫

C

P (C)C2dC + · · ·
]

+ 1

n

[∫
B,C

P (B )P (C) 2BC dBdC + · · ·
]

= n − 1

n
μ2 + 1

n
(n − 1)μ2 + 1

n

(n − 1)(n − 2)

2
2μ2 = 2(n − 1)

n
μ2 + (n − 1)(n − 2)

n
μ2

with the mean μ = 〈A〉 = ∫
A

P (A)AdA and the second moment μ2 = 〈A2〉 = ∫
A

P (A)A2dA. It follows that the MSD for model
1 is given by

MSD(t ) =
[

2(N − 1)

N
μ2 + (N − 1)(N − 2)

N
μ2

]
t

and is therefore still proportional to t , but now the prefactor depends on both the mean and the second moment.
Table II provides the interested reader with the mean values and second moments for the two bet distributions considered in

this work. �(·, ·) is the incomplete Gamma function.

[1] I. Redondo, Int. J. Ment. Health Addict. 13, 584 (2015).
[2] M. D. Owens, Gam. Law Rev. Econ. 20, 567 (2016).
[3] S. M. Gainsbury, Y. Liu, A. M. T. Russell, and T. Teichert,

Comput. Hum. Behav. 55, 717 (2016).
[4] A. L. Goldstein, N. Vilhena-Churchill, S. H. Stewart, P. N. S.

Hoaken, and G. L. Flett, J. Behav. Addict. 5, 68 (2016).
[5] M. Choliz, J. Gambl. Stud. 32, 749 (2016).
[6] J. Konietzny, Int. Gambl. Stud. 17, 144 (2017).
[7] K. S. Montes and J. N. Weatherly, J. Gambl. Stud. 33, 85

(2017).
[8] R. Bitar, C. Nordt, M. Grosshans, M. Herdener, E. Seifritz, and

J. Mutschler, Eur. Addict. Res. 23, 106 (2017).
[9] N. Hing, A. M. Russell, and M. Browne, Front. Psychol. 8, 779

(2017).
[10] A. Gonzalez-Roz, J. R. Fernandes-Hermida, S. Weidberg, V.

Martinez-Loredo, and R. Secades-Villa, J. Gambl. Stud. 33, 371
(2017).

[11] M. Auer and M. D. Griffiths, J. Gambl. Stud. 33, 795 (2017).

[12] R. Edgren, S. Castrén, H. Alho, and A. H. Salonen, Comput.
Hum. Behav. 72, 46 (2017).

[13] D. Martinelli, Gaming Law Rev. 21, 557 (2017).
[14] J. T. Holden and S. C. Ehrlich, Gam. Law Rev. 21, 566 (2017).
[15] R. Sylvester and P. Rennie, Gam. Law Rev. 21, 625 (2017).
[16] M. Griffiths, Casino Gam. Int. 28, 59 (2017).
[17] C. Grove, Understanding Skin Gambling (2016), http://www.

esportsbettingreport.com/wp-content/uploads/2016/07/A-
Guide-To-Skin-Gambling.pdf.

[18] K. Park and E. Domany, Europhys. Lett. 53, 419 (2001).
[19] T. Ichinomiya, Physica A 368, 207 (2006).
[20] F. Radicchi, A. Baronchelli, and L. A. N. Amaral, PLoS ONE 7,

e29910 (2012).
[21] F. Radicchi and A. Baronchelli, Phys. Rev. E 85, 061121 (2012).
[22] A. Baronchelli and F. Radicchi, Chaos Solitons Frac. 56, 101

(2013)
[23] S. Pigolotti, S. Bernhardsson, J. Juul, G. Galster, and P. Vivo,

Phys. Rev. Lett. 108, 088701 (2012).

012126-11

https://doi.org/10.1007/s11469-014-9531-0
https://doi.org/10.1007/s11469-014-9531-0
https://doi.org/10.1007/s11469-014-9531-0
https://doi.org/10.1007/s11469-014-9531-0
https://doi.org/10.1089/glre.2016.2075
https://doi.org/10.1089/glre.2016.2075
https://doi.org/10.1089/glre.2016.2075
https://doi.org/10.1089/glre.2016.2075
https://doi.org/10.1016/j.chb.2015.10.006
https://doi.org/10.1016/j.chb.2015.10.006
https://doi.org/10.1016/j.chb.2015.10.006
https://doi.org/10.1016/j.chb.2015.10.006
https://doi.org/10.1556/2006.5.2016.003
https://doi.org/10.1556/2006.5.2016.003
https://doi.org/10.1556/2006.5.2016.003
https://doi.org/10.1556/2006.5.2016.003
https://doi.org/10.1007/s10899-015-9558-6
https://doi.org/10.1007/s10899-015-9558-6
https://doi.org/10.1007/s10899-015-9558-6
https://doi.org/10.1007/s10899-015-9558-6
https://doi.org/10.1080/14459795.2017.1288754
https://doi.org/10.1080/14459795.2017.1288754
https://doi.org/10.1080/14459795.2017.1288754
https://doi.org/10.1080/14459795.2017.1288754
https://doi.org/10.1007/s10899-016-9613-y
https://doi.org/10.1007/s10899-016-9613-y
https://doi.org/10.1007/s10899-016-9613-y
https://doi.org/10.1007/s10899-016-9613-y
https://doi.org/10.1159/000471482
https://doi.org/10.1159/000471482
https://doi.org/10.1159/000471482
https://doi.org/10.1159/000471482
https://doi.org/10.3389/fpsyg.2017.00779
https://doi.org/10.3389/fpsyg.2017.00779
https://doi.org/10.3389/fpsyg.2017.00779
https://doi.org/10.3389/fpsyg.2017.00779
https://doi.org/10.1007/s10899-016-9652-4
https://doi.org/10.1007/s10899-016-9652-4
https://doi.org/10.1007/s10899-016-9652-4
https://doi.org/10.1007/s10899-016-9652-4
https://doi.org/10.1007/s10899-016-9648-0
https://doi.org/10.1007/s10899-016-9648-0
https://doi.org/10.1007/s10899-016-9648-0
https://doi.org/10.1007/s10899-016-9648-0
https://doi.org/10.1016/j.chb.2017.02.033
https://doi.org/10.1016/j.chb.2017.02.033
https://doi.org/10.1016/j.chb.2017.02.033
https://doi.org/10.1016/j.chb.2017.02.033
https://doi.org/10.1089/glr2.2017.21814
https://doi.org/10.1089/glr2.2017.21814
https://doi.org/10.1089/glr2.2017.21814
https://doi.org/10.1089/glr2.2017.21814
https://doi.org/10.1089/glr2.2017.2183
https://doi.org/10.1089/glr2.2017.2183
https://doi.org/10.1089/glr2.2017.2183
https://doi.org/10.1089/glr2.2017.2183
https://doi.org/10.1089/glr2.2017.21811
https://doi.org/10.1089/glr2.2017.21811
https://doi.org/10.1089/glr2.2017.21811
https://doi.org/10.1089/glr2.2017.21811
http://www.esportsbettingreport.com/wp-content/uploads/2016/07/A-Guide-To-Skin-Gambling.pdf
https://doi.org/10.1209/epl/i2001-00169-0
https://doi.org/10.1209/epl/i2001-00169-0
https://doi.org/10.1209/epl/i2001-00169-0
https://doi.org/10.1209/epl/i2001-00169-0
https://doi.org/10.1016/j.physa.2005.12.027
https://doi.org/10.1016/j.physa.2005.12.027
https://doi.org/10.1016/j.physa.2005.12.027
https://doi.org/10.1016/j.physa.2005.12.027
https://doi.org/10.1371/journal.pone.0029910
https://doi.org/10.1371/journal.pone.0029910
https://doi.org/10.1371/journal.pone.0029910
https://doi.org/10.1371/journal.pone.0029910
https://doi.org/10.1103/PhysRevE.85.061121
https://doi.org/10.1103/PhysRevE.85.061121
https://doi.org/10.1103/PhysRevE.85.061121
https://doi.org/10.1103/PhysRevE.85.061121
https://doi.org/10.1016/j.chaos.2013.07.013
https://doi.org/10.1016/j.chaos.2013.07.013
https://doi.org/10.1016/j.chaos.2013.07.013
https://doi.org/10.1016/j.chaos.2013.07.013
https://doi.org/10.1103/PhysRevLett.108.088701
https://doi.org/10.1103/PhysRevLett.108.088701
https://doi.org/10.1103/PhysRevLett.108.088701
https://doi.org/10.1103/PhysRevLett.108.088701


XIANGWEN WANG AND MICHEL PLEIMLING PHYSICAL REVIEW E 98, 012126 (2018)

[24] J. Juul, A. Kianercy, S. Bernhardsson, and S. Pigolotti, Phys.
Rev. E 88, 022806 (2013).

[25] Y. Zhao, Q. Chen, and Y. Wang, Int. J. Mod. Phys. C 25, 1440002
(2014).

[26] CSGO Casino, http://www.csgo-casino.com/.
[27] https://www.csgobackpack.net/.
[28] A.-L. Barabási, Nature 435, 207 (2005).
[29] M. C. González, C. A. Hidalgo, and A.-L. Barabási, Nature 53,

779 (2008).
[30] X. Wang and M. Pleimling, Phys. Rev. E 95, 032145 (2017).
[31] A. Clauset, C. R. Shalizi, and M. E. J. Newman, SIAM Rev. 51,

661 (2009).
[32] V. M. Yakovenko and J. Barkley Rodder, Jr., Rev. Mod. Phys.

81, 1703 (2009).
[33] M. Kendall and J. D. Gibbons, Rank Correlation Methods

(Oxford University Press, Oxford, 1990).
[34] J. M. Taylor, Biometrics 43, 409 (1987).
[35] R. N. Mantegna and H. E. Stanley, Phys. Rev. Lett. 73, 2946

(1994).

[36] J.-I. Inoue and N. Sazuka, Phys. Rev. E 76, 021111 (2007).
[37] K. Ito and S. Miyazaki, Prog. Theor. Phys. 110, 875 (2003).
[38] Y. Maruyama and J. Murakami, Phys. Rev. B 67, 085406

(2003).
[39] D. Stauffer, C. Schulze, and D. W. Heermann, J. Biol. Phys. 33,

305 (2007).
[40] S. Redner, A Guide to First-Passage Processes (Cambridge

University Press, Cambridge, England, 2001).
[41] We thank an anonymous referee for suggesting this model.
[42] S. V. Buldyrev, M. Gitterman, S. Havlin, A. Ya. Kazakov, M. G.

E. da Luz, E. P. Raposo, H. E. Stanley, and G. M. Viswanathan,
Physica A 302, 148 (2001).

[43] Y. Kantor and M. Kardar, Phys. Rev. E 76, 061121 (2007).
[44] D. S. Novikov, E. Fieremans, J. H. Jensen, and J. A. Helpern,

Nat. Phys. 7, 508 (2011).
[45] B. Dybiec, E. Gudowska-Nowak, E. Barkai, and A. A. Dubkov,

Phys. Rev. E 95, 052102 (2017).
[46] M. Ghaemi, Z. Zabihinpour, and Y. Asgari, Physica A 388, 1509

(2009).

012126-12

https://doi.org/10.1103/PhysRevE.88.022806
https://doi.org/10.1103/PhysRevE.88.022806
https://doi.org/10.1103/PhysRevE.88.022806
https://doi.org/10.1103/PhysRevE.88.022806
https://doi.org/10.1142/S0129183114400026
https://doi.org/10.1142/S0129183114400026
https://doi.org/10.1142/S0129183114400026
https://doi.org/10.1142/S0129183114400026
http://www.csgo-casino.com/
https://www.csgobackpack.net/
https://doi.org/10.1038/nature03459
https://doi.org/10.1038/nature03459
https://doi.org/10.1038/nature03459
https://doi.org/10.1038/nature03459
https://doi.org/10.1038/nature06958
https://doi.org/10.1038/nature06958
https://doi.org/10.1038/nature06958
https://doi.org/10.1038/nature06958
https://doi.org/10.1103/PhysRevE.95.032145
https://doi.org/10.1103/PhysRevE.95.032145
https://doi.org/10.1103/PhysRevE.95.032145
https://doi.org/10.1103/PhysRevE.95.032145
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://doi.org/10.1103/RevModPhys.81.1703
https://doi.org/10.1103/RevModPhys.81.1703
https://doi.org/10.1103/RevModPhys.81.1703
https://doi.org/10.1103/RevModPhys.81.1703
https://doi.org/10.2307/2531822
https://doi.org/10.2307/2531822
https://doi.org/10.2307/2531822
https://doi.org/10.2307/2531822
https://doi.org/10.1103/PhysRevLett.73.2946
https://doi.org/10.1103/PhysRevLett.73.2946
https://doi.org/10.1103/PhysRevLett.73.2946
https://doi.org/10.1103/PhysRevLett.73.2946
https://doi.org/10.1103/PhysRevE.76.021111
https://doi.org/10.1103/PhysRevE.76.021111
https://doi.org/10.1103/PhysRevE.76.021111
https://doi.org/10.1103/PhysRevE.76.021111
https://doi.org/10.1143/PTP.110.875
https://doi.org/10.1143/PTP.110.875
https://doi.org/10.1143/PTP.110.875
https://doi.org/10.1143/PTP.110.875
https://doi.org/10.1103/PhysRevB.67.085406
https://doi.org/10.1103/PhysRevB.67.085406
https://doi.org/10.1103/PhysRevB.67.085406
https://doi.org/10.1103/PhysRevB.67.085406
https://doi.org/10.1007/s10867-008-9075-2
https://doi.org/10.1007/s10867-008-9075-2
https://doi.org/10.1007/s10867-008-9075-2
https://doi.org/10.1007/s10867-008-9075-2
https://doi.org/10.1016/S0378-4371(01)00461-7
https://doi.org/10.1016/S0378-4371(01)00461-7
https://doi.org/10.1016/S0378-4371(01)00461-7
https://doi.org/10.1016/S0378-4371(01)00461-7
https://doi.org/10.1103/PhysRevE.76.061121
https://doi.org/10.1103/PhysRevE.76.061121
https://doi.org/10.1103/PhysRevE.76.061121
https://doi.org/10.1103/PhysRevE.76.061121
https://doi.org/10.1038/nphys1936
https://doi.org/10.1038/nphys1936
https://doi.org/10.1038/nphys1936
https://doi.org/10.1038/nphys1936
https://doi.org/10.1103/PhysRevE.95.052102
https://doi.org/10.1103/PhysRevE.95.052102
https://doi.org/10.1103/PhysRevE.95.052102
https://doi.org/10.1103/PhysRevE.95.052102
https://doi.org/10.1016/j.physa.2008.12.071
https://doi.org/10.1016/j.physa.2008.12.071
https://doi.org/10.1016/j.physa.2008.12.071
https://doi.org/10.1016/j.physa.2008.12.071



