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A one-dimensional linear autonomous system coupled to a generic stationary nonequilibrium fluctuating bath
can exhibit resonant response when its damped oscillation period matches some characteristic bath’s relaxation
time. This condition justifies invoking the stochastic resonance paradigm, even if it can be achieved more easily
by tuning the system to the bath and not vice versa, as is usually the case. The simple nature of the mechanism
numerically investigated here suggests a number of interesting applications for instance in the context of
(1) energy harvesting from random ambient vibrations, (2) activated barrier crossing through a saddle point,
or (3) an unstable limit cycle.
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I. INTRODUCTION

Stochastic resonance (SR) is a well-established paradigm
in many fields of natural sciences from nanothechnology to
climatology and biology [1–5]. In a broad sense, it denotes
the nonmonotonic dependence of the output signal, or some
function of it (like moments and signal-to-noise ratios), on
the intensity of noise(s) acting on the system. This definition
applies quite generally to the diverse mechanisms invoked to
explain the otherwise nonuniversal SR phenomenon.

Initially, SR was proposed as a cooperative effect of noise
and periodic forcing acting upon a Brownian particle confined
by a bistable potential. In this context, increasing the noise
correlation time was observed to degrade the SR signal [6]
almost monotonically [7]. Later the SR notion was generalized
to encompass autonomous nonlinear systems [8–10], so that
external periodic drives were no longer a required ingredient.
Recently two more remarkable SR mechanisms have been
observed. Burada et al. [11], pointed out that, contrary to
previous studies, in higher dimensional setups SR manifests
itself even in the presence of purely entropic barriers associated
with spatial constrictions. Ghosh et al. [12] further extended
this result to demonstrate SR as a mere geometric effect.

Despite several attempts to the contrary [13], SR is currently
regarded as an eminently nonlinear phenomenon. It is true
that periodically forced harmonic oscillators subjected to a
multiplicative noise do exhibit SR, in both the overdamped
[14] and underdamped [15] regimes. However, as anticipated
in Ref. [16], multiplicative noise generates an effective barrier
that opposes the particle diffusion inside the well, so that the
resulting dynamics is effectively nonlinear.

As reiterated by most authors [1], SR is not a resonance in
the dynamical sense: Its magnitude cannot be maximized by
simply tuning the driving frequency to some system’s natural
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frequency at constant noise level; the periodic component of
the system’s response can be optimized only by tuning the
noise strength.

In this paper we show that an autonomous SR mechanism
can occur also in an underdamped harmonic oscillator driven
by an exponentially time-correlated noise. In Sec. II we
show that the output of the system attains a maximum as
the damped oscillator’s period matches the noise correlation
time. Such a manifestation of SR carries a closer resemblance
to standard dynamical resonance, a similarity corroborated
by its disappearance in the overdamped regime, when au-
tonomous oscillations are suppressed. Despite its simplicity,
the model analyzed here lends itself to a number of interest-
ing applications. In particular, it can be easily extended to
model microelectromechanical systems (MEMS) for energy
harvesting from random environments (Sec. IIIA), to calculate
the activation rates through barrier saddle points (Sec. III B),
and to describe barrier crossing processes through unstable
limiting cycles (Sec. III C). In the concluding remarks of Sec.
IV we mention the possibility of generalizing our approach to
nonlinear devices or different nonequilibrium noise sources.

II. THE MODEL

Let us consider a Brownian particle of unit mass trapped
in a one-dimensional harmonic potential, U (q ) = ω2

0q
2/2, of

angular frequency ω0. Its motion obeys the Langevin equation
(LE)

q̈ = −U ′(q ) − γ q̇ + η(t ), (1)

where the last two terms on the right-hand side model a minimal
coupling between the particle and a stationary nonequilibrium
environment. Such a coupling consists of a viscous force with
damping constant γ and a stationary time-correlated Gaussian
noise with zero mean value, 〈η(t )〉 = 0, and autocorrelation
function (a.c.f.) Sηη(t ) := 〈η(t )η(0)〉 = (D/τ )e−|t |/τ . For the
sake of generality, we assume that the noise intensity, D, is
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FIG. 1. Autonomous SR characterization: (a) q(t ) variance, σ 2
qq and (b) power spectral density at resonance, Ŝqq (ωd ), (b) plotted vs τ for

γ = 0.1, n = 1 and two values of ω0. For a comparison we plotted σ 2
qq vs τ also for (c) different γ , n = 1 and two ω0, and (d) different n,

ω0 = 1 and γ = 0.1. The remaining parameters of Eq. (3) are c0 = 0.25 and τ0 = 1. Vertical dashed lines represent the predicted optimal value,
τc (see text).

some function of the correlation time, D(τ ), so that, contrary
to the standard parametrization [7], the limit τ → 0 does not
necessarily correspond to an equilibrium thermal noise. Here
and in the following primes and overdots are shorthand for
d/dq and d/dt , respectively.

The Ornstein-Uhlenbeck process η(t ) can be easily rewrit-
ten in terms of a zero-mean valued, delta-correlated Gaus-
sian noise ξ (t ): η̇ = −η/τ + √

D ξ (t )/τ , with Sξξ (t ) :=
〈ξ (t )ξ (0)〉 = 2δ(t ). Regarding ξ (t ) and q(t ), respectively,
as the input and output signals, the corresponding system’s
square transfer function, H 2

qξ , can be calculated as the linear

mapping of the Fourier transform of the input a.c.f., Ŝξξ (ω) :=
FT{Sξξ (t )} = 2, to the Fourier transform of the output a.c.f.,
Ŝqq (ω) := FT{Sqq (t )}, with Sqq (t ) := 〈q(t )q(0)〉:

H 2
qξ = H 2

qηH
2
ηξ = 1(

ω2
0 − ω2

)2 + ω2γ 2

D

1 + ω2τ 2
. (2)

The two factors in the rightmost term of the above equation
are the square transfer function, respectively, between the white
and the colored noise, H 2

ηξ (ω) := Ŝηη(ω)/Ŝξξ (ω), and between

η(t ) and q(t ), H 2
qη(ω) := Ŝqq (ω)/Ŝηη(ω).

The response of the damped stochastic oscillator of Eq. (1)
has a maximum in correspondence with a peak, if any, of
H 2

qξ . On assuming for the time being that H 2
ηξ decays more

slowly than H 2
qη, which is the case for γ τ � 1, we locate the

dynamical resonance of q(t ) in the vicinity of the maximum
of H 2

qη, that is for ω � ωd , with ωd = ω0

√
1 − (γ /2ω0)2 (for

details see Appendix A). Of course, this condition holds only
for moderate damping, γ <

√
2ω0. The resonance amplitude,

H 2
qξ (ωd ), is thus approximately factorized as H 2

qη(ωd )[D/(1 +
ω2

dτ
2)], with H 2

qη(ωd ) = 1/[γ 2(ω2
d + γ 2/16)].

However, the amplitude H 2
qξ (ωd ) clearly depends on the

correlation time and, therefore, on our choice of D as a function
of τ . A quite general choice for D(τ ) is

D(τ ) = c0(τ/τ0)n, (3)

where c0 is a heat-bath coupling constant and τ0 an appropriate
reference timescale. Thus the response of q(t ) is optimal when
H 2

qξ (ωd ) as a function of τ is maximum, that is, for τ = τc, with

τc =
√

n

2 − n

1

ωd

. (4)

Here τc is defined only for 0 < n < 2 and, therefore, certainly
not in the regime of constant D, n = 0, investigated in
Refs. [6,7].

The optimal condition of Eq. (4) describes the situation
when the power spectral density of the ambient fluctuations,
Sηη(ω) = 2D(τ )/(1 + ω2τ 2), is the largest at the dynamical
resonance frequency, ωd : This ensures an optimal energy
transfer from the environment to the oscillator.

Numerical results

We numerically simulated the LE (1) [17] for different
values of the dynamical parameters, ω0 and γ , and of the
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noise parameters, τ and n. In Fig. 1 we plot our numerical
data for the oscillator variance, σ 2

qq := Sqq (0) = 〈q2〉 (for the
analytical expression of it see Appendix A), and the peak value
of its power spectral density, Ŝqq (ωd ). We notice immediately
that at relatively low damping the positions of the maxima of
σ 2

qq [Fig. 1(a)] and Ŝqq (ωd ) [Fig. 1(b)] versus τ agree quite
closely with the analytical estimate, τ � τc, of Eq. (4). Such a
coincidence was expected due to the fact that, for the value of
γ adopted in Figs. 1(a) and 1(b), the half-width of H 2

qη(ω) at
ω � ωd is quite narrow, �ωd = (ωd/2ω0)γ .

The resonance phenomenon emerging from Fig. 1 can be
regarded as an instance of autonomous SR in its own right.
Indeed, in contrast with the current literature [1], it signals the
matching between an intrinsic deterministic timescale of the
system and a correlation time of the ambient fluctuations.

We discuss now in more detail the dependence of this new
SR on the model parameters.

(1) ωd dependence: Both σ 2
qq and Ŝqq (ωd ) decrease mono-

tonically with increasing the frequency of the dynamical res-
onance, ωd ; consistently with Eq. (4), the optimal correlation
time, τc, shifts to lower values, as is apparent in Figs. 1(a) and
1(b).

(2) n dependence: From our derivation of τc, it is apparent
that the SR peak, Ŝqq (ωd ), depends on the exponent n intro-
duced in Eq. (3). This parameter characterizes the microscopic
dynamics of the fluctuating bath coupled to the oscillator and
is, therefore, hardly tunable. Nevertheless, it is interesting to
notice that the SR mechanism investigated here is predicted
to be the weakest for nmin = 2ω2

dτ
2
0 /(1 + ω2

dτ
2
0 ). This effect is

illustrated in Fig. 1(d), where the lowest SR peak occurs indeed
for n � nmin and is centered around τ � τ0, as expected from
Eq. (4). For simplicity, in the following we adopted n = 1, i.e.,
constant η variance.

(3) γ dependence: In Fig. 1(c) we plotted σ 2
qq versus τ

for different values of the damping constant. On increasing γ

the SR peak is gradually suppressed until it totally disappears
in the overdamped regime. This property is consistent with
our interpretation of the SR mechanism at work here. Indeed,
for γ >

√
2ω0 the square transfer function H 2

qη(ω) exhibits
resonant behavior.

On a closer inspection, one notices that increasing γ also
makes the SR peak of σ 2

qq in Fig. 1(c) shift to higher τ values
faster than predicted by Eq. (4). The shift itself is no surprise:
indeed, being ωd is a decreasing function of γ , our analytical
expression for τc increases with increasing γ . Corrections to
the approximate factorization argument introduced to estimate
τc are negligible as long as γ τ � 1, as in Figs. 1(a) and 1(b).
However, the width of the resonance peak of H 2

qη in Eq. (2)
is proportional to γ and, thus, cannot be neglected in the
intermediate damping regime. As a consequence, all spectral

frequencies in the interval |ω − ωd | � �ωd contribute to the
variance of q(t ). This suggests replacing τc of Eq. (4) with
its average taken over such a frequency interval: τ̄c = τc/[1 −
(�ωd/ωd )2] = τc/[1 − (γ /2ω0)2]. With this correction, the
SR condition of Eq. (4) works well over the entire range
0 < γ <

√
2.

III. APPLICATIONS

Autonomous SR results from the interplay of two basic
memory effects: inertia (mechanical memory) and noise
autocorrelation (environmental memory). Moreover, we
restricted our analysis to a linear model, which allowed a fully
analytical solution of the model equations (see Appendix A).
For these reasons it is no surprise that the results of Sec. II
can apply, to a different degree of approximation, to many
different physical systems.

A. Harvesting mechanical energy from ambient fluctuations

The highly idealized model considered sofar could be easily
implemented by means of especially designed electronic or
optical devices to serve as analog simulators of the LE (1)
[1]. A more interesting application is suggested by the micro-
electromechanical system (MEMS) prototyped by the authors
of Ref. [18] with the ultimate goal of harvesting mechanical
energy from ambient fluctuations and/or vibrations. They
realized an autonomous piezoelectric oscillator with tunable
mechanical parameters. The electrical output of such device at
constant noise level turned out to be optimal for an appropriate
bistable (i.e., nonlinear) configuration of its components. We
suppose here to operate the very same MEMS in its (far from
optimal) linear configuration, but, at the same time, to control
the correlation time of the random noise source coupled to it.
In our notation, the device is governed by the equations [18]

q̈ = −ω2
0q − γ q̇ − kvV + η(t ),

V̇ = kcq̇ − V/τp, (5)

where kv and kc are piezoelectric parameters [19], V (t ) is
the voltage output, and τp = RC is the characteristic time of
a signal pickup RC circuit. Following Ref. [18], we further
assume constant noise variance 〈η2〉 = D(τ )/τ = c0, i.e.,
n = 1 in Eq. (3). Our analysis of the model LE (1) can be
easily extended to the linear system of Eqs. (5). The Fourier
transforms (FTs) of Eqs. (5) read

q̂

[
−ω2 + ω2

0 + iωγ + iωkckv

iω 1
τp

]
= η̂, (6)

V̂ = iωkcx̂

iω + 1
τp

, (7)

hence the FT of the voltage auto-correlation function,

CV (ω) =
ω2(ω2 + 1

τ 2
p

)k2
c Ŝηη(ω)[(

ω2
0 − ω2

)(
ω2 + 1

τ 2
p

) + kckvω2
]2

+ ω2
[
γ
(
ω2 + 1

τp

) + kckv

τp

]2 , (8)

the spectral function Sηη(ω) being given in Sec. II. Upon integrating CV (ω) with respect to ω, we obtain the voltage stationary
variance,

〈V 2〉s = 2D

π

∫ +∞

0

ω2
(
ω2 + 1

τ 2
p

)
k2
c

1 + ω2τ 2

dω[(
ω2

0 − ω2
)(

ω2 + 1
τ 2
p

) + kckvω2
]2

+ ω2
[
γ
(
ω2 + 1

τp

) + kckv

τp

]2 . (9)
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FIG. 2. Output power, P , vs τ , for the MEMS of Ref. [18]
operated at resonance in the linear regime: simulation data points
(symbols) from Eqs. (5) vs analytical predictions (curves) for different
γ . Vertical dashed lines are the predicted optimal values, τc. The
remaining model parameters are c0 = 0.25, n = 1, τ0 = 1, kc = kv =
1.0, τp = 2, R = 1, and ω0 = 2, all expressed in arbitrary units.

Using the above equation the resonant output power of the
MEMS is measured by the quantity

P = 〈V 2〉s
RL

= 2D

π

(
kc

τp

)2 ∫ ∞

0

1 + ω2τ 2
p

1 + ω2τ 2

ω2dω

h(ω)
, (10)

where h0 = [(ω2
0 − ω2)(ω2 + 1/τ 2

p ) + kckvω
2]2 +

ω2[γ (ω2 + 1/τp ) + kckv/τp]2. The output power, P , is
plotted in Fig. 2 as a function of the noise correlation time for
the low and high damping constant in the operating regime,
ω0τp 
 1, of Ref. [18]. The analytical curves fit well the
data points obtained by numerically integrating Eqs. (5).
Both numerical curves exhibit prominent SR peaks centered
around an optimal value, τc � 1/

√
ω2

0+kckv. We expect this
SR behavior to be soon experimentally validated also by
measurement on real MEMSs.

B. Rate of barrier crossing through a saddle point

As a further application, we now explore the effects of
autonomous SR in the barrier crossing problem [20]. To this
purpose in Eq. (1) we used a bistable potential, U (q ) =
aq4 − bq2, with symmetric minima (wells) at q± = ±√

b/2a,
separated by an energy barrier, �U = b2/4a, centered at
the origin. Following Refs. [21,22], we have calculated the
approximate barrier crossing rate,

k = ω±
2π

[
κφs

s(κφs + γ )

] 1
2

exp

[
−γ�U

sφs

]
, (11)

where κ = λ0/(φs + εψs ), ε = −(γ +√
γ 2+4ω2

b )/2s s=1+γψs/φs ,
and λ0 = −ω2

b/εs. Here ω2
b = 2b and ω2

± = 4b denote the
absolute values of U ′′(q ), respectively, at the barrier top
and the well bottoms. The quantities φs and ψs are the
stationary values of the auxiliary variables φ(t ) = ω2

±σ 2
qq̇ +

γ σ 2
q̇q̇ + 1

2 σ̇ 2
q̇q̇ and ψ (t ) = ω2

±σ 2
qq + γ σ 2

qq̇ + σ̇ 2
qq̇ − σ 2

q̇q̇ , where

the cross-correlations σ 2
i,j , with i, j = q, q̇, have been calcu-

lated around the potential minima in Gaussian approximation
(for details see Appendix B).

To check the validity of our estimate for k, we have
numerically simulated the barrier crossing process for a time-
correlated noise, η(t ), of strength also given by Eq. (3) with
n = 1. In Fig. 3(a), the crossing rate is plotted versus the
noise correlation time. The agreement between the analytical
prediction of Eq. (11) and the numerical data is quite good.
The nonmonotonic behavior of k(τ ) is a clear-cut signature of
autonomous SR. This conclusion is supported by the plots of
Fig. 3(b), which show how the effective activation energy of
the process is itself a nonmonotonic function of τ . Another
property peculiar to autonomous SR is apparent in Fig. 3(a).
As already noticed in Fig. 1(c), the SR peak of the curve k(τ )
gets suppressed at relatively high damping. Condition for the
rate constant to exhibit autonomous SR, is that the motion
around the potential minima executes damped oscillations. Of
course, for D constant, i.e., n = 0 in Eq. (3), one recovers the
well-known Kramers’ problem in the presence of colored noise
[23,24].

We stress that the SR mechanism for barrier crossing
illustrated in Fig. 3(a) is quite distinct from the well-known
resonant activation over a fluctuating barrier [25] in that here
resonance does not involve a fluctuating barrier [26], but rather
noise activation in the potential wells.

C. Rate of barrier crossing through an unstable limit cycle

As a final example of autonomous SR we investigated a
variation of the van der Pol equation [27] with colored additive
noise, η(t ), of strength D(τ ),

q̈ = −ω2
0q − γ q̇(1 − μ2q̇2) + η(t ), (12)

recently employed to model escape processes through an
unstable limit cycle [28]. In sharp contrast with Kramers’
mechanism [3], these processes do not rely on noise activation
from a stable state to some unstable saddle point in the (free)
energy landscape, but rather on the dynamical switch between
a stable attractor and an unstable limit cycle. Escape processes
of this class have been advocated in biology, chemistry, and
physics to interpret a variety of phenomena far from equilib-
rium [28,29]. In the noiseless limit, η(t ) ≡ 0, Eq. (12) has a
fixed point, q = q̇ = 0 independent of μ. Note that for μ = 0
Eq. (12) is the same as Eq. (1) with U (q ) = ω2

0q
2/2. However,

in the presence of a negative damping term, μ > 0, the fixed
point is enclosed by an unstable limit cycle. The interplay of the
potential and the negative damping thus produces a dynamical
barrier, which the Brownian particle of coordinate q(t ) must
overcome to escape from the attractor. Having set to zero the
particle’s energy at the fixed point, the escape activation energy
is the sum of the kinetic and potential energy of the particle
on the limit cycle (a key difference with saddle-point escape).
Moreover, the particle can leave the attractor through any point
of the manifold in the phase space (q, q̇ ) associated with the
unstable limit cycle.

After rescaling Eq. (12) for μ = 1, we numerically com-
puted the escape rate k(τ ) as the reciprocal of the first diffusion
time of the Brownian particle in phase space between the
origin, (0,0), and any point (q,±2). An approximate rate could
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FIG. 3. Saddle-point crossing rates: (a) k(τ ), in a bistable potential, U (q ): numerical data (symbols) vs analytical predictions, Eq. (11)
(curves); (b) σ 2

qq vs τ in a harmonic well with the same frequency, ω2
b = 2b, as the bistable wells of U (q ). The parameter values are c0 = 0.25,

τ0 = 1, n = 1, a = 0.25, while b and γ are given in the legends. Limit-cycle crossing rates: (c) k(τ ) (see text) for the nonlinear system of
Eq. (12) with μ = 1, ω0 = 1, and noise parameters c0 = 0.05, τ0 = 1, and n = 1. Vertical dashed lines represent the predicted resonance value
of Eq. (4).

be calculated only analytically [30]. However, the numerical
curves for k(τ ) in Fig. 3(c) clearly exhibit autonomous SR
for τ � τc. Once again, the resonant dynamics is triggered by
the optimal growth of σ 2

qq at the fixed point [compare with
the curves in Fig. 3(c)], as energy is being pumped in from the
fluctuating environment.

Before leaving this subsection we note that an approximate
barrier crossing rate can be calculated for the present problem
in the following way. The easy escape path occurs when both
the recovering and the nonlinear damping force are vanishingly
small, namely, for q � 0 and q̇ � ±1/μ. An example of escape
trajectory is shown in Fig. 4 forμ = 1; under this circumstance,
the particle most likely escapes the stable attractor through
either phase-space point (0,1) or (0,−1). As mentioned above,
the corresponding activation energy is Ea � q̇2/2, the Boltz-

mann factor for either escape state being e
− Ea

〈q̇2〉 . On assuming

FIG. 4. Example of trajectory escaping through the unstable limit
cycle of Eq. (8). The simulation parameter are c0 = 0.05, τ = τ0 =
n = 1, γ = 0.1, μ = ω0 = 1.

that the crossing attack rate coincides with the frequency of
the damped oscillations in the basin of the stable attractor, one
can approximate the escape rate, k(τ ), as

k(τ ) = ωd

2π
e
− Ea

〈q̇2〉 . (13)

Here ωd and 〈q̇2〉 are the angular frequency and the mean
square velocity of the particle’s damped oscillations given re-
spectively in Eqs. (A5) and (B2) in the Appendices. Moreover,
we have defined the escape time, τesc, as the time required
by the particle placed at the origin (0,0) of its phase space to
reach either escape point for the first time, hence k = 2/〈τesc〉.
To check the validity of our calculations we have compared the
analytical results with the numerical data in Fig. 5. One may
notice that Eq. (13) appears to underestimate the numerical
data: this is a consequence of the nonlinear nature of the
damping force, which would require a more refined analytical

FIG. 5. Rate of escape k(τ ) through the unstable limit cycle of
Eq. (8) for c0 = 0.05, τ0 = n = 1, γ = 0.1, μ = 1, and different ω0,
theory vs simulation.
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treatment. However, the locations of the k(τ ) maxima are well
predicted by the resonance condition of Eq. (4).

IV. CONCLUSION

While we restricted our analysis mostly to analytically
manageable linear oscillators, autonomous SR is detectable
in a wide category of nonlinear devices coupled to a generic
time-correlated heat bath, including the nonlinear MEMS of
Ref. [18]. For an underdamped system, the transfer function
exhibits one or more peaks of finite width in correspondence
with its dynamic resonance frequencies; as the noise’s relax-
ation rate (i.e., the reciprocal of its correlation time) happens
to fall within one such resonance peak, the ensuing energy
flow from the bath to the system will enhance the device’s
response. In this regard we expect that autonomous SR is a
common occurrence in many areas of natural sciences.
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APPENDIX A: SOLUTION OF THE LANGEVIN EQ. (1)

Our starting LE, Eq. (1), for the harmonic oscillator is linear
and therefore analytically integrable. Its solution for q(t ) is

q(t ) = q(0)χq (t ) + q̇(0)χ (t ) +
∫ t

0
χ (t ′)η(t ′) dt ′, (A1)

where

χq (t ) = 1 − ω2
0

∫ t

0
χ (t ′) dt ′, (A2)

and χ (t ) in the Laplace inverse of

χ̃ (s) = 1

s2 + sγ + ω2
0

, (A3)

namely,

χ (t ) = 1

ωd

sin(ωdt ) exp

(
−γ t

2

)
, (A4)

with

ωd =
√

−γ 2

4
+ ω2

0. (A5)

On making use of Eq. (A1), the variance of q(t ) follows
suit,

σ 2
qq = 〈[q(t ) − 〈q(t )〉]2〉

=
∫ t

0
χ (t − t1) dt1

∫ t

0
χ (t − t2)〈η(t1)η(t2)〉 dt2

= D

τω2

[(
−C

A
+ F

B

)
I1 +

(
−ω2

A2
C + ω′

0

B2
F

)
I2

]
+ D

τω2

[
ω2

A2
CFI3 − 1

B
CFI4 − ω

B2
CFI5

]
, (A6)

where

I1 = γ 2

γ 2 + 4ω2
d

[
−4ω2

0

2γ 3
exp(−γ t ) + 1

2γ
exp(−γ t ) cos(2ωdt ) + 2ω2

d

γ 3
+ ωd

γ 2
exp(−γ t ) sin(2ωdt )

]
,

I2 = γ 2

γ 2 + 4ω2
d

[
− 1

2γ
sin(2ωdt ) exp(−γ t ) − ωd

γ 2
cos(2ωdt ) exp(−γ t ) + ωd

γ 2

]
,

I3 =
[

ωd

B2
− 1

B
sin(ωdt ) exp(−Bt ) − ωd

B2
cos2(ωdt ) exp(−Bt )

]
,

I4 =
[

ωd

A2
sin(ωdt ) exp(−Bt ) − 1

A
sin2(ωdt ) exp(−γ t ) − ωd

A2
sin(ωdt ) cos(ωdt ) exp(−γ t )

]
,

and

I5 =
[

ωd

A2
cos(ωdt ) exp(−Bt ) − 1

A
cos(ωdt ) sin(ωdt ) exp(−γ t ) − ωd

A2
cos2(ωdt ) exp(−γ t )

]

are functions of time and A = γ /2 − 1/τ , B = γ /2 + 1/τ , C = A2/(A2 + ω2
d ), and F = B2/B2 + ω2

d ) are constants.
For asymptotically large times, σ 2

qq approaches the stationary value

σ 2
qq = 〈q2〉 = D

τω2
d

{[(
−C

A
+ F

B

)
2ω2

d

γ 3
G

]
+

[
ωd

γ 2

(
−ω2

d

A2
C + ωd

B2
F

)
G + ω2

d

A2

(
ω2

d

B2

)
CF

]}
, (A7)

with

G = γ 2

γ 2 + 4ω2
d

. (A8)
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APPENDIX B: RATE OF BARRIER CROSSING THROUGH A SADDLE POINT

The barrier crossing rate can be calculated by adopting the classic Kramers’ technique (see references in the main text). To this
purpose, we need the steady-state distribution functions at both the bottom of the wells and the top of the barrier of the bistable
potential U (q ). Following Ref. [21], the Fokker-Planck (FP) equation around the well bottoms can be approximated to

∂ρ(q, v, t )

∂t
=

[
−v

∂

∂q
+ ω2

±q
∂

∂v
+ γ

∂v

∂v
+ φ(t )

∂2

∂v2
+ ψ (t )

∂2

∂q∂v

]
ρ(q, v, t ), (B1)

where ω±, φ(t ) and ψ (t ) have been defined in the main text. All variances and cross-correlations appearing in φ(t ) and ψ (t ) can
be easily calculated from Eq. (1) by substituting ω0 with ω±. The stationary variance for q(t ) is reported in Eq. (A7). In the same
way, explicit asymptotic expressions can be readily obtained for the other two (cross)variances, as well:

σ 2
q̇q̇ = D

τ

[
C

AB

(
1 − γ

2A

)
+ CG

Aγ

(
γ

2A
− 1

)(
2ω2

d

γ 2
+ 1

)]

+D

τ

[
CG

2Aγ

(
1 + 2ω2

d

Aγ

)
+ FG

Bγ

(
1 − γ

2B

)(
2ω2

d

γ 2
+ 1

)]

−D

τ

[
FG

2Bγ

(
1 + 2ω2

d

Bγ

)
− Fγ

2AB2

(
1 − γ

2A

)]

−D

τ

{
γ

2ωd

[
CGωd

γ 2A

(
γ

2A
− 1

)
+ CGωd

A2γ

(
1 + γA

2ω2
d

)(
2ω2

d

γ 2
+ 1

)]}

−D

τ

{
γ

2ωd

[
FGωd

γ 2B

(
1 − γ

2B

)
+ FG

B2γ

(
1 + γB

2ω2
d

)(
2ω2

d

γ 2
+ 1

)]}
(B2)

and

σ 2
qq̇ = D

τωd

[
CFωd

AB2

(
1 − γ

2A

)
+ Gωd

γ 2A

(
γ

2A
− 1

)
+ 2Gω3

d

γ 3A2

(
1 + γA

2ωd

)]

+ D

τωd

[
FGωd

γ 2B

(
1 − γ

2B

)
+ Cωd

A2B

(
γ

2B
− 1

)]

+ D

τωd

[
FCω2

d

A2B2

(
1 + γB

2ω2
d

)
− 2Gω3

d

γ 3B2

(
1 + γB

2ω2
d

)]
, (B3)

where the constants A,B,C, F , and G are the same as in Appendix A upon replacing ω0 with ω±.
Similarly, we wrote the FP equation for the particle dynamics around the barrier top (assuming the same diffusion coefficient),

and following Kramers’ Ansatz [22] we finally calculated the barrier crossing rate reported in the text.
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