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Kinetics of deposition in the diffusion-controlled limit
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The adsorption of particles diffusing in a half space bounded by the substrate and irreversibly sticking to
the substrate upon contacts is investigated. We show that when absorbing particles are planar disks diffusing
in the three-dimensional half space, the coverage approaches its saturated “jamming” value as t−1 in the large
time limit (generally as t−1/(d−1) when the substrate is d dimensional and d > 1, and as e−t/ ln(t) when d = 1).
We also analyze the asymptotic behavior when particles are spherical and when particles are planar aligned
squares.
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I. INTRODUCTION

The deposition of suspended particles onto substrates plays
an important role in physics, chemistry, and biology [1–3].
Adhesion of colloidal particles and proteins on clean substrates
is a classic example. There are also numerous applications,
e.g., in nanotechnology [4–7]. A comprehensive description
of the deposition process requires the understanding of the
evolution of a strongly interacting infinite-particle system.
Indeed, suspended particles diffuse and directly interact with
each other through exclusion. Further, the motion of suspended
particles causes long-ranged hydrodynamic interparticle in-
teractions. The process of attaching to the substrate is also
very complicated—the particles may rotate, the shape of the
particles plays an important role, etc. Even when the volume
fraction occupied by suspended particles is small and the
interparticle interactions in the solution are ignored, little is
known theoretically. It is therefore customary to maximally
simplify the problem. Following this tradition we focus on
dilute systems, ignore rotations, and consider particles of a
few simple shapes. Most studies also ignore diffusion. In
contrast, our major goal is to probe the influence of diffusion
of suspended particles. Specifically, we consider the diffusion-
controlled limit in which adhesion occurs instantaneously and
is assumed to be irreversible.

A comprehensive treatment of the diffusion-controlled de-
position problem is beyond the reach of analytical approaches,
so we shall employ heuristic arguments. One particular situa-
tion amenable to heuristic treatment is when the particles are
planar disks diffusing in a half space above the flat substrate.
Disks are assumed to remain parallel to the substrate and
when a disk touches the substrate, it irreversibly adheres to
it. The overlapping of disks on the substrate is forbidden.
The substrate eventually reaches a jammed state that cannot
accommodate additional disks. What fraction of the substrate
is covered in the jammed state? What is the temporal evolution
in the vicinity of the jammed coverage? Are there correlations
in particle positions in the jammed state?

Some progress in answering such questions has been
achieved in the setting which ignores diffusion and mimics the
solution as a reservoir of particles. This framework is known
as the random sequential adsorption (RSA). The RSA model

postulates that the deposition events are random: If the new
particle does not overlap with already deposited ones, it sticks
to the substrate; otherwise, the deposition event is discarded.

The RSA model was introduced a long time ago [8–10]
and it is fairly well understood (see [11–16] for a review),
although analytical solutions have been established only in
the case of the one-dimensional substrate (when disks become
segments). For the RSA of balls the basic properties of the
jammed state have not been determined analytically, e.g.,
the jamming coverage ρjam is unknown; see [17] for accurate
numerical results in dimensions 2 � d � 8. The asymptotic
approach to the jamming coverage is known [18–20], namely
ρjam − ρ(t) ∼ t−1/2 for the RSA of disks. This result admits a
generalization to arbitrary dimension [19,20],

ρjam − ρ(t) ∼ t−σ , (1)

for t � 1 with jamming exponent σ = 1/d for the RSA of
balls onto the d dimensional substrate.

Random packings generated by RSA have been used in
various fields ranging from soft matter [21] to telecom-
munication [22,23]. The application of RSA to deposition
processes is more questionable as the diffusive motion of
particles in solution above the substrate is clearly important.
Fortunately, the effect of this motion on the jamming coverage
is rather small [24,25], but the kinetic approach to the jamming
coverage is definitely very different as we shall demonstrate
below.

The outline of the paper is as follows. In Sec. II we show that
for the adsorption of diffusing disks the asymptotic approach to
the jamming coverage is also algebraic, and we determine the
jamming exponent. We then analyze the diffusion-controlled
deposition process when the diffusing particles are aligned
planar squares (Sec. III) or spheres (Sec. IV). In Sec. V we
briefly discuss how one can include short-ranged interactions,
particularly exclusion volume interactions, between diffusing
particles. We conclude with a discussion (Sec. VI).

II. ADSORPTION OF DIFFUSING DISKS

The basic assumptions underlying the deposition process of
diffusing planar discs are as follows:
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FIG. 1. Illustration of a target zone (white). Each adsorbed disk
(black) is surrounded by an exclusion zone of twice larger radius
(green). In the long-time limit target zones are triangular with arc-
shaped sides whose radius is twice that of the disks. Target zones are
far away from each other and hence they effectively do not interact in
the long-time limit.

(1) Disks freely diffuse (no interactions) in the solution and
they remain parallel to the substrate.

(2) Adsorbed disks do not overlap, do not desorb from the
substrate, and do not diffuse on the substrate.

(3) The solution is dilute, so we ignore interactions between
disks in the solution.

Even for planar particles one can consider the general
situation when they do not remain parallel to the substrate.
Furthermore, in the case of planar particles which remain
parallel to the substrate, the analysis becomes more challenging
when particles are different from disks. We shall comment on
these more complicated systems later, e.g., we consider the
diffusion-controlled adsorption of aligned planar squares in
Sec. III, but in this section we consider diffusing planar disks
irreversibly sticking to the substrate.

Let us start with the most important case of adsorption on
the plane (d = 2). In the long-time limit there is little room for
new disks, namely their centers can land into disconnected
target zones which are roughly triangular in shape (more
precisely, they have arc-shaped sides whose radius is twice that
of the disks; see Fig. 1). The separation between remaining
target zones grows indefinitely and in the long-time regime
one can ignore interactions between target zones. This greatly
simplifies the determination of the asymptotic behavior of
the coverage and it was the chief idea of Pomeau [19] and
Swendsen [20] in the case of the RSA model that led to (1) with
σ = 1/d. The same holds in our case, although the elimination
of the target zones proceeds in a different manner.

Denote by c(�,t) the density of target zones of linear size
�. In the long-time limit almost all target zones are very
small, � � R where R is the radius of disks, well separated
and effectively noninteracting, so the density c(�,t) decays

according to the linear rate equation

dc(�,t)

dt
� −K2c(�,t). (2)

The amplitude K2 depends on the diffusion coefficient D, the
size�of the target zone, and the densityn∞ of the disks far away
from the target. On pure dimensional grounds one can write
K2 = n∞D�K(n∞�2), whereK(n∞�2) is some function of the
(dimensionless) fraction of uncovered area n∞�2. However, we
consider dilute solutions, so the dependence of K2 on n∞ must
be linear. [Also n∞�2 → 0 in the long-time limit, so one can
replace K(n∞�2) → K(0) and obtain the same result.] Thus
K2 = A2n∞D� where A2 is a numerical factor that cannot
be determined by dimensional analysis. Combining (2) and
K2 = A2n∞D� we deduce

ρjam − ρ(t) ∼
∫ R

0

d�

R
c(�,t) ∼

∫ R

0

d�

R
e−A2n∞D�t

∼ R−1(n∞Dt)−1. (3)

For the d-dimensional substrate with d > 1, an analog
of (2) is

dc

dt
� −Kdc, Kd = Adn∞D�d−1, (4)

where we used again dimensional analysis to fix Kd . Similarly
to (3) we deduce

ρjam − ρ(t) ∼ R−1(n∞Dt)−1/(d−1). (5)

The jamming exponent σ = 1/(d − 1) characterizing the
diffusion-controlled deposition process is larger than the jam-
ming exponent σ = 1/d characterizing the RSA.

The jamming exponent σ = 1/(d − 1) predicted by (5)
becomes infinite if d = 1. This means that the algebraic
approach (1) is no longer valid. (The disks are segments when
d = 1, they remain parallel to the one-dimensional substrate,
diffuse in the two-dimensional half space, and adhere to the
substrate upon touching it.) To be able to treat the diffusion-
controlled deposition onto the one-dimensional substrate and
to establish the dependence Kd ∼ n∞D�d−1 for d > 1 without
dimensional analysis, we now describe a more comprehensive
approach. We still want to establish the asymptotic behavior,
so we can assume that target zones are small, � � R, and
well separated. For dilute suspensions we can also neglect
the exclusion volume interactions between the disks. Thus we
can treat the centers of the disks as noninteracting Brownian
point particles. The triangular zone is eliminated when a point
particle touches it. We can disregard the reflection boundary
condition on the substrate by considering a “two-sided” prob-
lem, namely a planar d-dimensional target zone at z = 0 in
Rd+1.

Consider a single not necessarily planar target B. The
density n(r,t) of Brownian particles exterior to the target
satisfies the diffusion equation

∂n

∂t
= D∇2n. (6)

Far away from the target

n(r → ∞,t) = n∞ (7a)
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and absorption on the boundary ∂B of the target yields the
boundary condition

n(r ∈ ∂B,t) = 0. (7b)

In the long-time limit, the density approaches the steady
state when d > 1; see, e.g., [15,26]. The linearity of the govern-
ing equations (6)–(7b) implies that the density is proportional
to n∞. It is convenient to write the stationary density in the
form n(r,t → ∞) = n∞[1 − φ(r)]. Plugging this form into
the above governing equations we find that φ(r) obeys the
Laplace equation

∇2φ = 0, (8)

while the boundary conditions (7a) and (7b) become

φ(r ∈ ∂B) = 1, φ(r → ∞) = 0. (9)

Thus φ can be interpreted as an electrostatic potential
generated by a perfectly conducting object B that is held at
unit potential. (A connection with electrostatics goes back to
Berg and Purcell [27]; see review [15].) The reaction rate K is
just the flux

K = D

∫
∂B

∇n · dσ = −Dn∞
∫

∂B
∇φ · dσ . (10)

Recall that according to electrostatics the total charge on the
surface of the equivalent conductor is

Q = − 1

4π

∫
∂B

∇φ · dσ (11)

in three dimensions. The total charge on the conductor is related
to its capacitanceC byQ = CφB. In our caseφB = 1 and hence
(10) and (11) show that the reaction rate is given by 4πn∞DC.
Our targets are planar and adsorption is possible only from
above, so the proper reaction rate in our case is twice smaller:

K2 = 2πn∞DC. (12)

Generally when the ambient space is Rd+1, instead of 4π

we should use �d+1 = 2π (d+1)/2/	[(d + 1)/2], the area of the
unit sphere Sd in Rd+1. The reaction rate becomes

Kd = 1
2�d+1n∞DC (13)

with factor 1
2 accounting for the planarity of the target zone.

If all dimensions of the target zone are comparable, the
capacitance scales as �d−1 where � is the characteristic size of
the target zone [28]. Therefore the reaction rate is proportional
to n∞D�d−1 explaining (2) and (4).

The capacitance of the triangular target zone depends on its
shape. For the disk of radius �, for instance, the capacitance is
C = 2�/π [28], so K2 = 4n∞D� if the target zone is the disk.
Generally for triangular target zones K2 = A2n∞D� with a
numerical factor A2 = O(1) depending on the details of the
shape of the zone.

The above analysis is applicable when d > 1. In the case
of the two-dimensional ambient space (d = 1), Eqs. (6),
(7a), and (7b) do not admit a stationary solution. Using
the linearity of (6), (7a), and (7b) we still seek solution in
the form n(r,t) = n∞[1 − φ(r,t)] and find that φ(r,t) obeys
the diffusion equation

∂φ

∂t
= D∇2φ (14)

and the boundary conditions (9). Fortunately, we do not need
to know the full solution as we are interested in the asymptotic
long-time behavior. Well inside the depletion zone, r � √

Dt ,
we can replace the diffusion equation by Laplace equation. Far
away from the target zone, r � �, the solution is a combination
of two basic solutions of the Laplace equation, a constant
solution and ln r . Ensuring the correct match with the inner
solution, φ � 1 when r ∼ �, and the outer solution, φ → 0
when r >

√
Dt , we arrive at

φ(r,t) � 1 − ln(r/�)

ln
√

Dt/�2
. (15)

To determine the reaction rate (10) it suffices to compute the
flux through the circle of radius r with � � r � √

Dt where
(15) is asymptotically exact. This gives

K1 = 2πn∞Dt

ln(Dt/�2)
, (16)

where we have used the factor 1
2 accounting for the planarity

of the target zone. Thus the density c(�,t) of the target zones
of length � decays almost exponentially,

c(�,t) ∼ exp

[
− 2πn∞Dt

ln(Dt/�2)

]
, (17)

from which we obtain an interesting decay law

ρjam − ρ(t) ∼ exp

[
− 2πn∞Dt

ln(Dt/R2)

]
(18)

in the situation when the substrate is one dimensional.

III. ADSORPTION OF DIFFUSING SQUARES

To analyze the influence of the shape of the diffusing
planar objects on the dynamics of the deposition process let
us consider the deposition of aligned squares. In the realm of
the RSA this problem has been extensively studied; see, e.g.,
[10,20,29–32] and reviews [11–13].

We assume that the squares are identical, say of the size
R × R, and their attachment to the substrate is aligned with x

and y axes. We treat the deposition process heuristically using
the same approach as in the previous section. The target zones
are now rectangles. Long-lived � × L rectangles have sizes
smaller than the linear size of the square: � < R and L < R.
Crucially, long-lived rectangles tend to have a very large aspect
ratio. The capacitance of an � × L rectangle is

C � L

ln(2L/�)
(19)

when L � �. This formula gives a correct qualitative behavior
even for L ∼ �. More accurate formulas were already known
to Maxwell [33] and the work on this issue is continuing (see,
e.g., [34] and references therein), but the above is sufficient for
heuristic reasoning.

Using (12) and (19) we find

c(�,L; t) ∼ exp

[
−2πn∞DLt

ln(2L/�)

]
. (20)
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The coverage saturates according to

ρjam − ρ(t) ∼
∫ R

0

d�

R

∫ R

�

dL

R
c(�,L; t) ∼ ln(n∞RDt)

(n∞RDt)2
.

(21)

This decay law is faster than the t−1 ln(t) decay [20,32] char-
acterizing the asymptotic approach to the jamming coverage
in the realm of the RSA of aligned squares.

IV. ADSORPTION OF DIFFUSING SPHERES

Diffusing particles can have various shapes. Diffusing
spheres are especially interesting, a suspension of latex spheres
being an obvious example, and the behavior of this system
has been studied [35–37]. In the physically most relevant case
of d = 2, the t−2/3 approach to the jammed state has been
predicted by Schaaf, Johner, and Talbot [35]. This approach
is faster than the t−1/2 approach characterizing the RSA of
spheres, but slower than the t−1 decay law (2) describing the
deposition of disks in the diffusion-controlled limit.

In this section we employ an approach described in Sec. II
and rederive the t−2/3 behavior. More generally we show that
for d > 1 the jamming exponent is

σ = 2

2d − 1
. (22)

In the case of one-dimensional substrate, the exponent σ =
2 predicted by (22) is correct, but there is also an additional
logarithmic correction as we argue below:

ρjam − ρ(t) ∼
(

ln t

t

)2

when d = 1. (23)

At first sight, there seems to be no difference between
adsorption of planar disks and spheres. In the RSA framework
these two adsorption processes are identical. Adding diffusion
changes the situation. In the case of spheres we can still focus
our attention on the deposition of the point particles, the centers
of diffusing spheres, into target zones. However to reach the
zone, the particle must go through the channel and reach its
bottleneck.

To establish the large time behavior when the substrate
is two dimensional, d = 2, we again replace the diffusion
equation by the Laplace equation

∇2n = 0. (24)

Far away from the target

n = n∞. (25)

The density must also satisfy the absorbing boundary condition
on the target (the bottleneck in Fig. 2),

n|on the target = 0, (26)

and the reflecting boundary condition on the boundary of
the excluded region. This latter boundary is complicated and
random as it depends on the history of the deposition process.
When the target zone is very small, however, i.e., � � R, we
can significantly simplify the problem. The passage through the
very narrow channel is governed by an “entropic” barrier which

FIG. 2. Two-dimensional illustration when spheres become (ver-
tical) disks. Each disk represents the excluded region, so its radius
is twice larger than the radius of diffusing and absorbing particles.
The center of the new disk must go through the channel between two
central disks and it must reach the bottleneck (the horizontal segment).

provides the dominant contribution to the decay rate. (Prob-
lems with entropic barriers are analyzed in several studies;
see, e.g., [38–42] and references therein.) Inside such narrow
channels the three-dimensional Laplace equation (24) can be
replaced by the quasi-one-dimensional Laplace equation

d

dy

[
A(y)

dn

dy

]
= 0, (27)

where A(y) is the cross-section area of the channel at the height
y above the bottleneck.

In the case of the one-dimensional substrate illustrated in
Fig. 2, if � is the width of the bottleneck then the width of the
channel is A(y) = � + y2

R
when y � R. In the case of the two-

dimensional substrate the cross-section area scales as A(y) ∼
(� + y2

R
)
2
. Using this estimate and integrating (27) we get

(
� + y2

R

)2
dn

dy
= F. (28)

Integrating one more time we obtain

n = F

√
R

�3

∫ y/
√

R�

0

dη

(1 + η2)2
. (29)

Using the boundary condition (25) we fix the constant

F ∼ n∞

√
�3

R
. (30)

The flux is given by DF . Therefore the density c(�,t) of target
zones of linear size � decays according to

dc(�,t)

dt
∼ −Dn∞

√
�3

R
c(�,t) (31)

from which we deduce

ρjam − ρ(t) ∼ (n∞RDt)−2/3. (32)

Generally when d > 1 we use the stationary Eq. (27) with

A(y) ∼ (� + y2

R
)
d

and arrive at

dc(�,t)

dt
∼ −Dn∞

√
�2d−1

R
c(�,t),

which leads to to the announced exponent (22). More precisely,
the coverage saturates according to

ρjam − ρ(t) ∼ (n∞Rd−1Dt)−2/(2d−1). (33)

The case of the one-dimensional substrate is more subtle.
Strictly speaking, one cannot employ the stationary framework.
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An asymptotically correct results can be established using a
simple trick: One formally solves Eq. (27) to yield

n = F

√
R

�

∫ y/
√

R�

0

dη

1 + η2
(34)

and then matches this solution to n∞/ ln(R2Dt) instead of n∞.
This gives

K1 ∼
√

�

R

Dn∞
ln(R2Dt)

(35)

from which

ln c(�,t) ∼ − n∞Dt

ln(R2Dt)

√
�

R

and

ρjam − ρ(t) ∼
[

ln(R2Dt)

n∞Dt

]2

, (36)

which is the more accurate version of Eq. (23). Instead of the
trick used in deriving (35) one can establish it repeating the
same arguments as in deriving (16).

A family of one-dimensional RSA-type processes specified
by the rates K1(�) of landing into target zones of length �

has been considered by Tarjus and Viot [36] who additionally
argued that the choice K1(�) ∼ √

� provides an approximation
to the diffusion-controlled deposition process. One can verify
that choosing such rates leads to the t−2 approach to the
jamming density agreeing with (36) up to a logarithmic factor.
The treatment given in this section accounts for the subtleties
of diffusion in two spatial dimensions and therefore differs by
an a multiplicative logarithmic factor.

V. DENSE SUSPENSIONS

In this section we show how in principle one can take into
account exclusion volume interactions. In the long-time limit
we have a collection of target zones which are far away from
each other and get clogged when a particle touches it. A closely
related problem of the survival probability of a trap in diffusive
lattice gases has been recently studied [43]. Previous work (see
[44–47] and a review [48]) on the survival probability of a trap
assumed that diffusing particles do not interact, that is they
are random walks (or Brownian particles), but it turned out
[43] that interacting diffusive lattice gases can in principle be
treated. Similar behaviors are expected to hold in the present
case of continuous gases of suspended particles.

Exclusion volume interactions do not change qualitative
behaviors. For d > 1, the jamming exponent remains the same.
For d = 1, the time dependence also remains the same. The
different feature is the nontrivial dependence on the volume
fraction n∞Rd occupied by the particles.

For instance, in the case of adsorption of planar disks onto
the plane,

ρjam − ρ(t) ∼ �(n∞R3)

n∞RDt
, (37)

and similarly for adsorption of spheres onto the plane,

ρjam − ρ(t) ∼ �(n∞R3)

(n∞RDt)2/3
. (38)

When n∞R3 � 1, the exclusion volume interactions can be
ignored: �(ν) ∼ 1 when ν → 0, so that (37) reduces to (3);
similarly �(ν) ∼ 1 when ν → 0 and (38) reduces to (33) with
d = 2.

To compute the functions �(ν) and �(ν) in the case of dense
suspensions seems impossible, although the formal scheme of
the computation exists [43] and it is based on a macroscopic
fluctuation theory (see [49] for a review). In the long-time limit
it suffices to consider a single target zone. The logarithm of the
probability that it remains uncovered at time t is asymptotically

− ln S � 1

2
t

∫
dr

D2(n)

σ (n)
(∇n)2 (39)

when d > 1. The integral in Eq. (39) is taken over the
(d + 1)-dimensional ambient space outside the target zone.
The integrand in (39) contains two transport coefficients, the
diffusion coefficient D(n) and the mobility σ (n). The density
n(r) is determined by the solution of a stationary partial
differential equation,

∇2n +
(

D′

D
− σ ′

2σ

)
(∇n)2 = 0, (40)

where D′ = dD/dn and σ ′ = dσ/dn. The boundary condi-
tions are (25) and (26) and the reflecting boundary condition
on the boundary of the excluded region. The case of planar
disks is again particularly simple as we do not need the latter
boundary condition, we can instead analyze (40) in Rd+1.

It is usually impossible to solve the nonlinear partial
differential equation (40) subject to the boundary conditions
(25) and (26). For a few simple lattice gas models explicit
analytical solutions were found in [43], see also [50,51],
but one should keep in mind that for almost all interacting
gases the transport coefficients D(n) and σ (n) are unknown.
Even if we one finds a simple interacting gas with density-
independent diffusion coefficient, the mobility is still very hard
to determine—one needs to know the free energy, and in two
and higher dimensions it is essentially impossible for any gas
with exclusion interactions.

VI. DISCUSSION

We analyzed the irreversible deposition of diffusing parti-
cles onto the substrate. The substrate eventually gets clogged,
but even the simplest characteristic of the resulting jammed
state, the filling fraction, has not been computed even in the
simplest settings. A popular framework known as the random
sequential adsorption (RSA) is convenient for numerical im-
plementation and it has led to interesting predictions about
the large time asymptotic behaviors. The RSA is essentially
a computer algorithm—the motion of particles and interac-
tions between them are totally ignored, deposition events
are consecutively attempted and an event is successful if an
arriving particle does not overlap with already deposited ones,
otherwise the deposition event is discarded.

In deposition processes that occur in nature, particles
usually diffuse in the solution above the substrate. One may
guess that diffusion accelerates the approach to the jamming
state. This is correct and Table I compares basic predictions for
diffusion-controlled deposition processes with corresponding
kinetic laws for the RSA.

012119-5



P. L. KRAPIVSKY PHYSICAL REVIEW E 98, 012119 (2018)

TABLE I. The asymptotic approach to the jamming coverage for
the RSA and for the diffusion-controlled deposition process. In one
dimension, the aligned squares and disks are just segments, so the
behavior is the same.

Process RSA Diffusion-controlled

substrate disks or aligned disks aligned spheres
dimension spheres squares squares
d = 2 t−1/2 t−1 ln t t−1 t−2 ln t t−2/3

d = 1 t−1 t−1 e−t/ ln t e−t/ ln t t−2(ln t)2

Diffusion-controlled deposition processes are genuinely
infinite-particle systems, while by construction the RSA is
effectively a single-particle system, albeit with memory. The
RSA case has led to the guess that the large time behaviors may
be tractable. We additionally utilized the chief idea employed
in Refs. [19,20] in the case of the RSA, namely we wrote a rate
equation describing the decay of the density of the target zones.
To derive a reaction rate appearing in this equation we also
used classical ideas essentially going back to Smoluchowski
[52] who developed them in the context of coagulation.

We employed heuristic arguments, but predictions appear
to be asymptotically exact. Proving these predictions is a
challenge; very few such proofs have been constructed even
for much more simple diffusion-controlled infinite-particle
systems. Diffusion-controlled deposition processes are more
difficult to simulate than the RSA, and even for the RSA
extracting the long-time kinetic behavior is challenging since
the jamming coverage is not known and finite-size correc-
tions are not fully understood [17,53]. Still, simulations of
diffusion-controlled deposition processes have been done [37]
and they seem to confirm the t−2/3 behavior arising in the
case of diffusing spheres. In the presumably simpler case of
the one-dimensional substrate, the asymptotic behaviors (see
Table I) involve logarithms which probably makes numerical
confirmation more challenging.

We investigated the deposition of disks, spheres, and aligned
squares. It would be interesting to consider objects of different

shapes. The shape and the orientational freedom of the deposit-
ing objects may affect the asymptotic behaviors. For instance,
one would like to explore the diffusion-controlled deposition
of planar ellipses (planar squares) in the case of the isotropic
deposition, i.e., assuming that the ellipses (squares) undergo
both translational and rotational diffusion. In the realm of the
RSA the asymptotic behaviors depend on symmetries of the
objects and the orientational freedom [13,29–32], but in the
isotropic case the universal t−1/3 behaviors emerges for squares
(and generally for rectangles) and for ellipses with arbitrary
nonzero eccentricity [29–31].

The deposition process never ends if the depositing objects
have no width. For the RSA of needles, for instance, the density
of needles per unit area exhibits a remarkable growth law
t
√

2−1 characterized by an irrational exponent [54]; see also
[55,56] for further results and analyses of related fragmentation
problems. The diffusion-controlled deposition of needles is an
intriguing open problem.

In Secs. II–IV we ignored interactions between diffusing
particles. At first sight the inclusion of the simplest exclusion
volume interactions already makes the system intractable,
e.g., the equilibrium statistical mechanics of such infinite
systems is unknown. However, the hydrodynamic behavior
is in principle simple: it is governed by a diffusion equation
with density-dependent diffusion coefficient D(n). To analyze
diffusion-controlled deposition processes in addition to D(n)
one must know another transport coefficient, the mobility σ (n).
In Sec. V we showed that in the most interesting case when
d > 1 the inclusion of interactions forces one to seek a solution
of the nonlinear partial differential equation (40) instead of the
Laplace equation. Thus one can proceed, at least numerically,
if one knows D(n) and σ (n). For a few simple lattice gases,
including, e.g., the symmetric exclusion process, the transport
coefficients are known and an unexpected ansatz [43] allows
one to treat the nonlinear partial differential equation (40).
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