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An extension of the random sequential adsorption model has been proposed recently, motivated by the coverage
of oil droplets by DNA-functionalized colloidal particles. Particles arrive to a flat substrate with a uniform flux F

but they can only adsorb on patches. Patches diffuse on the substrate with a diffusion coefficient D if they are free
and they remain immobile when attached to an adsorbed particle. The adsorption is considered irreversible and
particles cannot adsorb on top of each other. Thus, the system reaches a jammed state, consisting of a monolayer
where no more particles can adsorb. We performed Monte Carlo simulations to study the adsorption kinetics
and jammed-state morphology on a one-dimensional lattice. We show that, while the time-dependence of the
coverage depends on F and D, the jammed-state coverage depends solely on the ratio F/D. This result is grasped
by a simple mean-field calculation. We also report two different regimes for the functional dependence of the
jammed-state coverage on the size of the particles, for low and high density of patches.
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I. INTRODUCTION

Surface adsorption has been a broadly researched topic over
the last decades [1–8]. For practitioners, particle adsorption on
substrates enables a wide range of applications ranging from
photonic crystals, to quantum dots, sensors, and encapsulation
[9–11]. Theoretically, understanding the kinetics of adsorption
poses fundamental challenges to non-equilibrium statistical
physics [12–14]. In the limit of irreversible adsorption, the
prototypical model is the Random Sequential Adsorption
(RSA) model, where adsorption is considered irreversible and
particle-particle interactions are excluded volume. Despite
being simple, RSA provides valuable information about the
adsorption kinetics and morphology of the final structure
[5,12,15].

Different extensions of RSA were proposed to study the
role of the particle size [16,17], particle shape [18–20], and
particle-particle correlations [12]. With experimental tech-
niques reaching smaller and smaller length scales comes the
possibility of engineering substrates featuring patterns in the
length scale of the particle size. This paved the way to new
experiments and theoretical studies on how to control the
morphology of the final structure, using patterns that interact
selectively with the particles [2,5,21–30]. So far, for simplicity,
these patterns were considered static.

Recently, an experimental protocol was proposed where
colloidal particles adsorb irreversibly on the surface of an oil
droplet, using DNA functionalization. The surface of the oil
droplet is covered with patches that diffuse on the surface
and act as landing sites for the DNA-functionalized colloidal
particles. By contrast to particles at interfaces, when the
coverage of the surface is mediated by the patches, the strong
capillary forces are suppressed. An extension of RSA was
proposed to help explaining the experimental results [11]. In
the model, particles of a certain size attempt adsorption on
a substrate with mobile patches. The particles only adsorb on

free patches and adsorption is irreversible. A free patch can find
a particle adsorbed previously and bind to it. Reference [11]
discusses how the number of adsorbed particles depends on
the particle flux and diffusion coefficient of free patches. Here,
we consider the one-dimensional (1D) version of this model.
We recover previous results and discuss the dependence of the
number of adsorbed particles on the other parameters of the
model.

The paper is organized as follows. The model is described
in Sec. II. In Sec. III, we study how the competition between
timescales affects the kinetics of adsorption and we develop a
mean-field calculation that sheds light on the numerical results.
We discuss also the morphology of the jammed state. Some
conclusions are drawn in Sec. IV.

II. MODEL

Figure 1 shows a schematic representation of the model,
first proposed in Ref. [11]. The substrate is described as a 1D
lattice with L sites. A fraction n0 of the sites is occupied by
patches of size one (blue squares). Free patches diffuse with a
diffusion coefficient D, defined as the rate at which each patch
hops to one of its two first neighbors. We consider a patch-patch
excluded volume interaction, i.e., a patch cannot move into an
occupied site [Fig. 1(a)].

Particles are discrete segments of size k, in units of lattice
sites (orange rectangles in Fig. 1). They arrive sequentially to
the substrate at random positions with a flux F , defined as the
rate of adsorption attempts per unit time and length. If a particle
attempts adsorption on a free patch and does not overlap
a previously adsorbed particle, the adsorption is successful,
forming a particle-patch complex [Figs. 1(b) and 1(c)] and
adsorption fails otherwise [Figs. 1(d) and 1(e)]. The particle-
patch complexes are immobile and the adsorption is irre-
versible, i.e., an adsorbed particle cannot detach from the patch.
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FIG. 1. Schematic representation of the model. (a) Patches (in blue) occupy one site and diffuse on the lattice when they are free. The
patch-patch interaction is excluded volume. Particles (in orange) can only adsorb on free patches (b), (c), and (d) and cannot overlap any
previously adsorbed particle (e). A free patch can diffuse underneath a previously adsorbed particle, binding to it (f).

For k = 1, the number of adsorbed particles per lattice site
saturates asymptotically at n0. Hereafter, we consider the non-
trivial case of k > 1. For k > 1, a free patch can diffuse and go
underneath a previously adsorbed particle, provided that it does
not overlap any other patch [Fig. 1(f)]. In this case, the patch
binds irreversibly to the adsorbed particle. The standard RSA
model is recovered in the limit where all sites are occupied by
patches (n0 = 1).

We performed kinetic Monte Carlo simulations considering
two processes: adsorption attempts at a rate F and free-patch
diffusion at a rate D. To explore the time-dependent kinetics,
time needs to be incremented properly, i.e., every time a
process occurs. We are dealing with processes (adsorption and
diffusion) that are uncorrelated in time and space (Poisson
processes). Let us define P (�t ) as the probability that no
process occurs in the interval �t after the previous process.
The probability of having a process in the infinitesimal interval
dt is Rdt , where R is the total rate, obtained from

R = nF F + nDD, (1)

where nF and nD are the number of possible adsorption and
diffusion processes, respectively. The probability that the next
process occurs in the interval [�t,�t + dt] is P (�t )Rdt ,
and so

P (�t + dt ) = P (�t ) − P (�t )Rdt. (2)

Thus,

�t = −(nF F + nDD)−1 log(r ), (3)
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FIG. 2. Time-dependence of the coverage for (F,D) = {(1, 1),
(3, 3), (10, 2), (5, 1)} and n0 = 0.1. Results are averages over 104

samples of a 1D lattice with L = 106 sites.

where r is a random number distributed uniformly in the range
[0, 1]. We performed simulations on a lattice of length L = 106

and results are averaged over 104 samples. We considered also
other system sizes and concluded that, for the considered value
of L, finite-size effects are negligible.

III. RESULTS

We first study the case of dimers (k = 2) and then proceed
to analyzing the effect of the particle size, considering k-mers
(k > 2). We also discuss the dependence on the initial density
of patches.

A. Adsorption of dimers

The adsorption is irreversible and particles can only adsorb
on patches. We define coverage as θ = kN/L, where N is
the number of adsorbed particles. The coverage is expected
to monotonically increase until it saturates for the jammed
state, where no more particles can adsorb. In the jammed state
there might be some free patches, but they are trapped inside
gaps that are smaller than the particle size and, therefore, no
particle can adsorb on them. We define θj as the jammed-state
coverage.

For very low density of patches (n0), the average distance
between patches is such that the adsorption on different patches
can be decoupled. In such limit, there will be only one particle
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FIG. 3. Jammed-state coverage as a function of (a) D for F =
{2, 5, 10} and n0 = 0.1, represented as circles, triangles, and squares,
respectively; (b) F for D = {1, 2, 3} and n0 = 0.1, represented as
pentagons, rhombus, and inverted triangles, respectively; and (c) F/D

for three values of F and D, considered in (a) and (b). Results are
averages over 104 samples of a 1D lattice with L = 106 sites.
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FIG. 4. Jammed-state coverage per patch as a function of n0 for
differentF/D. As n0 increases, θj /n0 converges to the RSA of dimers,
θj (n0 = 1) = 1 − e−2 [31]. Results are averages over 104 samples of
a 1D lattice with L = 106 sites.

per patch in the jammed state and, thus, θj = kn0. This value
sets also an upper bound for the coverage, as it is not possible
to have more particles adsorbed than patches.

Figure 2 shows the time evolution for the coverage, for
different values of the flux F and diffusion coefficient D.
The coverage initially increases and saturates asymptotically
at θ = θj . The kinetics evolves as a competition between two
mechanisms: adsorption on and diffusion of free patches. The
former occurs with an inter-arrival time τF ∝ 1/F and the
latter occurs in a timescale τD ∝ 1/D. If τD � τF , diffusion
is much faster than adsorption and thus, in between adsorption
events, patches typically have enough time to diffuse and
go underneath particles that adsorbed previously [Fig. 1(f)].
When τD � τF , diffusion can be neglected and the coverage
is maximized. Thus, for constant F , the jammed-state coverage
θj decays with D, as shown in Fig. 3(a). In the same way, θj

increases with F for constant D [see Fig. 3(b)]. Numerically,
a data collapse is obtained when the jammed-state coverage
is plotted as a function of F/D, as shown in Fig. 3(c). Note
that, while the jammed-state coverage solely depends on F/D,
the kinetics towards the jammed state depends on F and D

independently (see Fig. 2).
The kinetics also depends on the concentration of patches

n0. To go underneath a previously adsorbed particle [Fig. 1(f)],
a free patch needs to diffuse over a distance that corresponds
to the average separation between particles. The lower the
value of n0 the larger is that distance. Thus, the number of
particles per patch in the jammed state, given by θj /n0, decays
monotonically with n0, as shown in Fig. 4 for different ratios
of F/D. For n0 = 1, every site is occupied by a patch and
the results for standard RSA are recovered, independently
of F/D.

To characterize the morphology of the jammed state, we
measured the gap-size distribution function (Vm), defined as
the probability of finding a sequence of m sites not occupied
by particles (gap) in between two particles. Figure 5 shows Vm

for different n0. For RSA (n0 = 1), all gaps are smaller than
the particle size. However, this is not the case for n0 < 1. In
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FIG. 5. Gap-size distribution function at the jammed state for
n0 = {0.1, 0.5, 0.7, 1.0} (semi-log plot in the inset). In the inset, the
three curves are given byVm = n0(1 − n0)m withn0 = {0.1, 0.5, 0.7}.
Results are averages over 104 samples of a 1D lattice with L = 106

sites.

this case, gaps of size m > k are possible, provided that there
is no free patch inside the gap.

The probability of finding a gapm > k decays exponentially
with m (Fig. 5). This can be explained as follows. For simplic-
ity, let us consider the adsorption of monomers. There will be
one adsorption per patch and no particle-particle correlations.
Thus, the jammed state consists of a lattice with a fraction
n0 of sites occupied at random. The gap-size distribution
function is then Vm = n2

0(1 − n0)m. Since (1 − n0) < 1, Vm

decays exponentially with m. By fitting the data in the inset
of Fig. 5, for m > k, with a function f (m) = a.bm, we obtain
b ≈ 1 − n0, in line with the predicted Vm.

B. Mean-field approach

Let us now consider a mean-field approach, based on
rate equations. We consider a uniform distribution of patches
and neglect particle-particle correlations. We define ρr and
ρp as the density of free patches and adsorbed particles,
respectively. Initially,ρr (0) = n0 andρp(0) = 0. The coverage
at every time is given by θ (t ) = kρp(t ), where k is the particle
size.

The kinetics can be described by the following rate equa-
tions:

ρ̇r (t ) = −Fρr − Dρpρr,
(4)

ρ̇p(t ) = Fρr,

where F and D are monotonically increasing functions of the
flux F and the diffusion coefficient D, respectively. In the first
equation, the first term on the right-hand side corresponds
to the adsorption of particles on free patches [Figs. 1(b)
and 1(c)]. The second term is related to free patches going
underneath previously adsorbed particles [Fig. 1(f)]. In the
second equation, the density of particles is only affected by
adsorption events (gain term).
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This system of equations can be solved exactly for the considered boundary conditions,

ρr (t ) = F + 2Dn0

D + D cosh

[√
F (F + 2Dn0)t + 2 arctanh

(√
F

F+2Dn0

)] , (5)

ρp(t ) =

√
2FDn0 + F

2
tanh

{
1
2

[
2 arctanh

( √
F√

F+2Dn0

)
+

√
F

√
2Dn0 + F t

]}
− F

D
. (6)

The jammed state can be obtained taking the asymptotic limit
of Eqs. (5) and (6),

ρr (∞) = 0 , (7)

and

ρp(∞) =
√

F/D

√
2n0 + F/D − F/D . (8)

Equation (8) predicts that the jammed-state coverage depends
only on F/D, although for the time evolution, given by Eq. (6),
this rescaling is not possible. This is consistent with what was
observed numerically (see Figs. 2 and 3).

C. Adsorption of k-mers

We now consider the effect of the particle size. Figure 6
shows the jammed-state coverage as a function of the particle
size (k) for different n0. For RSA, the coverage monoton-
ically decreases with the particle size. For larger particles,
the gaps where no more particles can adsorb are also large.
Consequently, the average gap size will always increase with
the particle size. By contrast, for the model considered here,
we find a range of parameters where the coverage increases
with k.

To shed light on the increase of the coverage with k,
observed for low values of n0, we consider the dependence on
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FIG. 6. Jammed-state coverage as a function of the particle
size for different initial density of patches, n0 = {0.1, 0.3, 0.7, 1.0}
(symbols as in Fig. 5) and F = D = 1. The inset shows the probability
of finding gaps larger than the particle size, Vm>k , for different k. For
high values of k, the system converges to the continuum limit of
RSA (dashed line, θj = 0.747597) [32]. Results are averages over
104 samples of a 1D lattice with L = 106 sites.

k of the average gap size, defined as V = ∑∞
m=0 mVm (Fig. 7).

For large values of k all curves converge to the one expected
for RSA (n0 = 1). While, for large values of n0 the average gap
size increases with k, for n0 = 0.1 and 0.3, we find an optimal
value of k = k∗ at which the average gap size is minimized.
For k � l, where l = 1/n0 is the average distance between
free patches, adsorption on different patches can be decoupled
and the average number of adsorbed particles converges to
the number of patches. In this regime, the distance between
adsorbed particles is expected to decrease with k. Thus, k∗
sets the size above which the particle-particle correlations
developed during the adsorption process become relevant.
Accordingly, k∗ scales linearly with 1/n0, as shown in the
inset of Fig. 7. The inset in Fig. 6 shows that the probability
of finding gaps larger than the particle size decreases with k.
As a consequence, when k increases, patches are more likely
to be trapped in a gap smaller than k and patches also need to
diffuse over a smaller distance to bind to a particle adsorbed
previously. Thus, as Vm>k goes to zero, the kinetics converges
to RSA.

To measure the crossover between our model and RSA as
a function of F/D, we introduce a new parameter n∗

0. n∗
0 is

defined as the minimum value of n0 for which the jammed-state
coverage decreases with k. As shown in Fig. 8, n∗

0 decays with
F/D.
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FIG. 7. Average gap size as a function of the particle size. Sym-
bols correspond to n0 = {0.1, 0.3, 0.7, 1.0} (symbols as in Fig. 5). In
the inset is the value of k corresponding to the minimum as a function
of 1/n0. Results are averages over 104 samples of a 1D lattice with
L = 106 sites.
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sites.

As n0 increases, Vm>k converges to zero. For small values
of F/D, patches are more likely to find particles adsorbed
previously before the next adsorption attempt. This favors
the formation of gaps larger than k, as shown in the inset of
Fig. 8. As F/D increases, more adsorption events occur and
the typical distance between particles is decreased. Thus n∗

0
decreases.

At the jammed state, some patches can still be free if they
are trapped inside gaps smaller than the particle size. The
probability of finding n free patches in a gap of size m follows
a given probability distribution function (PDF) that depends
on n0, k, and F/D. Let us first consider the limit when the
diffusion of the free patches is negligible (D → 0). In the inset
of Fig. 9, we show some PDFs obtained for different values of
n0 and k. For all of them, the PDFs are well described by the
binomial distribution (solid lines). This is due to the fact that
the patches are distributed randomly on the lattice, thus they
occupy a site with probability n0.

For D > 0 (main plot of Fig. 9), free patches can go
underneath pre-adsorbed particles. Thus, the PDF deviates
from the binomial distribution. To account for this, we first
define B(n,m) as the PDF of having n free patches within
a gap of size m. If Pb is the probability that a patch goes
underneath a previously adsorbed particle, then B(n,m) is
given by

B(n,m) = [1 − PbH (n − 1) − Pb2H (n − 2)]B(n,m)

+PbH (n)B(n + 1,m)

+Pb2H (n + 1)B(n + 2,m), (9)

where B(n,m) is the binomial distribution. H (x) is the
Heaviside step function, as gaps with n < 2 can only lose
either one patch (n = 1) or none (n = 0). Note that there is
no dependency on the particle size k, since for any particle
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FIG. 9. Probability distribution function of having n free patches
in a gap of size m = 8. The points in full correspond to n0 = 0.3
and the points that are empty correspond to n0 = 0.7. The circles
correspond to k = 10 and the triangles to k = 30. In black are the
probability distributions for n0 = 0.3, 0.7. In the inset, the black
points correspond to the binomial distribution and in the larger plot
correspond to the distribution given by Eq. (9).

size only at most two patches can bind to it. The solid lines in
the main plot of Fig. 9 are given by Eq. (9), fitted by a single
parameter Pb. We find a good qualitative and quantitative
agreement between the two.

IV. CONCLUSIONS

We studied an extension of the Random Sequential Adsorp-
tion model (RSA), where particles can only adsorb on mobile
patches. We found that, while the dynamics depends on the
flux of particles F and diffusion coefficient of the patches D,
the jammed-state coverage solely depends on the ratio between
the two. Supported by a mean-field calculation, we proposed
that this feature results from the competition between two time
scales: one related to adsorption and the other to diffusion.
We revealed also a change in the functional dependence of
the jammed-state coverage as a function of the particle size,
depending on the density of patches.

Our results provide valuable information for practition-
ers, as they show how does the final coverage and mor-
phology of the jammed state depends on the different
parameters.

Future studies might consider the effect of particle size
dispersion or dimensionality of the substrate. For simplicity,
we described patches as monomers. For larger patch sizes,
more than one particle can adsorb on the same patch forming
an aggregate. How does the size of the aggregates depend on
the size of the particles and of the patches are questions of
practical interest.
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