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Violent relaxation is a process that occurs in systems with long-range interactions. It has the peculiar feature of
dramatically amplifying small perturbations, and rather than driving the system to equilibrium, it instead leads to
slowly evolving configurations known as quasistationary states that fall outside the standard paradigm of statistical
mechanics. Violent relaxation was originally identified in gravity-driven stellar dynamics; here, we extend the
theory into the quantum regime by developing a quantum version of the Hamiltonian mean field (HMF) model
which exemplifies many of the generic properties of long-range interacting systems. The HMF model can either
be viewed as describing particles interacting via a cosine potential, or equivalently as the kinetic XY model with
infinite-range interactions, and its quantum fluid dynamics can be obtained from a generalized Gross-Pitaevskii
equation. We show that singular caustics that form during violent relaxation are regulated by interference effects
in a universal way described by Thom’s catastrophe theory applied to waves and this leads to emergent length
scales and timescales not present in the classical problem. In the deep quantum regime we find that violent
relaxation is suppressed altogether by quantum zero-point motion. Our results are relevant to laboratory studies
of self-organization in cold atomic gases with long-range interactions.
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I. INTRODUCTION

Quantum many-body (QMB) systems with long-range in-
teractions (LRI) are increasingly being realized in laboratory
experiments with cold atomic and molecular gases where
inherently long coherence times are suited to investigating
dynamics. Examples include atomic Bose-Einstein conden-
sates (BEC) with magnetic dipole-dipole interactions [1–12],
cold polar molecules [13–18], trapped ions [19–22], Rydberg
atoms [23–30], and atoms inside high-finesse optical cavities
which interact via the cavity modes that extend over the entire
cavity [31–36]. There are also new approaches in the pipeline,
such as using optical waveguides or photonic band gap crystals
to engineer electromagnetic modes and hence mediate highly
controlled long-range interatomic interactions [37–39].

This progress in trapped atomic and molecular systems has
fostered broad interest in LRI both in and out of equilibrium
[40–50]. While the focus has been on spin and Hubbard
models, the versatility of these systems also allows for new
regimes not seen in traditional condensed matter systems,
including gravitylike attractive 1/r interactions [51–53], and
also cosine-type interactions that occur between atoms in
optical cavities [54–62].

Historically, the motivation for studying LRI has come from
astrophysics and plasma physics: the range of the gravita-
tional and Coulomb interactions, respectively, are such that
all particles experience a common, essentially mean field,
potential. In nonequilibrium situations, this potential becomes
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time dependent and drives a rapid, collisionless relaxation
mechanism, known as violent relaxation, which efficiently
mixes phase space [63]. This process is nonergodic and hence
profoundly different from relaxation in systems with short-
range interactions. Nevertheless, universality still emerges:
pioneering work in the 1960’s by Lynden-Bell [64] on the
statistical mechanics of violent relaxation in stellar and galactic
dynamics introduced a fourth type of equilibrium distribution
which is related to both the Fermi-Dirac distribution and
equipartition of energy per unit mass. More recent research has
generalized Lynden-Bell statistics to two-parameter Core-Halo
distributions [65–68] which can also handle the case of far-
from-virialized initial conditions and the following two-stage
picture of relaxation from a nonequilibrium state has emerged
[69,70]: First, there is violent relaxation, the timescale of
which does not depend on the number of particles N , and
results in long-lived nonequilibrium configurations known as
quasistationary states (QSS). Second, at long times, there
is the more familiar collisional relaxation towards Maxwell-
Boltzmann equilibrium, however, this occurs at times of order
Nδ , where δ � 1 [71,72]. Therefore, in the thermodynamic
limit N → ∞ the lifetime of the QSS diverges and the system
remains out of equilibrium indefinitely, which has implications
for thermalization. Violent relaxation is now recognized as
the cornerstone of statistical theories describing the QSS that
dominate transient behavior in systems with LRI. Since these
QSS are formed by nonergodic dynamics, they are not captured
by conventional statistical treatments.

In this paper, we are interested in the following thematic
questions: Does violent relaxation take place in quantum
systems? Do QSS exist and do they display new length
scales and timescales? Do these modifications survive in the
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FIG. 1. Nonequilibrium phase diagram for the quantum HMF
model with repulsive interactions (ε > 0). Violent relaxation leads to
quasistationary states which are very slowly evolving nonequilibrium
configurations; for the HMF model these are the bicluster states. On
this semilog plot, the vertical axis measures the initial deviation from
equilibrium quantified by v0 = Aωpl cos θ which is the initial velocity
field due to small plasma oscillations [see Eq. (D1)]. The horizontal
axis captures quantum effects via the effective Planck constant
χ = h̄/

√
|ε|mR2. When χ � 1 and χ � 2Aωpl the system forms

a bicluster at late times [see Fig. 5(f)]. By contrast, for χ � 1, the
k = ±1 modes dominate and the system continues to undergo plasma
oscillations without relaxing [see Eq. (11) and Fig. 5(b)]. Finally,
for χ � 1 all Fourier modes experience a free Schrödinger-type
dispersion relation and violent relaxation is suppressed by quantum
zero-point motion [see Fig. 5(a)]. The gray region denotes initial
conditions that invalidate the short-time linear response procedure
detailed in Eqs. (14) and (15).

thermodynamic limit? We base our analysis on the Hamiltonian
mean field (HMF) model [72–77] which over the last two
decades has become one of the main theoretical tools for
investigating many-body systems with LRI (see Refs. [69,70]
for reviews). It offers the advantage of being analytically
tractable at equilibrium, and is known to capture dynamical
features present in more complicated systems [67,70,74,76].
Moreover, the HMF model is directly relevant to describing
cold atoms in optical cavities where self-organization and
the nonequilibrium Dicke phase transition have been inten-
sively studied both theoretically [54–62] and experimentally
[32,78–82]. Our work, therefore, has experimental relevance
but for brevity’s sake we only consider closed systems and
do not include effects that would model cavity pumping and
decay. However, in separate work we have shown that the type
of QSS we observe (wave catastrophes) have the fundamental
property of structural stability, even against decoherence, and
hence survive in cavities weakly coupled to the environment
[83]. Wave catastrophes can also be seen in simulations by
others [84] of microcavity polaritons using a driven damped
Gross-Pitaevskii equation.

A key part of our results is summarized in the nonequilib-
rium phase diagram in Fig. 1 which depicts the end results of
violent relaxation in a quantum version of the HMF model.
The vertical axis gives the magnitude of initial perturbations

− − − − − −

FIG. 2. Long-range interactions tend to amplify initial perturba-
tions. We illustrate this feature here with the Newtonian trajectories
of 52 particles obeying the classical HMF model with (a) attractive
(ε < 0) and (b) repulsive (ε > 0) interactions. At t = 0, the particles
are spaced evenly around the ring with very slightly varying initial
velocities vi(θ,0) = 0.005 cos θ . In both cases, the LRI cause the
particles to cluster and this behavior repeats such that the envelopes
of the trajectories form a quasiperiodic series of cusp-shaped caustics
(or “chevrons”[75,76]). However, there are key differences: First, the
attractive interactions give rise to a single cluster point (monocluster)
around the ring whereas repulsive interactions produce two cluster
points (bicluster), and second there are very different timescales
associated with the two cases with the repulsive case being much
slower (note the different scales on the time axes).

from equilibrium, i.e., initial velocity fluctuations v0, and
the horizontal axis measures the effective Planck constant χ

which, of course, is entirely absent in classical systems. We
find that quantum effects increasingly stabilize initial plasma
fluctuations, thereby suppressing violent relaxation, such that
by the time the deep quantum regime (designated the free
Schrödinger phase) is reached quantum zero-point motion of
higher lying modes dominates the plasma oscillations.

A second strand to the story we present here concerns
the nature of the QSS and their connection to caustics. In a
landmark paper on the large scale structure of the universe,
Arnold, Shandarin, and Zeldovich [85] considered a self-
gravitating mass distribution and showed that initially smooth
perturbations evolve into singular caustics upon which the
density diverges (for a recent update to this work see [86]).
These caustics take universal shapes described by the so-called
catastrophe theory due originally to Thom and Arnold [87–89]
and include cusps, swallowtails, beak-to-beaks, and Zeldovich
pancakes [90]. Likewise, as shown in Fig. 2, the dynamics
of the classical HMF model also leads to cusp catastrophes
[75,76,91,92] which are the structurally stable catastrophes
found in two dimensions (1 space + 1 time).

One might expect quantum effects to smooth classical
singularities and this is indeed what we find; however, what
is remarkable is that quantum effects enter in a universal way,
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replacing the caustics with characteristic interference patterns
known as wave catastrophes that introduce new length scales
and timescales [93,94]. For instance, cusp catastrophes become
Pearcey functions (see Fig. 7). Wave catastrophes obey a set
of scaling relations as the wavelength is varied, and thus, as
quantum effects are switched on the new length scales and
timescales of the QSS scale in a universal way. Once again,
the nonergodic nature of the classical limit plays a crucial role
as caustics are formed by the cooperative behavior of families
of trajectories and are dissolved by ergodic dynamics.

The rest of this paper is organized as follows: In Sec. II we
provide examples of violent relaxation in the classical HMF
model and formulate a classical hydrodynamic description. In
Sec. III we describe a theory for the quantum hydrodynamics
for the HMF model based on a generalized Gross-Pitaevskii
equation (GGPE). Our numerical solutions of the GGPE are
presented in Sec. IV where we explore how quantum effects
modify the QSS. In Sec. V we sketch out the multiscale analysis
first used for describing QSS analytically in Ref. [76], and
show how this is modified by quantum effects. In Sec. VI we
explain how we arrived at the nonequilibrium phase diagram
shown in Fig. 1, and in Sec. VII show how the interference
patterns decorating the quantum biclusters can be understood
using catastrophe theory. In Sec. VIII we argue that the
thermodynamic limit N → ∞ and the classical limit h̄ → 0 do
not commute, and we make our concluding remarks in Sec. IX.
There are also five appendices covering details omitted in the
main text.

II. VIOLENT RELAXATION IN THE
CLASSICAL HMF MODEL

The HMF model, despite its name, provides an exact
description of a many-body system in one dimension. Defined
on a ring of radius R, it describes N particles interacting
via a pairwise potential varying as cos (θi − θj ), and has the
Hamiltonian

H =
∑

i

L2
i

2mR2
+ ε

N

∑
i<j

cos(θi − θj ), (1)

where each angular momentum Li and position θi form a
canonically conjugate pair (Li,θi). When two particles sit on
top of one another, the potential is repulsive (attractive) when
ε > 0 (ε < 0). The explicit 1/N factor in the interaction term,
known as the Kac prescription [95], enforces extensivity of
the Hamiltonian [69]. Experiments with cold atoms trapped in
linear optical resonators formed of two mirrors where the atoms
interact via the sinusoidal mode of a quasiresonant optical field
[60] are described by Hamiltonians closely related to Eq. (1).
A complementary interpretation of Eq. (1) is as a kinetic XY

model [96] with an infinite-range interaction, and therefore,
another physical realization is provided by polar molecules in
optical lattices [97–99].

There are two distinct types of dynamics in the HMF model
which are illustrated in Fig. 2. The first case has attractive
interactions [sgn(ε) = −1] as shown in Fig. 2(a). These lead
to a Jeans-type collapse into a monocluster at a single point
around the ring which then spreads out and revives periodically,
with a timescale that is directly determined by the strength

of the interparticle interaction. The second case has repulsive
interactions [sgn(ε) = 1] and is shown in Fig. 2(b). One again
finds clustering but now at two points on opposite sides of
the ring. Furthermore, it arises on vastly longer timescales and
corresponds to a QSS.

When the number of particles becomes large, a kinetic-
theory description in terms of the phase space density f (θ,L,t)
becomes appropriate. The fact that the number of pairwise LRI
scales as O(N2) whereas collisional terms are O(N ) suggests
one can neglect collisions in this regime. In this case, f (θ,L,t)
obeys the conservation law [100]

df

dt
= ∂tf + θ̇∂θf + L̇∂Lf = 0, (2)

which is known as the collisionless Boltzmann or Vlasov
equation (see [101] for a discussion of the difference between
the Boltzmann and Vlasov equations.) In fact, Hepp and Braun
[102] have rigorously shown that as N → ∞ the Vlasov
equation provides an exact description of the dynamics of an
N -body classical system with pairwise LRI.

Biclustering was first identified in numerical simulations
[91,92] seeded by a “water-bag”-shaped initial distribution in
phase space: f (θ,L,t = 0) ∝ �(θ0 − |θ |) × �(L0 − |L|). In
this paper, we are interested in the low-temperature regime
where the water bag becomes thin in the L direction. This both
causes the lifetimes of the QSS to diverge in the classical theory
[76], and also allows for a natural point of contact between
our quantum (low-temperature) treatment and the classical
dynamics. In the limit 	L → 0, each point in space can be
assigned a definite velocity, i.e., f (θ,L,0) = ρ(θ )δ[v(θ ) − L],
and Eq. (2) can be reexpressed in a Euler (i.e., hydrodynamic)
form. This is what constitutes the zero-temperature approxima-
tion. It is convenient to introduce a new time τ = t/

√
mR2|ε|

and velocity v(θ ) = v(θ )
√

mR2|ε|, and to normalize the den-
sity via

∫
dθρ = 1. Written in terms of these quantities, the

Euler equations are given by

∂τρ + ∂θ (ρv) = 0, (3a)

∂τ v + v∂θv + sgn(ε)∂θ� = 0 (3b)

and can be interpreted as the equations of motion for a fluid
undergoing adiabatic and inviscid flow [103]. Here,

�(θ,τ ) =
∫ π

−π

dφ ρ(φ,τ ) cos(θ − φ)

= M(τ ) cos[θ − ϕ(τ )] (4)

is the mean field potential (for the zero-temperature case) found
by summing up the long-range interactions amongst all the
particles. It is related to L̇ in Eq. (2) via the Euler-Lagrange
equation L̇ = −ε∂θ�.

The last line of Eq. (4) represents a remarkable simplifi-
cation that is proved in Appendix A: the mean field potential
always assumes the same cosine functional form specified by
just two time-dependent parameters: the depth, or magnetiza-
tion M(τ ), and a phase ϕ(τ ). Thus, �(θ,t) is highly constrained
and can only change its depth and position around the ring.
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III. QUANTUM FLUID DYNAMICS:
GROSS-PITAEVSKII THEORY

Chavanis [104] has previously investigated the equilibrium
properties of the quantum HMF model using the Gross-
Pitaevskii theory, finding that when ε < 0 quantum effects
can stabilize against the Jeans instability. We focus instead
on dynamics which take on a heightened importance in the
presence of LRI.

The full quantum description is in terms of a many-body
wave function ψ(θ1,θ2, . . . ,θN ,τ ), where the set {θi} of N

independent angles refer to the particle positions. However,
if we consider indistinguishable bosons, in the large-N regime
and at very low temperatures, the system can be expected to
Bose condense. If all the bosons enter the condensate, then ψ

can be written as a product of single-particle wave functions
[i.e., ψ = ∏N

i=1 ϕ(θi)] which must be found self-consistently
due to the effect of interactions. This is the Hartree description
and treats the N -particle system in terms of a condensate wave
function ψ(θ1,θ2, . . . ,θN ,τ ) → �(θ,τ ), which depends on a
single spatial coordinate and obeys a nonlinear wave equation,
the Gross-Pitaevskii equation [105,106].

Bose condensation therefore naturally leads to a mean field
description (equivalent to a hydrodynamic description) and we
will assume this situation in our treatment of the quantum
problem. In this context, it is important to point out that
the Mermin-Wagner theorem [107–109], which forbids Bose
condensation in infinite one-dimensional systems with short-
range interactions, does not apply here because our system has
both finite size and LRI. The mean field description for a Bose-
condensed system is provided by the Gross-Pitaevskii theory
which becomes exact in the thermodynamic limit N → ∞.

A. Generalized Gross-Pitaevskii equation

Consider the Gross-Pitaevskii energy functional

E[�,�∗] = Nh̄2

2mR2

∫
|∂θ�|2dθ + Nε

2

∫∫
|�(θ ′)|2

× cos(θ − θ ′)|�(θ )|2dθ dθ ′. (5)

Here, the condensate wave function is normalized to unity:∫
dθ |�|2 = 1, which ensures that Eq. (5) is extensive. The

equation of motion for � is given by taking the func-
tional derivative ih̄∂�/∂t = δE/δ�∗. One thereby obtains the
GGPE for the HMF model [104]

iχ∂τ� = −χ2

2
∂2
θ � + sgn(ε)�(θ,τ )�, (6a)

where �(θ,τ ) =
∫ π

−π

|�(φ,τ )|2 cos(θ − φ)dφ (6b)

is the Hartree or mean field potential. The parameter χ :=
h̄/

√
|ε|mR2 serves as a dimensionless Planck’s constant, and

we have rescaled time by introducing τ = t/
√

mR2|ε|. Using
the fact that |�(φ,τ )|2 is the probability density equivalent to
the particle density ρ(φ,τ ) in the zero-temperature classical
theory discussed in Sec. II, the quantum Hartree potential
similarly reduces to the cosine form given in Eq. (4).

For LRI, the Gross-Pitaevskii theory is valid in the high
density limit where correlations are weak: for an early

discussion in the context of the charged Bose gas, see
Ref. [110]. The validity of the Gross-Pitaevskii treatment with
LRI has also been established rigorously for boson stars [111]
and most recently for dipolar BECs [112]. For a more detailed
discussion of the validity of the Gross-Pitaevskii theory for our
system, see Appendix B.

B. Quantum Euler equations

The GGPE can be recast in a hydrodynamic form that
closely resembles the classical Euler equations. Expressing the
generally complex condensate wave function as � = √

ρeiS/χ

we can transform Eq. (6) into two coupled equations describing
the evolution of the density ρ and a velocity profile v = ∂θS.
The dynamics is then controlled by the quantum Euler, or
Madelung, equations [104]

∂τρ + ∂θ (ρv) = 0, (7a)

∂τ v + v∂θv + sgn(ε)∂θ� = −∂θ

(
χ2

2

∂2
θ

√
ρ√

ρ

)
. (7b)

The expression on the right-hand side is often referred to
as the quantum pressure; physically it arises from zero-point
kinetic energy. Here, it is written as the gradient of the so-called
quantum potential

Q = χ2

2

∂2
θ

√
ρ√

ρ
(8)

and is the only formal mathematical difference between the
classical Euler equations, given in Eqs. (3a) and (3b), and the
quantum ones.

The quantum versus classical aspects of the system can be
better appreciated by writing the Gross-Pitaevskii energy func-
tional (5) in terms of the hydrodynamic variables ρ and v [104]:

E[�,�∗] = 1
2 〈v2〉ρ + 1

2 〈�〉ρ + 〈Q〉ρ = Tcl + Ucl + EQ,

(9)

where the averages are taken over the density ρ(θ ).
When χ = 0, this agrees with the classical result in the
zero-temperature approximation. We refer to the contribution
of the quantum pressure term as the quantum energy EQ. The
remaining terms resemble their classical counterparts: the
kinetic energy and the mean-field potential energy are denoted
by Tcl and Ucl, respectively.

C. Linear response: Plasma oscillations
and Bogoliubov dispersion

In this work, we focus on initial conditions that are close
to equilibrium. When violent relaxation occurs, it counterin-
tuitively moves us out of this regime, but linear response still
plays a key role at short times. Linearizing the hydrodynamic
equations (7a) and (7b) about a spatially homogeneous con-
densate with density ρ0 = 1/2π with zero velocity v0 = 0 we
obtain

∂τρ1 + ρ0∂τ v1 = 0, (10a)

∂τ v1 + ∂θ

[
sgn(ε)�[ρ1] + χ2

4ρ0
∂2
θ ρ1

]
= 0 (10b)
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which describe small excitations about the condensate. In
this linear approximation, each Fourier component evolves
as an independent oscillator with frequency ωk given by the
Bogoliubov dispersion relation [104]

ω2
k = 1

2

[
1
2χ2k4 + sgn(ε)δ|k|,1k2

]
. (11)

In the limit χ → 0, and for repulsive interactions (ε > 1),
we recover the classical plasma frequency ωpl = 1/

√
2 [76],

with quantum corrections only appearing at the quadratic level
ω±1 ≈ ωpl + O(χ2). The δ|k|,1 term reflects the fact that with a
uniform density only the k = ±1 modes feel the long-range
cosine interaction and are therefore responsible for plasma
oscillations. By contrast, the other modes (k �= ±1) evolve as
free massive particles with frequency ωk = (1/2)χ k2, which is
a purely quantum effect. Referring back to the nonequilibrium
phase diagram Fig. 1, these quantum modes are responsible for
the “free Schrödinger” regime on the right-hand side. In the
classical case, these modes have zero frequency and so take an
infinite time to appear. When the interactions are attractive
(ε < 1), the frequency is imaginary in the classical limit
indicating the Jeans instability, but quantum effects stabilize
the system providing χ >

√
2 [104].

We can estimate the importance of quantum effects by
comparing the magnitude of EQ to that of the total classical en-
ergy. During classical plasma oscillations, the energy alternates
between Tcl and Ucl such that these two terms are on average
of equal magnitude and we can compare EQ against either of
them. We therefore expect classical-like behavior provided∣∣∣∣EQ

Ucl

∣∣∣∣ � 1 (short times), (12)

where we have stressed that the above argument applies on
timescales on the order of the inverse Bogoliubov frequency
Eq. (11). In the classical limit, this corresponds to the timescale
shown in Fig. 2(a), whereas the timescale of the bicluster in
Fig. 2(b) is much longer, and so we may anticipate this criterion
to be insufficient in understanding the role of quantum effects
on the bicluster.

IV. NUMERICAL RESULTS: VIOLENT RELAXATION
IN THE QUANTUM REGIME

We now present the results of our numerical simulations
of the full GGPE for equivalent initial data to that used in
Fig. 2. In the case of the bicluster we have to contend with
the very different timescales provided by the fast microscopic
plasma frequency and slow the revival time. This makes the
computation quite challenging, but from the physical point of
view this is why biclusters are examples of QSS and hence
relevant to understanding late-time behavior and possible
thermalization. The fate of these structures in the quantum
theory is therefore of great interest. The details of our numerical
methods can be found in Appendix C.

A. Attractive interactions (ε < 0): Jeans instability
in the quantum regime

In the case of attractive interactions, the mean field potential
� favors clustering and this results in the Jeans-type instability.
In the classical theory, this occurs even for infinitesimal

interactions and leads to a cusp caustic with divergent density
as shown in Fig. 2(a). However, the Bogoliubov dispersion
relation (11) predicts that quantum zero-point motion stabilizes
the system if χ >

√
2. We have confirmed this threshold

numerically. An explicit realization of the quantum Jeans
instability is presented in Fig. 3 for χ = 10−3. We see that
quantum effects temper the caustic and replace it with an
interference pattern such that the density is always finite.

It is important to note that the classical and quantum
dynamics only differ qualitatively after the formation of the
first cusp, as can be seen by comparing to Fig. 4 where we plot
the trajectories of noninteracting test particles which simply
feel the force generated by the mean field potential �(θ,τ )
obtained in making Fig. 3 (this is the quantum analog of
the test-particle model discussed in Ref. [70]). This can be
easily understood by appealing to energy conservation, and in
particular to Eq. (9). At early times 〈|∂θ

√
ρ|2〉 � O(1) and

consequently EQ � O(χ2) � |Ucl|. However, the classical
dynamics leads to a folding of the phase space distribution
(see Fig. 6), or equivalently a pointwise divergent density
profile, and this eventually makes the quantum energy relevant,
EQ  Ucl, at which point interference effects kick in.

B. Repulsive interactions (ε > 0):
Bicluster in the quantum regime

Biclustering is surprising not only because it exists at all
(in the presence of repulsive interactions), but also because it
occurs at half the wavelength of the mean field cosine potential.
These mysterious features can be explained within the classical
theory by using a multiscale analysis [76] that will be discussed
in Sec. V. However, in order to put our quantum results in
context, it is worth quoting the main result now, namely,
that there is an emergent single-particle (i.e., noninteracting)
description with the effective potential

Veff = A2ω2
pl

8
cos 2θ. (13)

Apart from the cos 2θ spatial dependence, we note that the
depth of Veff is proportional to the square of the amplitude of
the initial plasma fluctuations, and that this predicts a periodic
revival of biclusters with period Tbc = π/(

√
2Aωpl). We shall

adopt this as our timescale when plotting the dynamics in the
repulsive regime, and note that it is generally much longer than
the plasma period used for the attractive case.

In Fig. 5, we plot solutions of the GGPE in the repulsive
case. In the top row, we vary the effective Planck constant χ ,
and in the bottom row we vary the magnitude of the initial
velocity perturbations v0(θ ) = Aωpl cos θ .

All plots have an initially homogeneous density profile
ρ0 = 1/2π . The top left-hand panel of Fig. 5(a) corresponds
to the strongly quantum regime χ � 1 where we see that the
clustering has been almost completely eliminated. Moving to
the right, χ is decreased towards the semiclassical regime
and biclustering appears, although this by itself does not lead
to structures closely resembling the classical case and the
temporal period is quite different from the classical bicluster
formation time Tbc. In fact, to retrieve something resembling
the classical behavior, we also need the initial plasma wave’s
amplitude Aωpl to not be too small as illustrated by the bottom
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FIG. 3. Quantum Jeans instability: dynamics of the density profile
ρ(θ,τ ) for attractive interactions (ε < 0) with initial conditions ρ0 =
(1 + 0.01 cos θ )2 and v0 = 0 with χ = 10−3. Interference tempers
the (singular) classical caustic and replaces it with a characteristic
interference pattern. The dynamical timescale is set by ωpl ≈ ω1 =
Im(i/

√
2)

√
1 − χ 2/2 [Eq. (11)].

row in Fig. 5. We emphasize that this increase in classical
behavior as Aωpl is increased occurs for a fixed value of χ .

Our numerical simulations suggest that while the semiclas-
sical condition identified on energetic grounds in Eq. (12) may
be necessary for realizing violent relaxation in the quantum
regime, it is certainly not sufficient: one also needs a perturba-
tion away from equilibrium that is large enough to overcome
quantum fluctuations.

V. QUANTUM PRESSURE AND THE BICLUSTER

As alluded to above, the emergence of the Jeans insta-
bility for attractive interactions can be accurately diagnosed
via a straightforward linearization of the quantum problem
(Bogoliubov theory). Furthermore, the criterion for classical
behavior given in Eq. (12) is also obeyed in the presence of
attractive interactions. By contrast, the repulsive case is more
subtle and the bicluster’s underlying mechanism is inherently
nonlinear. It therefore requires a more sophisticated analysis
even in the classical regime. To understand this behavior, we
first sketch (details are relegated to Appendix D) the derivation
of the effective potential Veff(θ ) in the classical limit, which was
first presented in [75,76], and argue that the same procedure
can be carried out in the quantum regime provided χ � 1.
This then provides an effective single-particle picture where
semiclassical intuition applies.

Starting from the classical Euler equations (3a) and (3b),
and performing the analogous linearization procedure to that
outlined in Sec. III C, one finds a set of independent Fourier
modes all of which have zero frequency, with the exception of
the k = ±1 modes which oscillate with the plasma frequency

FIG. 4. Trajectories of test particles, each computed by solving
Newton’s equations for a particle moving in a given external potential
V (θ,τ ) = −Mχ [ρ(τ )] cos θ . This is exactly the mean field potential
�(θ,τ ) computed numerically in the quantum dynamics shown in
Fig. 3, where Mχ [ρ(τ )] is the self-consistent magnetization.

ωpl = √
2. This defines a “fast” scale, wherein small oscilla-

tions of the first Fourier component take place. Anticipating the
bicluster that takes place on long timescales, a slow variable
T = Aτ is introduced which reflects the fact that the timescale
at which nonlinear effects become important is dictated by A,
the amplitude of the initial plasma wave. Next, the velocity field
may be decomposed into a fast part v1 evolving under the linear
equations, and a slow part u(T ) that is influenced by nonlinear
effects (the variations of the density can be neglected). A time
average then yields

∂T u + u∂θu = − 〈v1∂θv1〉T := − 1

A2
∂θVeff(θ ),

where Veff(θ ) = A2ω2
pl

8
cos 2θ. (14)

This is a forced Burgers equation governing the flow of the ve-
locity field. The forcing term involves an effective potential Veff

with half the wavelength of the mean field potential �. Thus,
we have obtained the nontrivial result that the slow variables
are governed by a different potential than the original. Burgers’
equation is well known to give rise to shock waves where
the velocity field becomes multivalued and hence the equation
breaks down [113,114] and one needs some physical criterion
for determining the fate of the system after the shockwave. In
our problem, these shockwaves are the caustics associated with
clustering. As depicted in Fig. 6, they occur when the “sheet”
of initial data in phase space folds over. When projected onto
the (θ,τ ) plane, we obtain cusp-shaped caustics: there are three
trajectories passing through each spatial point inside the cusp
and one outside. Two of the trajectories coalesce at each point
along the cusp edges (known as fold lines) and three coalesce
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FIG. 5. Dynamics of the density profile ρ(θ,τ ) for ε > 0 in the log χ -Aωpl plane in correspondence with the different regimes plotted
in Fig. 1. The initial conditions in all panels are ρ0 = 1/2π and v0 = Aωpl cos θ and time has been rescaled by Tbc. For χ � 1 no bicluster
develops (a). For Aωpl < χ � 1 (b) classical plasma oscillations occur, and a very weak π periodic focusing occurs, but is dispersed by the
quantum pressure before the classical focusing time Tbc. In (c)–(f) χ is held fixed while the plasma amplitude Aωpl is tuned. This has the
effect of a deeper effective potential Veff [see Eq. (15)], and consequently a more classical-like pattern emerges. This change of behavior is
captured by the nonequilibrium phase diagram shown in Fig. 1, and is discussed at length in Sec. VI. (a) χ = 5.0 × 101, Aωpl = 5.0 × 10−3. (b)
χ = 5.0 × 10−1, Aωpl = 5.0 × 10−3. (c) χ = 2.5 × 10−3, Aωpl = 5.0 × 10−3. (d) χ = 2.5 × 10−3, Aωpl = 1.3 × 10−2. (e) χ = 2.5 × 10−3,
Aωpl = 2.5 × 10−2. (f) χ = 2.5 × 10−3, Aωpl = 5.0 × 10−2.

at the cusp tip, which is the most divergent part of the caus-
tic. Quantum mechanically, the cusp is therefore associated
with three-wave interference giving rise to the characteristic
patterns we observe in Fig. 3, and in the more semiclassical
panels in Fig. 5, which will be discussed further in Sec. VII.
This highly coherent (nonergodic) dynamics is a consequence
of the long-range nature of the two-body potential.

How do these semiclassical arguments fare in the deep
quantum regime where quantum zero-point motion can domi-
nate? The essential ingredient in obtaining the forced Burgers
equation is the presence of two well-separated timescales.
Therefore, provided ωk=±1 � ωk �=±1, the above analysis is
valid with the caveat that we must include the effects of
the quantum pressure. This condition is naturally satisfied
provided χ � 1, as can be clearly seen from Eq. (11). Naively,
by appending the full quantum pressure to the right-hand side
of Eq. (14) we find

∂T u + u∂θu = − 1

A2
∂θ [Veff + Q]

= − 1

A2
∂θ

[
A2ω2

1

8
cos 2θ + χ2

2

∂2
θ

√
ρ√

ρ

]
, (15)

while a more sophisticated analysis would subtract off the
linearized part of the quantum pressure whose influence is
accounted for by the Bogoliubov dispersion relation (11).
Nevertheless, Eq. (15) correctly predicts the parametric com-
petition between the quantum pressure and the classical ef-
fective potential induced by the time-averaged linear plasma
oscillations.

We therefore have two distinct semiclassical limits gov-
erning the nonlinear dynamics of the HMF model. On short
timescales, the condition χ � 1 is sufficient to ensure that
plasmalike oscillations occur, while the much more stringent
condition that χ � 2Aωpl is required to ensure that the quan-
tum pressure does not disperse the bicluster. As before, such
conditions can be reexpressed in terms of energetics where
they assume the form∣∣∣∣EQ

Ucl

∣∣∣∣ � 1 (short times),∣∣∣∣ EQ

〈Veff〉ρ

∣∣∣∣ � 1 (long times). (16)

We emphasize that while the above analysis uses a sinusoidal
velocity profile as an initial condition, the results are not overly
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FIG. 6. The formation of a cusp catastrophe: illustration of how
a line of initial data in phase space (i.e., a vanishingly thin water-bag
distribution) is folded over by the dynamics. Projecting down onto
the θ -t plane produces a cusp-shaped envelope on which the density
of trajectories diverges. This cusp catastrophe is structurally stable
against perturbations and hence occurs generically without the need
for special initial conditions. In the case of the bicluster, this folding
occurs simultaneously at two symmetric points around the ring.

sensitive to this choice. This parallels the classical case, where a
thin, but finite, spread in the momentum of an initial water-bag
distribution still leads to the clustering phenomenon discussed
above. Likewise, in the quantum case, deviations from the
initial conditions chosen above do not have a dramatic effect
on the dynamics.

VI. NONEQUILIBRIUM PHASE DIAGRAM

We have already highlighted the fact that systems with LRI
take an anomalously long time to come to equilibrium and,
therefore, rather than equilibrium states, they are characterized
by their QSS. This motivates the out-of-equilibrium phase
diagram presented in Fig. 1 which we now explain.

The horizontal axis measures the effective Planck constant
χ and the vertical axis measures the initial amplitude of the per-
turbation from equilibrium due to plasma oscillations. This is
equivalent to a dependence on the initial energy of the system.
As we are working with a closed system with conserved energy,
we may interpret this behavior in the microcanonical ensemble
as a proxy for temperature in the canonical ensemble. We
emphasize, however, that the bicluster itself is not predicted by
a canonical treatment, i.e., a system at equilibrium with a heat
bath [74]. Rather, this behavior is inherently nonequilibrium
and driven by the long-range interacting nature of the HMF
model.

To distinguish the possible regimes, it useful to return to
Fig. 5, where results are shown first for Aωpl fixed as χ is tuned
[Figs. 5(a)–5(c)], and subsequently for χ fixed as Aωpl is tuned
[Figs. 5(c)–5(f)]. In the first three figures, the most prominent
feature is the changing timescale, which is a consequence of

Eq. (11), and in particular the dependence of ωk=±1 on χ .
Additionally, it is clear that the amplitude of modulations is
dramatically different between the three figures, and this is
most easily understood on energetic grounds. Initially, all three
simulations have all of their energy stored as Tcl = 1

4A2ω2
pl. In

each case, however, the energetic cost of density modulations
is very different. In Fig. 5(a), the system behaves essentially
as a free-Schrödinger equation which forms a standing wave,
such that ρmax � A, while in contrast both Figs. 5(b) and 5(c)
are driven at least partially by the interplay between linear
plasma oscillations and nonlinear effects as evidenced by the
excitation of a π -periodic density wave. The consequences are
markedly different, however, in that the density modulations in
Fig. 5(b) are a perturbation about a homogeneous background,
whereas in Fig. 5(c) they are the O(1) effect that dominates
the density profile, and which signals the onset of nonlinear
effects.

In Figs. 5(c)–5(f), we can see the emergence of the wave
version of the cusp catastrophe as Aωpl is made larger and
larger. This enhances nonlinear effects allowing them to dom-
inate the free-Schrödinger dispersion of the quantum pressure.
Eventually, a clear bimodal cusplike profile emerges, which
signals the validity of the time-averaged treatment, and by
association the presence of violent relaxation.

With these features in hand, we may construct a nonequi-
librium phase diagram shown in Fig. 1. Note that our initial
conditions are limited to the linear regime so that two well-
separated timescales exist and we can perform a multiscale
analysis. The crossover between the biclustered regime and
the plasma oscillation regime occurs when χ ≈ 2Aωpl. This is
predicted by Eq. (15) and confirmed by the emergence of O(1)
density fluctuations, but the absence of interference effects, in
Fig. 5(c). The crossover between the plasma-dominated and
free-Schrödinger regimes is found by considering Eq. (11),
and we take χ ≈ 1. Plotting these, as in Fig. 1, we see that the
free-Schrödinger regime does not overlap with the bicluster
regime for any combination of χ and Aωpl.

VII. WAVE CATASTROPHES

The cusp-shaped caustics seen in Figs. 2 and 4 result from
(imperfect) focusing of classical trajectories, and they are
described by Thom’s famous catastrophe theory [87–89]. The
utility of this theory is that, for each dimension, structurally
stable singularities only take on certain universal shapes. Struc-
tural stability implies stability against perturbations and hence
these objects occur in a wide range of physical phenomena
without the need for special symmetry or fine tuning. This
universality also extends into the wave or quantum realm
where catastrophes give rise to wave patterns known as wave
catastrophes or diffraction integrals [93]. Using a path integral
approach provides a rather well-defined connection between
the classical and quantum dynamics which we now discuss;
details can be found in Appendix E.

Catastrophes are organized into a hierarchy specified by
their codimension, with the higher catastrophes containing
the lower ones. The simplest is the fold which is generated
by the cubic function Sf (C1,s) = C1s + s3, while the cusp,
which is made of two folds, is generated by a quartic function
Sc(C1,C2; s) = C1s + C2s

2 + s4. The parameters {C1,C2} are
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known as control parameters: the fold has one, whereas the
cusp has two. In the present problem these are the spatial and
temporal coordinates, while the state variable s parametrizes
paths (e.g., the initial angles θ0 around the ring at τ = 0, see
Fig. 4 and also Appendix E). In more physical language, a
generating function is an action and its saddles give rise to the
classical paths via the principle of stationary action ∂S/∂s = 0.
Catastrophes are associated with coalescing saddles. The fold,
being cubic, has two possible stationary points which coalesce
on the caustic itself at C1 = 0. The cusp has three possible
stationary points: these coalesce in pairs as one crosses either
of the two fold lines specified by C1 = ±√

8/27(−C2)3/2, and
the most singular point is the tip of the cusp at C1 = C2 = 0
where all three stationary points coalesce together.

The fact that a catastrophe can be expressed in terms of
an action provides a route to quantization motivated by the
Feynman path integral prescription. Here, one sums over all
paths, not just the classical ones, and the amplitude associated
with each path is exp(iS/h̄). In this way, one obtains the wave
catastrophes [93]

�(C) = 1√
h̄

∫ ∞

−∞
eiS(C;s)/h̄ ds, (17)

which are the universal wave functions replacing the divergent
classical catastrophes. In the case of the fold, the cubic action
gives rise to the Airy function Ai(x) [94]:

�f (C1) = 1√
h̄

∫ ∞

−∞
ei(C1s+s3)/h̄ ds

= 2π

31/3h̄1/6 Ai

(
C1

31/3h̄2/3

)
. (18)

This implies that as h̄ is varied, the overall amplitude of the
fold caustic diverges as h̄−1/6 while the fringe spacing vanishes
as h̄2/3. The exponent 1/6 is known as the Arnold index and
the exponent 2/3 is known as the Berry index.

For the cusp one obtains

�c(C1,C2) = 1√
h̄

∫ ∞

−∞
ei(C1s+C2s

2+s4)/h̄ ds (19)

= 1

h̄1/4 Pe

(
C2

h̄1/2 ,
C1

h̄3/4

)
, (20)

where

Pe(a,b) =
∫ ∞

−∞
ei(bt+at2+t4) dt (21)

is the Pearcey function [115] which is a two-dimensional
complex-valued function that is tabulated in mathematical
handbooks [116]. We can read off the Arnold index for the
cusp as being 1/4 and the two Berry indices are 1/2 and
3/4. The cusp caustic generated by classical paths (obeying
∂�c/∂s = 0) is plotted in Fig. 7(a) and the Pearcey function
in Fig. 7(b).

By comparing Fig. 7(b) with Figs. 3, 5, and 8 we indeed
identify the characteristic Pearcey pattern as must be the
case on the grounds of structural stability [89]. Thus, the
new length scales and timescales introduced by quantum
effects in the HMF problem are of universal origin and have
nontrivial scaling properties that differ from naive expectations

FIG. 7. Classical trajectories in two dimensions will generically
form cusp-shaped caustics where the density of trajectories diverges,
as shown in (a). In the wave or quantum theory interference removes
the singularity and replaces it with a universal wave function, the
Pearcey function Pe(a,b), which is valid in the immediate locale of
the caustic. In (b) we plot |Pe(a,b)|. Note that this function contains
interesting subwavelength features such as vortices at its nodes. (a)
Cusp catastrophe. (b) Pearcey function.

based on the Schrödinger equation. Replacing h̄ in the above
formulas by χ shows that the magnitude of the spatial density
modulations scale as |�c|2 ∼ χ−1/2, while the length scales
and timescales vary as ∼ χ−3/4 and ∼ χ−1/2, respectively.

FIG. 8. Quantum biclusters: dynamics of the density profile
ρ(θ,τ ) for repulsive interactions (ε > 0) with initial conditions
ρ0 = 1/2π and v0 = Aωpl cos θ . This simulation used Aωpl = 0.01,
χ = 0.005, and included Fourier components up to kmax = 58. The
timescale is in units of the classical bicluster formation time Tbc =
O([Aωpl]−1) which is two orders of magnitude larger than the inverse
plasma frequency ω−1

pl relevant in the attractive case.
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These results hold close to the origin of each cluster; further
away nonuniversal effects creep in (finite system size and
interference between Pearcey functions). In particular, in Fig. 8
we see well-defined Pearcey functions at the first clustering
events but as time progresses the interference patterns become
altered, which occurs both because of interference with the tails
of the earlier Pearcey functions and also because the underlying
classical cusps become narrower with time [76].

VIII. COMMUTATIVITY OF THE THERMODYNAMIC
AND CLASSICAL LIMITS

The noncommutativity of the N → ∞ and t → ∞ limits
for systems with LRIs is well known [117], and gives rise to
the characteristic feature that if N → ∞ first a nonequilibrium
state will never relax to Maxwell-Boltzmann equilibrium.
Furthermore, in single-particle quantum mechanics there is an
analogous situation for the h̄ → 0 and t → ∞ limits, such that
completely different results are obtained in the semiclassical
and adiabatic limits [118] and also in quantum systems whose
classical limit is chaotic [119]. We shall now discuss whether
the N → ∞ and h̄ → 0 limits commute in order to complete
the final link between these three important limits.

A significant hint comes from comparing the classical
and quantum Euler equations [Eqs. (3) and (7), respectively]
and noting that the former is obtained from the full Vlasov
equation (2) via the zero-temperature approximation. The
zero-temperature approximation ignores thermal fluctuations
of the momentum f (θ,L) ≈ ρ(θ )δ[v(θ ) − L] and hence gives
rise to a well-defined velocity profile v. The same effect is
realized in the quantum case by a different mechanism: BEC
gives rise to a well-defined phase S(θ ) and hence a well-defined
velocity profile via v = ∂θS. In the limit χ → 0 of Eq. (7) we
obtain exactly the classical Euler equations (3).

This is interesting because for finite time, the classical
equations of motion provide an exact description of a quantum
system in the h̄ → 0 limit [119], while the Vlasov equation
(2), which is a mean field approximation at finite N , provides
an exact description of the classical dynamics in the thermody-
namic (N → ∞) limit [102]. Additionally, motivated by work
on boson stars [111], Chavanis has argued that Eq. (6) is exact
in the thermodynamic limit [104], presumably when restricted
to Bose-condensed initial conditions.

Considering a generic quantum state as an initial condition
leads to a noncommutativity of limits as illustrated in Fig. 9.
In particular, taking the classical limit h̄ → 0, followed by the
thermodynamic limit N → ∞, leads to an exact description in
terms of the full Vlasov equation. By contrast, if the GGPE cap-
tures the leading order behavior in the N → ∞ limit, at least
for initially Bose-condensed states, then the Euler equations
are obtained; these are only a particular (zero-temperature)
limit of the Vlasov equation. This suggests that the recovery of
the full Vlasov equation requires features beyond the GGPE,
the most obvious of which are phase fluctuations. We note
in this context that Chavanis has proposed using the Wigner
function to obtain a more complete description of the quantum
dynamics [120].

Finally, we note that both χ → 0 and N → ∞ both cause
the density of states of the full quantum many-body spectrum
to diverge, and so may be expected to yield similar results.

FIG. 9. Schematic depiction of noncommutativity of the ther-
modynamic N → ∞, and classical h̄ → 0 limits for the finite time
dynamics of pure quantum states. The sequence h̄ → 0 followed by
N → ∞ takes us from the quantum to classical many-body descrip-
tions and then to the Vlasov equation which gives an exact description
of the classical dynamics in the thermodynamic limit. Conversely,
if the GGPE captures the leading order dynamical behavior in the
thermodynamic limit, then the sequence N → ∞ followed by h̄ → 0
leads to the classical Euler equations, which emerge from the Vlasov
equation in the zero-temperature approximation.

The interplay between the three limits h̄ → 0, t → ∞, and
N → ∞ for long-range interacting systems is an interesting,
and to the authors’ knowledge open, problem, and is an obvious
avenue of investigation for quantum QMB systems with LRI
in general. Its resolution may help shed light on what lessons
learned from the study of classical systems with LRI can be
carried over into the quantum regime.

IX. CONCLUSIONS AND FUTURE PROSPECTS

Motivated by ongoing success in the laboratory creating
atomic and molecular systems with LRI, we have made a
preliminary study of violent relaxation in a quantum system.
This nonergodic dynamical process is a signature of LRI and
leads to the formation of slowly evolving patterns with rich and
universal structure rather than to the more standard featureless
equilibrium state. Although we investigated the dynamics in
a specific model, namely, the HMF model, it is known to
reproduce many of the generic features of many-body systems
with LRI.

By choosing initial conditions whose long-time propagation
is well understood in the classical limit, we were able to
isolate the role played by the quantum pressure in modifying
the dynamics. The consequences for attractive interactions
(ε < 0) are fairly straightforward; whereas the classical self-
focusing forms cusp-shaped caustics in the θ -τ plane where the
density diverges, these are replaced by smooth but oscillating
Pearcey wave catastrophes in the quantum dynamics. Similar
structures have been seen (although they are often not identified
as wave catastrophes) in other studies on condensates, both
theoretical and experimental, such as BECs hitting obstacles
[121], atom optics with BECs [122–124], and self-trapping in
polariton BECs [84]. The underlying connection is nonergodic
dynamics. Indeed, wave catastrophes are expected to be a
universal feature of quantum dynamics in mean field or close
to mean field regimes [125], and more rigorous mathematical
analysis of nonlinear Schrödinger equations demonstrates this
to be true provided the nonlinearity obeys certain constraints
[126–128]. A key implication of the appearance of wave
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catastrophes in the present problem is the emergence of new
spatial and temporal scales that are not present in the classical
problem and which scale in a nontrivial way as the effective
Planck’s constant χ is varied.

The repulsive (ε > 0) dynamics also features cusp caustics
although in this case the cusps come in pairs, or biclusters, and
the timescale for their formation is generally much longer than
in the attractive case. The bicluster has special significance
because it is an example of a QSS, i.e., a slowly evolving
nonequilibrium state that is a paradigm of LRI. As in the
attractive case, the biclusters are smoothed by interference and
become Pearcey functions. Deeper in the quantum regime,
zero-point motion becomes dominant and also shifts the
timescales for cluster formation and can even stabilize some
states against clustering. The bicluster is more sensitive to
quantum pressure than the attractive monocluster and the
reduced Planck’s constant χ must be surprisingly small before
classical behavior emerges; specifically, the long-time criterion
is given by χ � Aωpl, where Aωpl is the amplitude of the
velocity fluctuations (“plasma” waves) in the initial state. At
zero temperature, one can construct a nonequilibrium phase
diagram characterizing the QSS as a function of just χ and
Aωpl which are the two dimensionless quantities specifying
the problem.

In addition to investigating the dynamics, we point out that
there is a lack of commutation between the thermodynamic
(N → ∞) and classical (χ → 0) limits. Performing the χ →
0 limit first and then N → ∞ leads to the Vlasov equation,
whereas the opposite order leads to the Euler equations. The
latter equations are a special case of the former, corresponding
to the zero-temperature limit. We hope that in the future
someone will take up the challenge this presents by including
non-mean-field quantum states that go beyond the Gross-
Pitaevskii theory (at least for finite N ) and thus examine the
implications this has for thermalization.

The HMF model provides a simple arena in which to
investigate the essential features of LRI. Atoms trapped in
optical cavities come close to realizing the HMF model
[60] and display a symmetry breaking transition from a
homogeneous to an ordered density [54–62] that has been
observed experimentally [32] and which is essentially the
same phenomenon as clustering. Although the atom-cavity
system is intrinsically open, and hence includes noise and
friction, it would be interesting to see if there are regimes,
e.g., in very high-finesse cavities, where quantum pressure
can dominate other sources of noise and stabilize the system
against ordering. Another possible realization of this work
is in “closed” XY -type spin models such as those that can
be realized with cold Rydberg gases and ensembles of polar
molecules [97–99]. Although the interactions in these systems
are not infinite ranged, they can easily extend over the entire
sample. Yet another quantum system with LRI, perhaps the
most advanced from the experimental point of view [1–12],
are dipolar BECs. The collapse instability has already been
observed in these “quantum ferrofluids” [3,4], but it would be
interesting to see whether they also display violent relaxation in
a geometry where the interactions are predominantly repulsive.

We close by emphasizing that the wave catastrophes
(Pearcey functions) studied in this paper are universal features
of dynamics. They obey self-similar scaling laws and can

therefore be regarded as nonequilibrium generalizations of
phase transitions [125,129]. We hope to expand on this line of
inquiry in the future, both for short- and long-range interacting
systems.
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APPENDIX A: SINUSOIDAL MEAN FIELD POTENTIAL

In Sec. II we claim that �(θ,τ ) always takes the form of
a sinusoid. This result may seem remarkable at first glance
but in fact follows from a well-known and very simple re-
sult. Expanding ρ(θ,τ ) = ∑

k ρ̂k(τ )eikθ , and writing �(θ,τ ) =
Re

∫ π

−π
ρ(φ,τ )ei(θ−φ)dθ one can easily see that �(θ,τ ) =

2πReρ̂1(τ )eiθ . In general, ρ̂k(τ ) = M(τ )eiϕ(τ ), where M(τ )
and ϕ(τ ) are two real-valued functions determined by solving
for the evolution of the full density profile ρ(θ,τ ). Simple
algebra yields

�(θ,τ ) = M(τ ) cos[θ − ϕ(τ )] (A1)

as claimed in the main text. This derivation applies to both
the quantum and classical Euler equations and can be easily
extended to the Vlasov equation by treating a generic phase
space density f (θ,L,τ ) as a linear combination of zero-
temperature ones.

APPENDIX B: VALIDITY OF THE
GROSS-PITAEVSKII TREATMENT

It is often stated that Bose condensation in one-dimensional
systems is forbidden due to phase fluctuations, even at zero
temperature [109]. Formally, Bose condensation implies spon-
taneous symmetry breaking of the global, and continuous, U(1)
symmetry which can be expressed in terms of the field operator
as �̂ → eiθ �̂, and according to the Mermin-Wagner theorem
[107,108], symmetry breaking is forbidden in one-dimensional
systems. However, this theorem does not apply in finite systems
such as a ring of finite radius R where the long wavelength
fluctuations which destroy the condensate are cut off by the
finite system size. Furthermore, the Mermin-Wagner theorem
assumes short-range interactions and so it does not apply
in the presence of LRIs, as evidenced by the fact that the
one-dimensional HMF model, quantum or classical, exhibits
critical phenomena such as the paramagnetic-ferromagnetic
transition [74].

In typical atomic gases the interatomic potential V (r −
r′) is deep and falls off asymptotically as r−6, being of
the isotropic van der Waals type, which is considered short
range from a statistical mechanics point of view [130]. In
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order to provide a low energy description consistent with
the Hartree approximation, V (r − r′) must be replaced by a
pseudopotential gδ(r − r′), where g = 4πh̄2as/m, as being
the s-wave scattering length [131]. This reduces the integral
in � to a purely local nonlinearity ∝ |�|2 such that the
equation of motion for � becomes the usual Gross-Pitaevskii
equation [105,106]. By contrast, if the potential is long ranged
and gently varying, like the sinusoidal potential in the HMF
model, it is neither necessary nor possible to replace it by a
δ-function pseudopotential and one instead retains the integral
in �. The Gross-Pitaevskii equation then takes the form of the
integrodifferential equation, or GGPE, given in Eq. (6). This
form of GGPE has previously been successfully employed to
treat dipolar Bose gases [132–134] and has been rigorously
justified in Ref. [112].

In the presence of long-range interactions, it is the high-
density regime where Gross-Pitaevskii theory applies. A
classic example of this is the charged Bose gas where the
criterion for weak correlation is a0(N/V )1/3 � 1, where
a0 = 4πε0h̄

2/mq2 is the Bohr radius associated with the
Coulomb interaction between particles of charge q [110]. In
other words, the interactions are weak if the Bohr radius is
large in comparison to the interparticle spacing. A related
problem is provided by boson stars where rigorous analysis
has demonstrated that the ground state energy asymptotes to
the Hartree value in the thermodynamic limit [111]. The high
density regime is realized naturally in the N → ∞ limit, and
so it is reasonable to assume that a Gross-Pitaevskii treatment
is justified for a system of indistinguishable bosons interacting
via LRI.

APPENDIX C: NUMERICAL METHOD

To solve the evolution of the GGPE we use the momentum
space representation of Eq. (C1):

iχ∂τ ak = χ2

2
k2ak + sgn(ε)�kk′ak′ := H̃kk′ak′ , (C1a)

�kk′ = 1

2
(Mδk+1,k′ + M∗δk,k′+1), (C1b)

M =
∑
k∈Z

a∗
k ak+1 =

∫ π

−π

|�(τ,θ )|2eiθdθ. (C1c)

This approach is advantageous because, unlike a generic
two-body potential, the cosine potential only couples adja-
cent momentum modes. This leads to a tridiagonal pseudo-
Hamiltonian H̃kk′(τ ) defined in Eq. (C1a), whose time depen-
dence is inherited from the evolution of the order parameter
by way of the mean field potential. The pseudo-Hamiltonian
is truncated at ±kmax and a second-order implicit integration
scheme based on the Dyson series (described below) is used
to evolve forward in time.

Given some state ak(τn) and time τn we first define a time
evolution operator Ukk′[τn,	τ ] given explicitly by

U (τn,	τ ) = 1 − i	τH̃kk′(τn), (C2)

where H̃kk′ is the pseudo-Hamiltonian appearing in Eq. (C1)
and the time step is sufficiently small so as not to invalidate
Von Neumann error analysis (i.e., 	τ < 1/2k2

max). The zeroth

order approximation of ak(τn+1) is taken to be

a
(0)
k (τn+1) = Ukk′(τn,	τ )ak′(τn). (C3)

Proceeding iteratively, the mth approximation is found by
solving the equation

U
(m−1)
kk′

(
τn+1, − 	τ

2

)
a

(m)
k′ (τn+1) = Ukk′

(
τn,

	τ

2

)
ak′(τn),

(C4)

where U (m−1) uses the (m − 1)th approximation of ak(τn+1).
This process is repeated until the overlap between successive
states is unity within one part per million. Explicit schemes
were also tested, and were found to give monotonically
increasing error in the norm of �; successful simulation of
long-time behavior considered in this paper (i.e., bicluster)
requires an implicit scheme.

Finally, we note that to simulate the semiclassical behavior
of the bicluster, it is necessary to include an unexpectedly large
number of Fourier components. This is related to representing
the small amplitude plasma wave v = Aωpl sin θ in the GGPE
form. In particular, one must Taylor expand exp[iS/χ ]. Since
v = ∂θS we have S = O(Aωpl). As is discussed in the main
text, classical-like behavior emerges when Aωpl/χ � 1, and
to obtain an accurate approximation of the wave function’s
Fourier transform requires that (Aωpl)kmax/(kmax!) � 1 where
kmax is the largest Fourier component in the simulation.

APPENDIX D: CLASSICAL DESCRIPTION OF THE
FORMATION OF THE BICLUSTER

For repulsive interactions, linearized dynamics describing
{v̂|k|=1,ρ̂|k|=1} are oscillatory; following Ref. [76] we refer to
this excitation as a plasma wave. For the initial conditions we
choose v1(θ,0) = Aωpl cos θ and ρ(θ,0) = 1/2π , where A �
1, corresponding to a uniform density plus a small position-
dependent velocity modulation v1(θ ) = Aωpl cos θ . In direct
analogy with Eq. (11), the solutions to the linearized equations
of motion with these initial conditions are [76]

ρ1 = − A

2π
sin(ωplτ ) sin θ, v1 = Aωpl cos(ωplτ ) cos θ,

(D1)
where ωpl := ω1 = 1/

√
2 denotes the plasma wave’s fre-

quency. As will be shown below, unlike for attractive interac-
tions, the formation of the bicluster is not driven directly by the
rapidly oscillating mean field potential, but rather by a slowly
evolving effective potential Veff induced by time-averaged
linear plasma oscillations.

As we first saw in Fig. 2, the bicluster forms very slowly in
comparison to the plasma period and this suggests a multiple
scales analysis [76]. Consequently, we consider v(θ,τ ) =
v1(θ,τ ) + Au(θ,T ) where T = Aτ is O(1) when the fast time
τ is O(1/Aωpl); note this hierarchy is only present for A � 1.
Inserting this expression into Eq. (3b), and averaging over
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many plasma oscillations, leads us to

A2∂T u − ω2
plA

2

2
sin(2θ ) cos2(ωplτ )︸ ︷︷ ︸

v1∂θ v1

+A2u∂θu + ω2
plA

2[cos θ∂θu − u sin θ ] cos(ωplτ ) =
∫ π

−π

ρ(θ ′,τ ) sin(θ − θ ′)dθ ′ − ∂v1

∂τ︸ ︷︷ ︸
L

time averaged ⇒ ∂T u + u∂θu = −〈v1∂θv1〉T := − 1

A2
∂θVeff(θ ) where Veff(θ ) =

[
A2ω2

pl

8
cos 2θ

]
. (D2)

In going from the first line to second line, we have used the fact
that the convolution on the right-hand side depends only on the
first Fourier component of the density ρ̂k=±1 and consequently
the quantity L vanishes at all times [135] because it satisfies
the linearized equations of motion. This gives a remarkably
simple result [75,76]: the slow velocity field u(θ,T ) obeys
a Euler equation driven by Veff(θ ) [compare with Eq. (3b),
the original Euler equation obeyed by the full velocity field].
Veff is derived from the square of the plasma wave and hence
corresponds to a potential with two minima around the ring,
giving rise to two symmetric clustering points. Furthermore,
there is negligible back-action on the plasma wave by the slow
dynamics:Veff is invariant under θ → θ + π , and consequently
only influences ρ̂k and v̂k for k even. We therefore expect the
linear dynamics of the first Fourier component to continue to
be a good approximation even at late times.

The first appearance of the bicluster state can be estimated
by considering Eq. (D2), whose characteristics are Jacobi ellip-
tic functions. Near a minimum of Veff these are approximately

cosine functions, and we can approximate Veff ≈ A2ω2
pl

4 (θ −
θmin)2. This identifies the frequency of the bicluster oscilla-
tion in the original fast time coordinate as ωeff = Aωpl/

√
2.

Consequently, the first bicluster will appear at one quarter the
oscillator period Tbc = π/2ωeff = π/

√
2Aωpl [76].

APPENDIX E: UNIVERSALITY IN SELF-FOCUSING

Pearcey functions can be expected as a generic consequence
of self-focusing in coherent quantum systems. The reasons
behind this are most easily understood in the case of linear
wave equations, however, the same underlying ideas generalize
for sufficiently weak nonlinear effects. Importantly, the HMF
model’s nonlinearity acts essentially as a linear, albeit time-
dependent, background potential, which is relatively insensi-
tive to the local structure of the wave function, and therefore
its dynamics is well modeled by linear theory.

First, let us consider the one-dimensional linear Schrödinger
equation

ih̄∂tψ = − h̄2

2
∂2
xψ + V (x)ψ, (E1)

with initial data ψ(x,0) = ψ0(x) = A(x) exp[iϕ(x)/h̄]. The
solutions of this equation may be expressed via the integral
equation

ψ(x,t) =
∫

dx ′K(x ′; x,t)ψ0(x ′)

= f (t)
∫

dx ′A(x ′)ei[Scl(x ′;x,t)+φ(x ′)]/h̄, (E2)

where we have used the fact that the propagator may be
expressed in terms of the classical action via K(x ′; x,t) =
f (t) exp[iScl(x ′; x,t)/h̄] [136]. In the limit that h̄ → 0, the
above integral is dominated by the stationary points (with
respect to x ′) of what we will now refer to as the generating
function � = Scl + φ.

The integral in Eq. (E2) is over all paths labeled by their
initial positions x ′ (see Fig. 4 for an illustration of the paths.)
We interpret x and t as control parameters of the function
�(x ′; x,t), and for a given choice of x and t we can generically
expect the stationary points of � to be locally quadratic in
x ′. If, however, we consider all values of x and t , then it is
generic that pairs of stationary points will coalesce leaving the
function � looking locally cubic (hereafter referred to as a
fold), and furthermore these cubic points may coalesce to give
locally quartic behavior � ∝ (x ′ − y ′)4 (hereafter referred to
as a cusp). Remarkably, it is not generic that these quartic
points may coalesce when one varies two control parameters
(in this case x and t) [89], and therefore these three possibilities
(saddle, fold, cusp) are exhaustive in a two-dimensional control
space.

The coalescing of saddles is in direct correspondence with
self-focusing behavior in the classical dynamics. This can
be understood as follows: a saddle represents a classical
trajectory, and a coalescing of saddles represents the focusing
of two trajectories. Catastrophe theory guarantees us that when
focusing occurs in a two-dimensional control space, we need
only consider folds and cusps. In an associated wave theory
such as the HMF model’s GGPE, this structure is inherited via
an Airy and Pearcey function structure, respectively.

This can be understood by taking Eq. (E2) and transforming
the control variables (x,t) → (C1,C2) and introducing s =
(κ/h̄)1/4(x ′ − y ′) (where κ = �(4)|y ′/4!) such that �(s; y,τ )
assumes its normal form [137]. For the cusp catastrophe this
is �(s; C1,C2) = h̄(s4 + C2s

2 + C1s) and this form is valid
when the control parameters (C1,C2) [or equivalently (x,t)]
are close to the cusp point or fold line. One can then expand
A(x ′) about s = 0 and assuming that A(x ′) = A0 + O(s), and
likewise that f (t) ≈ f0 in the vicinity of the cusp this leads to
the local form of the wave function [116]

ψ(C1,C2) ∼ f0A0

(κ

h̄

)1/4
∫

ds exp[i(s4 + C2s
2 + C1s)]

= f0A0

(κ

h̄

)1/4
Pe(C2,C1). (E3)

Similar considerations give Airy functions in coordinates
perpendicular to the fold lines.

Importantly, wave catastrophes are robust against both
perturbations in the initial data, and the precise details of the
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wave equation. This is the statement of structural stability upon
which catastrophe theory is built. This provides a justification
for identifying the structures in Figs. 3, 5(e), 5(f), and 8 as
Pearcey functions, and this claim is further vindicated by the
fact that in the classical theory these same structures are well
understood to result from the pileup of trajectories.

Finally, we comment on the robustness of these caustic
structures even in the presence of stronger local nonlinearities
such as in the GPE. One might expect that the universality
discussed above would be destroyed by a term such as

|ψ |2ψ since |ψ |2 ∼ O(1/
√

h̄) near a cusp point. Surprisingly,
however, rigorous mathematical studies have demonstrated
that even in this case the linear theory presented above is
trustworthy in the vicinity of the caustic for surprisingly large
nonlinearities. This is true both for Airy-function behavior near
a fold catastrophe [126,128], and Pearcey-function behavior
near a cusp catastrophe [127]. The fact that these structures are
robust, even against a local nonlinearity suggests, that linear
analysis should certainly hold for the much milder nonlocal
GGPE employed in this work.
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