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Scaling properties of monolayer graphene away from the Dirac point
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The statistical properties of the carrier density profile of graphene in the ground state in the presence of
particle-particle interaction and random charged impurity in zero gate voltage has been recently obtained by
Najafi et al. [Phys. Rev. E 95, 032112 (2017)]. The nonzero chemical potential (μ) in gated graphene has
nontrivial effects on electron-hole puddles, since it generates mass in the Dirac action and destroys the scaling
behaviors of the effective Thomas-Fermi-Dirac theory. We provide detailed analysis on the resulting spatially
inhomogeneous system in the framework of the Thomas-Fermi-Dirac theory for the Gaussian (white noise)
disorder potential. We show that the chemical potential in this system as a random surface destroys the self-
similarity, and also the charge field is non-Gaussian. We find that the two-body correlation functions are factorized
to two terms: a pure function of the chemical potential and a pure function of the distance. The spatial dependence
of these correlation functions is double logarithmic, e.g., the two-point density correlation behaves like D2(r,μ) ∝
μ2 exp [−(−aD ln ln rβD )αD ] (αD = 1.82, βD = 0.263, and aD = 0.955). The Fourier power spectrum function
also behaves like ln[S(q)] = −β

−aS

S (ln q)aS + 2 ln μ (aS = 3.0 ± 0.1 and βS = 2.08 ± 0.03) in contrast to the
ordinary Gaussian rough surfaces for which aS = 1 and βS = 1

2 (1 + α)−1 (α being the roughness exponent). The
geometrical properties are, however, similar to the ungated (μ = 0) case, with the exponents that are reported in
the text.

DOI: 10.1103/PhysRevE.98.012111

I. INTRODUCTION

The transport parameters of the monolayer graphene scale
with the average density of carriers which itself is tuned by
the gate potential [1]. By tuning the chemical potential, a
graphene system meets various phases which are characterized
by the carrier density, such as the electron-hole puddles (EHPs)
which arise in low densities that is the phase with some
strong density inhomogeneities with fluctuations much larger
than the average density. The explanation of this phase needs
the consideration of the joint effect of extrinsic disorder and
interaction [1–3], and needs a method that treats these two in
a same footing [1,4]. EHPs are believed to be responsible for
the observed minimum conductivity of graphene [5], i.e., in
low densities (around the Dirac point) a complex network of
small random puddles with semimetal character forms, through
which the electrons hop and percolate and contribute to the con-
ductivity. The configuration of these puddles depends on the
chemical potential (which determines the system density) and
the (extrinsic) charged impurity configuration in the sample. It
has been proposed that such an inhomogeneity dominates the
graphene physics at low (�1012 cm−2) carrier densities [5] for
which the self-consistent Thomas-Fermi-Dirac (TFD) theory
was employed to simulate the graphene charge profile on the
SiO2 substrate. The examples that experimentally confirmed
EHPs are [4,6–15].
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Many other studies on the unusual properties of graphene
are still based on idealized models which neglect the effect
of disorder and particle-particle interactions. The Thomas-
Fermi-Dirac (TFD) theory as a simplified model which treats
interaction and disorder in the same footing can be very helpful
in such phenomena which need some statistical analysis.
This theory has been properly developed for the graphene
systems in the low density limit [5,16,17]. Using this theory
and the Schramm-Lowewner evolution technique it has been
proposed that the isocharge lines of EHPs at the Dirac point are
conformal invariant and some critical exponents were obtained
[16]. This, along with the observation of Herrmann according
to whom the contour lines in the graphene membranes are
conformal invariant [18], shows that the Dirac point is very
special.

A substantial feature of the experiments on graphene near
the Dirac point is the formation of large (spanning) clusters
of negative or positive charge densities. The presence of the
spanning cluster in a system may be the fingerprint of the
scale invariance and the self-affinity of the system. This leads
to some scaling behaviors which are expected to present in
the scale-free systems [19–22]. The presence of carrier charge
self-similarity is an important question in graphene. At the
zero chemical potential, it has been shown that the graphene is
very different from the ordinary 2D electron gas, for which the
charge fluctuations are maximal and some critical exponents
are obtained [16,23]. By analyzing the contour lines of the
system at the Dirac point it has been shown that the fractal
dimension of the corresponding random loops is Df (μ = 0) =
1.38 ± 0.02. In all of these studies the graphene system has
been mapped to the random rough surfaces (which are scale
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invariant in the zero chemical potential), in which the charge
density of the graphene sheet plays the role of the height of the
rough surface and the contours play the role of the isoheight
lines.

There is increasing numerical and experimental evidence
that the isoheight lines in the random fluctuating fields in
(2 + 1)-rough surfaces are scale invariant. The size distribution
in these systems is characterized by a few scaling functions
and scaling exponents [24]. The graphene system, as a 2 + 1
random system, can be mapped to the rough surfaces [16,23].
By analyzing the contour lines of the electron-hole density,
the authors showed that ungated graphene (μ = 0) is a non-
Gaussian self-similar system. In the present paper we test
numerically the Thomas-Fermi-Dirac theory for the finite-μ
graphene system and investigate the local and geometrical
properties of the random electronic charge. The finite chemical
potential breaks apparently the scale invariance of the system.
We show that the distribution functions of electrons and holes
become different for finite μs and the two-point functions are
factorized to two different pure functions: one a function of μ

and the other a function of the spatial scale. The numerical fits
of these functions show that their dependence is double loga-
rithmic with the distance. We also investigate the geometrical
properties of the system and show that when the surface is cut
in the vicinity of the mean density, the geometrical properties
of the system are similar to the ungated graphene.

The paper is organized as follows. In the next section we will
introduce the TFD model for the graphene. In Sec. III we will
fix the notation and introduce different scaling behaviors and
scaling exponents corresponding to the contour loop ensembles
(CLE). In Sec. IV we will numerically measure the proposed
scaling exponents for the disorder potential and the carrier
density in graphene. In the final section, we summarize the
obtained results and our conclusions.

II. GROUND STATE OF GRAPHENE

The carrier density in graphene n̄ is controlled by the gate
voltage Vg , i.e., n̄ = κSVg/4πt , in which κS is the substrate
dielectric constant and t is its thickness. Additionally, the
transport functions of graphene (like the conductivity) depend
on x ≡ n̄/ni in which ni is the impurity density. In ordinary
densities, the conductivity is a linear function of x and for very
low x’s it reaches a minimum of order σ ∼ e2/h, which is
linked to the formation of EHP’s. The pattern of charge density
of this system has been extensively investigated for mono- and
bilayer graphene [4,10,12] (close to the Dirac point) which
reveals the formation of EHPs. These experiments support the
theoretical predictions of Adam et al. [25] and Hwang et al. of
large scale electron density fluctuations [1].

The linear dependence of the conductivity on carrier density
in graphene sheets [1,26] and also the fact that the spatial
pattern of EHPs is not correlated with the topography of the
graphene sheets [27] are two important evidences that the
remote Coulomb impurities are the dominant disorder source
in most graphene samples. The disorder in addition to being
the main source of the scattering has an additional effect: it
locally shifts the Dirac point. This means that, even at the zero
gate voltage, the Fermi energy is moved to the positive or the
negative values with respect to the charge neutrality (Dirac)

point. This causes some valleys and mountains of density
throughout the sample, which are investigated in this paper
for various rates of chemical potentials.

The case of relevance in the present paper is a slow (spatial)
varying charge density system in which the use of the Thomas-
Fermi-Dirac theory is permissible, i.e., |∇rn(r)/n(r)| � kF (r)
in which kF (r) is the Fermi wave number at position r. The
form of the energy functional of the graphene in this limit
and for low densities has been obtained [17]. By minimizing
the energy functional of the system in the local density
approximation one yields the following equation for the local
density of the system [28]:

sgn(n)
√

|πn| + rs

2

∫
d2r′ n(r′)

|r − r′|
+ rsVxc[n] + rsVD(r) − μ

h̄vF

= 0, (1)

which should be solved self-consistently. In this equation vF

is the Fermi velocity, rs ≡ e2/h̄vF κS is the dimensionless
interaction coupling constant, μ is the chemical potential, and
g = gsgv = 4 is the total spin and valley degeneracy. The
exchange-correlation potential is [17]

Vxc = 1

4
[1 − grsζ (grs)]sgn(n)

√
π |n| ln

(
4qc√
4π |n|

)
(2)

in which qc is the momentum cutoff and ζ (y) =
1
2

∫ ∞
0

dx

(1+x2)2(
√

1+x2+πy/8)
. For the graphene on the SiO2 sub-

strate, κS 
 2.5, so that rs 
 0.8, d 
 1 nm, and qc = 1/a0,
where a0 is the graphene lattice constant a0 
 0.246 nm
corresponding to the energy cutoff Ec 
 3 eV.

For zero chemical potential μ = 0, the charged impurities
are not screened in graphene [17]. For nonzero μs, however, the
screening effects become important and cannot be neglected.
It has been shown that in the q → 0 limit the Thomas-Fermi
dielectric function becomes εTF ≡ εRPA(q → 0) = 1 + qTF

q
in

whichqTF = gsgve
2/κSvF [29]. Within this approximation, the

potential of a charged impurity located at a distance d from the
substrate is ṽ(q) = 2πe2

κ
e−qd

q+qTF
, which gives rise to the following

form for the real space [30]:

V (r) = e2

κS

e−qTFr

√
r2 + d2

(3)

in which r ≡ |r|. Therefore, the potential in Eq. (1) is of the
Yukawa type in the finite μs. Therefore, the remote Coulomb
disorder potential is calculated by the relation

VD(r) =
∫

d2r ′ ρ(r′)e−qTF|r−r′ |√
|r − r′|2 + d2

(4)

in which ρ(r) is the charged impurity density and d is the
distance between substrate and the graphene sheet.

In this paper we consider the disorder to be white
noise with Gaussian distribution 〈ρ(r)〉 = 0 and 〈ρ(r)ρ(r′)〉 =
(nid)2δ2(r − r′). It is notable that, in the μ = 0 limit, due to
the pure 1/r dependence of the Hartree and disorder terms, the
convergence of the equation is slow. Let us first concentrate
on the scaling properties of this equation for μ = 0 (for which
qTF → 0) and ignore Vxc. By applying the scale transformation
r → λr, we see that the equation remains unchanged if
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we transform n(r) → n(λr) = λ−2n(r), which is compatible
with the spatial dimension of n(r) [note that VD VD(λr) =
λ−1VD(r)]. This guarantees the self-affinity of the graphene
when viewed as a random rough surface. This scale invariance
in two dimensions leads to power-law behaviors with some crit-
ical exponents [24], and may also lead to conformal invariance
of the system. Vxc breaks this scale invariance, since it trans-
forms as Vxc(r) → Vxc(λr) = λ−1(Vxc − β sgn(n)

√
π |n| ln λ)

in which β ≡ 1
4 [1 − grsζ (grs)]. Therefore, after applying the

scale transformation, one reaches the same equation as Eq. (1)
with logarithmically corrected coefficients [16]. Therefore, the
scale invariance survive marginally in the infrared limit even in
the presence of Vxc. This symmetry implies that the correlation
functions show power-law behaviors, but further details of the
system need exact or numerical solutions. The nonzero μs
break apparently the scale invariance of the system. It has two
main effects: it controls n̄ and the density fluctuations, and also
it breaks the scale invariance. This breaking is along with some
scaling functions which are studied in Sec. IV.

III. GRAPHENE AS A ROUGH SURFACE,
SCALING PROPERTIES OF CLE

In the above arguments we mentioned that n(x,y) is the
important field in our analysis by which the energy of the
system is obtained. Characterizing this field is very important
in distinguishing the local phases and the phase separation
pattern. To this end we analyze the local and global properties
of the system. The first analysis on the contour loop ensemble
(CLE) of this system has been done in [16] in which Eq. (1)
was solved for μ = 0. For the scale-invariant rough surfaces

the height field (here the density) behaves like n(λr)
d= λαn(r)

in which α is the roughness exponent or the Hurst exponent

and λ is a scaling factor and the symbol
d= means the

equality of the distributions. For self-similar surfaces (μ = 0
in our case) the density-density correlation function D2(r) ≡
〈[n(r + r0) − n(r0)]2〉 behaves like |r|2αl and also the total
variance W (L) ≡ 〈[n(r) − n̄]2〉L behaves like L2αg , where
the parameter αl (αg) is called the local (global) roughness
exponent, n̄ = 〈n(r)〉L; 〈. . . 〉L means that the average is taken
over r in a box of size L. Self-affine surfaces are monofractals
just if αg = αl = α [31]. For these systems the Fourier power
spectrum [the second moment of nq, ≡ the Fourier component
of n(r)] scales like

Sq ≡ 〈|nq|2〉μ=0 ∼ |q|−2(1+α) (5)

and also the distribution function of the density P (n) is of the

Gaussian form 1
σ
√

2π
e
− n2

2σ2 , where σ is the standard deviation. It

has been shown that α
μ=0
l = 0.35 ± 0.03 and α

μ=0
g = 0.38 ±

0.03 [16]. Another quantity whose moment distribution should
be Gaussian is the local curvature which is defined (at position
r and at scale b) as Cb(r) = ∑M

m=1 [n(r + bem) − n(r)], in
which the offset directions {e1, . . . ,eM} are a fixed set of
vectors whose sum is zero, i.e.,

∑M
m=1 em = 0. If the rough

surface is Gaussian, then the distribution of the local curvature
P (Cb) is Gaussian and the first and all odd moments of Cb

manifestly vanish since the random field has up or down

symmetry n(r) ←→ −n(r). Additionally, for Gaussian ran-

dom fields we have 〈C4
b 〉

〈C2
b 〉2 = 3.

The self-similarity can also be addressed in geometrical
quantities like the fractal dimension of loops and also the
exponents of the distribution function of gyration radius and
loop length. One can extract the loops from the isodensity
(contour) lines of the profile n(r) at the level set n(r) = n0

from which some nonintersecting loops result which come in
many shapes and sizes. For scale-invariant random surfaces
these geometrical objects show various power-law behaviors.
The exponent of the distribution functions of loop lengths
l [P (l)] and the gyration radius of loops r [P (r)] are of
special importance. The fractal dimension of loops for ungated
graphene has numerically determined D

μ=0
f = 1.38 ± 0.02

and the exponent of the distribution of loop length τ
μ=0
l =

2.30 ± 0.02 [16].
As stated in the Introduction for nonzero μs the scale

invariance is broken and n(x,y) (as a random field) is not
self-similar. The characterization of this symmetry-breaking
is important in determining the system transport, e.g., the
density-density correlation function which is important in
determining the dielectric function. In the next section we
address the deformation of various functions in the nonzero
chemical potential limit.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section we present the numerical results. We have
simulated the model on the L = 200 square lattice. We have
also examined the code on the systems with lower sizes to
control the finite size effects, i.e., L = 50 and L = 100, and
extracted some exponents. Just like Ref. [16], the results do
not change with system size and we have put the results of
the largest size in the paper, i.e., L = 200. Finding a stable
solution of Eq. (1) took about 20 min for a 3.2 GHz CPU.
Therefore, it took about two months (per CPU) to generate
4×103 independent samples for each μ and system size. This
section has been divided into three subsections. In the next
subsection we present the results for the local quantities, i.e.,
the two-body (density-density) correlation function D2(r,μ),
the total variance WL(L,μ), and the Fourier power spectrum
Sq . In Sec. IV B the higher moments are analyzed. The fractal
dimension of loops and the distribution functions of the
geometrical observables are calculated in Sec. IV C.

A. Local exponents

The chemical potential tunes the average density. When
μ= 0 this average is zero, showing that we are right at the Dirac
point. For nonzero values, the Fermi surface moves above or
under the Dirac point and the system acquires nonzero average
density. This can be seen in Fig. 1 in which the distribution of n

has been shown. It is known that this function is non-Gaussian
for graphene [16] that is evident in this figure. This figure
reveals that the logarithm of this function is linear in n with
two nonequal (μ-dependent) slopes. For small μ values this
function behaves like the following relation:

Pμ(n) ∝
{

exp [−aR(n − n0(μ))], n � n0(μ),

exp [aL(n − n0(μ))], n < n0(μ),
(6)
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FIG. 1. (a) Semilog plot of the distribution function of density P (n). Left inset: εPn(μ), which is defined as the (absolute value of the)
difference between the slopes of two sides. Right inset: the position of the peak of the distribution function n0(μ). (b) The distribution function
of the roughness function P (W2) for the boxes of size l = 100. Inset: the position of the peak in terms of μ.

in which aR and aL are the mentioned slopes (that are
equal only for μ = 0) and n0(μ) is the density at which the
distribution function shows a peak [n0(μ = 0) = 0] and the
function becomes singular. This function differs from the result
of Ref. [16]:

Pn = A exp

[
−ζ

(
sgn(n)

√
π |n| − μ

h̄SvF

)]
, (7)

in which ζ ≡ 4 ln(L/a)
dn2

i rs
n̄, A is a normalization constant, and S

is the area of the sample. This equation has been calculated
for low densities and low interactions and disorder strengths.
In fact the form (6) is not true for very low densities, and
log P (n) varies with

√
n in accordance with Eq. (7). We

find from this figure that the asymmetry parameter εPn(μ) ≡
|aL(μ) − aR(μ)| increases with μ in a power-law fashion
εPn ∼ μ2, and n0(μ) behaves like μ ln μ as depicted in
Fig. 1 (the left and right panels, respectively). The asym-
metry of Pμ(n) shows that the dynamics of electrons and
holes in gated graphene is not the same as expected. Also
it is seen that the graphs become wider for larger μ values
showing that the density fluctuations (which are proportional
to the system compressibility κμ) increase by increasing μ.
Figure 1(b) shows the distribution of the total variance of
density P (W2) (or roughness function in the rough surface
language) for boxes with linear size l = 100. We see that the
peak of the distribution (which is here equal to the average
value W̄2) scales with the square of the chemical potential, i.e.,
W̄2 ∼ μ2. This reveals that the density fluctuations increase
with μ is compatible with the widening of P (n) shown above.
To see this, we have plotted (δn)2 ≡ 〈n2〉 − 〈n〉2 in the left
inset in this figure. It is evident that W̄2 and (δn)2 have the
same behaviors. The widening of the distribution function can
be inferred from Eq. (7) in which large μ value is compensated
by large density fluctuations.

Now let us consider the two point correlation functions
which have been analyzed in Fig. 2, i.e., D2(r,μ), W2(L,μ),
and Sq(μ). Interestingly, we have observed that all multipoint
functions considered in this paper are factorized to two parts:

one part depending only on μ and the other a pure function of
the other variable, e.g., D2(r,μ) = fD (μ)

λ(r) [see the right hand
inset of Fig. 2(a)]. For this function, our analysis reveals
that f (μ) ∼ μ2 and λ(r) is best fitted by [the left inset of
Fig. 2(a)]

λ(r) = exp[(−aD ln ln rβD )αD ] (8)

in which αD = 1.82 ± 0.01, βD = 0.26 ± 0.01, and aD =
0.96 ± 0.01. This function along with the relevant quantities
have been sketched in Fig. 2(b) in terms of μ. The quadratic
form of f (μ) has been shown in the insets. Therefore, the two
point function D2 is not power law in r; instead it behaves
double logarithmically. This behavior is independent of μ,
which appears as a multiplicative constant, i.e., f (μ).

The same behavior is seen for W2(L) [in which L is the box
in which the variance (roughness) has been calculated; see
Sec. III] as is evident in Figs. 2(c) (in terms of L) and 2(d) (in
terms of μ). In these figures λ(L) is best fitted by the same
relation as Eq. (8), with the parameters αW = 1.35 ± 0.01,
βW = 0.26 ± 0.01, and aW = 1.375 ± 0.005. The fact that D2

and W2 show the same r and μ dependences is not surprising
since the role of the spatial extent of the boxes in which the total
variance is calculated is the same as the role of r in the density-
density correlation function. The example is the equality of
the global and local roughness exponents in the scale-invariant
rough surfaces.

A completely different behavior is seen for Sq . Our obser-
vations reveal that this function shows the following form:

ln Sq = −(
β−1

S ln q
)aS + ln fS(μ) (9)

in which aS = 3.0 ± 0.1 and βS = 2.1 ± 0.03. Equivalently
one finds that Sq = fS (μ)

λ(q) in which λ(q) = exp [(ln(q)/βS)aS ].
This relation shows that ln Sq for the graphene varies with the
third power of ln q. This should be compared with the same
expression for the scale-invariant rough surface:

ln Sq = −2(1 + α) ln q + const. (10)
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FIG. 2. D2(r,μ) = fD (μ)
λ(r) in terms of (a) r and (b) μ. The fitting is done for λ(r) = exp [(−aD ln ln rβD )αD ], with the parameters αD = 1.82,

βD = 0.263, aD = 0.955, and fD(μ) ∼ μ2. W2(r,μ) = fW (μ)
λ(L) in terms of (c) L and (d) μ. The fitting is done for λ(L) = exp [(−aW ln ln LβW )αW ]

with the parameters αW = 1.35 ± 0.01, βW = 0.26 ± 0.01, aW = 1.375 ± 0.005, and fW (μ) ∼ μ2. Sq = fq (μ)
λ(q) in terms of (e) q and (f) μ with

λ(q) exp [(ln(q)/βS)aS ], aS = 3.0 ± 0.1, βS = 2.1 ± 0.03, and fS(μ) ∼ μ2.

Therefore, apart from the proportionality constant, the main
difference of the Sq of graphene and the ordinary rough
surfaces is that the logarithm of the former depends on the third
power of ln q, whereas the latter is liner. The graphs for Sq have

been shown in Figs. 2(e) and 2(f). It is evident from Fig. 2(f)
that fS(μ) ∼ μ2 just like the functions D2 and W2. This is not
surprising, since Sq is related to the Fourier transformation of
D2 and consequently with the same μ dependence.
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FIG. 3. C2(b,μ) in terms of (a) b and (b) μ, for which the fitting is done for D2(b,μ) = fC (μ)
λ(b) . The fitting parameters are λ(b) ≡

exp [(−aC ln ln rβC )αC ], αC = 1.35 ± 0.02, βC = 0.25 ± 0.01, aC = 1.36 ± 0.01, and fC(μ) ∼ μ2. The same analysis for C4(b,μ) in terms of
(c) b and (d) μ, with the parameters αC = 1.85 ± 0.02, βC = 0.26 ± 0.01, aC = 1.86 ± 0.01, and fC(μ) ∼ μ3.

The same features have been observed for C2(b) and C4(b)
in which Cn(b) ≡ 〈Cn

b 〉. These quantities have been shown in
Fig. 3, in which α, β, and a have been reported for each case
separately. The dependence on b is just like Eq. (8) (with r

replaced by b). Also the dependence of fC(μ) is power law
with the exponent 2 [see Fig. 3(b)]. This exponent is 3 for
C4. This demonstrates that the distribution of C2 and C4 is not
Gaussian and shows again that their dependence on b is double
logarithmic.

B. Higher order moments, non-Gaussian surface

An important check for the systems which are mapped to the
rough surfaces is the Gaussian and non-Gaussian behaviors. It
is known that graphene is a non-Gaussian rough surface, even at
the Dirac point [16]. However, the exact characterization of this
non-Gaussian rough surface needs some critical investigation
on other variables, like C2(b,μ) = 〈C2

b 〉 [see the definition
of Cb(r) in Sec. III], and the higher moments of density,
especially the odd powers like D3(r,μ) = 〈[n(r0 + r)n(r0)]3〉
and C3(b,μ) = 〈(Cb)3〉, etc., which are expected to be zero for

scale-invariant symmetric rough surfaces [24]. Figure 4 shows
these functions.

We see from Fig. 4(a) that C3 does not vanish, and increases

with b. Also we know that C2
2

C4
should be constant (for all b’s

equal to 1
3 ) for a scale-invariant rough surface. Figure 4(b)

shows that it is not the case for the gated graphene, and this
function has a nontrivial increasing behavior in terms of b. All
of these show that the system is non-Gaussian.

C. Geometrical quantities

The scale invariance of the critical systems dictates some
scaling relations between the geometrical quantities of the
system. The determination of the exponents of these global
quantities, for example, the various fractal dimensions of the
system, helps in determining their universality class of the
model in hand. All of the analyses presented in the previous
section are in terms of the local variablen(r). There is, however,
a nonlocal point of view in such problems, i.e., the isoheight
(contour) lines of the profile n(r) at the level set n(r) = n0,
which also show the scaling properties. When we cut the
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FIG. 4. Non-Gaussian parameters (a) C3(b,μ) and (b) [C2(b,μ)]2/C4(b,μ). The latter changes with the second power of μ which confirms
that the system is non-Gaussian.

self-affine surface n(x,y) some nonintersecting loops result
which come in many shapes and sizes [24,32]. We choose 10
different n0 between the maximum and the minimum densities

from which a CLE is obtained. Some samples have been shown
in Fig. 5 for μ = 10−3, 5×10−3, 10−2, 5×10−2, 0.1, and 0.2.
The different colors in each figure show connected clusters

(a) (b) (c)

(d) (e) (f)

FIG. 5. Charge pattern of the systems with chemical potentials: (a) μ = 0.001, (b) μ = 0.005, (c) μ = 0.01, (d) μ = 0.05, (e) μ = 0.1,
and (f) μ = 0.2. The different colors show the connected components.
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FIG. 6. Log-log plot of (a) l-r and (b) S-r with the exponents γlr = 1.42 ± 0.02 and γSr = 1.8 ± 0.1. (c) The distribution function of the
area inside the cluster a (inset: the distribution function of the loop length l). (d) The distribution function of the cluster mass S (upper inset:
the distribution function of the mass gyration radius R; lower inset: the distribution function of the loop gyration radius r). The corresponding
exponents are τa = 1.82 ± 0.06, τl = 2.28 ± 0.07, τS = 1.55 ± 0.03, τR = 1.90 ± 0.06, and τr = 2.43 ± 0.05.

each of which has its own gyration radius r , (exterior) loop
length l, mass (S), and area inside (a) (this is the total area
inside the loop). For the self-affine systems, these geometrical
objects are scale invariant and show various power-law be-
haviors, e.g., their size distribution is characterized by a few
power law relations and scaling exponents. These quantities
(in the thermodynamic limit) scale with each other in the
form y ∼ xγxy and the distribution functions of them behave
like p(x) ∼ x−τx in which x,y = l,r,S,a. The scaling theory
of CLEs of self-affine Gaussian fields was introduced in
Ref. [32] and developed in Refs. [24,33]. When a charge
density pattern is obtained, we extract the contour lines by 10
different cuts with the same spacing between maximum and
minimum values. The Hoshen-Kopelman [34] algorithm has
been employed for identifying the clusters in the lattice. It is
notable that for each L = 200 sample (for a given μ) ∼5×102

loops were obtained. Since we have generated 4×103 samples
for each μ, about 2×106 loops have been generated for each μ.

We have calculated the fractal dimensions γlr and γSr as
seen in Figs. 6(a) and 6(b). Interestingly, we have observed
that these exponents are μ independent. The numerical values

of these universal quantities are γlr = 1.42 ± 0.02 and γSr =
1.80 ± 0.05. The latter changes behavior (more precisely
becomes nearly constant) for the scales larger than r0 ∼ 30,
which is finite size effect. It is notable that for a space-filling
cluster γ

space filling
Sr = 2. The difference between the obtained

γSr and γ
space filling
Sr shows that there are some hallows (the

regions with different densities) inside the clusters. The expo-
nent γlr is not significantly different from the case μ= 0 [16].
The exponents of the distribution function of the geometrical
observables have also been presented in Figs. 6(c) and 6(d).
We see that τa = 1.82 ± 0.06, τl = 2.28 ± 0.07, τS = 1.55 ±
0.03, τR = 1.90 ± 0.06, and τr = 2.43 ± 0.05. These scaling
behaviors for the geometrical quantities of the system, which is
surely not scale invariant, are very interesting. For the critical
systems, it is well known that γxy = τy−1

τx−1 . The fact that this

hyperscaling relation is not true for our system (γ hyperscaling
lr ≡

τr−1
τl−1 = 1.12 and γ

hyperscaling
Sr ≡ τr−1

τS−1 = 2.6) is due to the fact
that our system is not self-affine. It is notable that the ob-
tained value for τl is compatible with the ungated graphene
(μ = 0).
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V. CONCLUSION

In this paper we have considered the graphene out of (and
in the vicinity of) the Dirac point, i.e., for finite chemical
potentials. To this end we have employed the Thomas-Fermi-
Dirac (TFD) theory and have solved it numerically for finite
μs. We have mapped the problem to a rough surface system and
have calculated the relevant functions which are of the scaling
form for the rough surfaces. Importantly, we have calculated
multipoint charge correlation functions (Dn), the roughness
function (Wn) (n = 2, 3, and 4), and also the Fourier power
spectrum function (Sq).

The electron density is the solution of the nonlinear Eq. (1).
We see that in the limit Vxc = 0 and μ = 0 this equation
leads to scale-invariant charge density, i.e., when r → λr , then
n(r) → n(λr) = λ−2n(r). This scale invariance is marginally
preserved also in the nonzero exchange-correlation potential
Vxc, i.e., the following equation is obtained after implying the
scale transformation (μ = 0):

ξ (λ)sgn(n)
√

|πn| + rs

2

∫
d2r′ n(r′)

|r − r′|
+ rsVxc[n] + rsVD(r) = 0, (11)

in which ξ (λ) ≡ 1 − βrs ln λ [see Eq. (5) of Ref. [16]]. There-
fore, in the limit μ = 0, one expects scale invariance, as shown
in that reference. The non-Gaussianity of n is attributed to
the special nonlinear form of Eq. (1) in which the second
root of n is proportional to the disorder potential VD (as the
noise). As shown in Ref. [16], the distribution of the solution
of this equation is not Gaussian at all, and is of the form of
Eq. (7). We observe that the non-Gaussianity has its roots in the
special form of the master equation for the density of electrons
in graphene. For the graphene system out of the Dirac point
(when μ becomes nonzero), the impurity potential in not bare
Coulomb potential, but instead is of the form of Eq. (3). In
this limit the mentioned scale invariance breaks down by two
effects: first due to the form of unbare Coulomb potential and
second the direct effect ofμ in Eq. (1). Therefore, no power-law
behavior is expected in this limit.

Our main finding is that the functions are decomposable to
two parts and the function of μ is factored out. Dn and Wn show
double-logarithmic behaviors with r and L, whereas ln Sq has
a linear behavior of the third power of ln q. The μ functions
behave in most cases with the second power of μ. Based on
our observations, the nonaffinity is not a finite-size effect. For
example, 〈C2

2 〉/〈C4〉 does not approach the value 1/3 (that is
for a Gaussian random field) in any μ and any system size.
Also 〈C3

b〉 does not approach zero in any limit or by enlarging
the system size.

We have also analyzed the geometrical functions. To
this end, we have cut the samples from some equal-
spacing planes from which nonintersecting stochastic curves
and loops result. Each loop has its own length (l), gy-
ration radius (r), cluster mass (S), and area inside (a).
Our observations support that, despite the fact that the
system is not self-affine, these quantities show critical
(power-law) behaviors and the resulting critical exponents
are μ independent. These exponents are compatible with
the corresponding exponents for ungated graphene (μ = 0),
i.e., geometrical properties of the system are independent of
μ and also the spatial scale 1/qTF. Therefore, although μ

changes the mean density n̄, the geometrical properties of
the system which are determined with respect to the new
reference n̄(μ) are robust against μ. It can be understood
noting the fact that all functions of r (spatial distance) and
μ are decomposable to two pure functions, leading to the
fact that the spatial structure of the system is not affected
by μ.

At the end we emphasize that the criticality in this system
for μ = 0 has its roots in the underlying randomness and also
the (marginal) scale invariance of the master equation, i.e.,
Eq. (1). The scaling properties of the underlying external noise
guarantee this scale invariance and the corresponding critical
behaviors, i.e., for the same system with the other type of noise,
this scale invariance may disappear. All disorders with the
same scaling properties have the same effects and same critical
properties. Therefore, the role of disorder is summarized in its
scaling properties.
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