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Principle of maximum caliber and quantum physics
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MaxCal is a variational principle that can be used to infer distributions of paths in the phase space of dynamical
systems. It has been successfully applied to different areas of classical physics, in particular statistical mechanics
in and out of equilibrium. In this work, guided by the analogy of the formalism of MaxCal with that of the path
integral formulation of quantum mechanics, we explore the extension of its applications to the realm of quantum
physics, and show how the Lagrangians of both relativistic and nonrelativistic quantum fields can be built from
MaxCal, with a suitable set of constraints. Related, the details of the constraints allow us to reinterpret the concept
of inertia.
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I. INTRODUCTION

The Principle of Maximum Caliber (MaxCal), first pro-
posed by Jaynes [1] as a generalization of the principle of
Maximum Entropy (MaxEnt) [2,3], has become more popular
only in the last two decades [4] and is starting to prove
itself as a powerful tool in physics. It has been shown that
MaxCal contains the more usual descriptions of the dynamics
of physical systems: the principle of least action, the Euler–
Lagrange equations, and Newton’s second law.

In the next section we present the derivation of the least
action principle from MaxCal, and show that the result of
MaxCal is more general than just that principle; in fact, MaxCal
allows more trajectories than just the one that extremizes the
action. This resembles the case of quantum physics, where
many trajectories are allowed. But what are those extra tra-
jectories permitted by MaxCal? Making a connection with the
path integral formulation of quantum mechanics, we show that
the probability of those trajectories is extremely suppressed
for classical values of the action, resulting in an agreement of
MaxCal and classical physics.

In the following section, and based on the relation found
between MaxCal and quantum mechanics, we explore the
relevance of the principle to quantum physics. In particular,
we show that both relativistic (Klein–Gordon and Dirac) and
nonrelativistic (Schrödinger) versions of quantum mechanics
can be derived from MaxCal with a suitable choice of con-
straints.

II. PRINCIPLE OF LEAST ACTION AS A CONSEQUENCE
OF MAXCAL, AND ITS RELATION TO QUANTUM

MECHANICS

Maximization of the caliber is a variational principle that
allows the inference of probability distributions compatible
with a set of given constraints [1,4]. This principle is a
straight generalization of the MaxEnt principle [2,3], where
microstates—microscopic realizations of the conformation of
a system—are replaced by microtrajectories between two

points in the phase space—microscopic realizations of the
passage of a system from one point to another.

It has already been shown to be a successful tool to derive
several relations related not only to equilibrium but also to
systems out of equilibrium. Fick’s first and second laws of
diffusion, Fourier’s law of heat transfer, Newton’s second
law, Brownian motion, Onsager’s reciprocal relationships,
Prigogine’s principle of minimum entropy production, are
some examples of this [5–8].

Here, following Wang [6] (with a slightly different point
of view), we want to show that the principle of least action
can be obtained starting from MaxCal by choosing suitable
constraints. Let us take a system that moves from points a to
b in its phase space, subjected to the following constraints:

(1) Each individual path i between a and b is characterized
by a well-defined physical property Aab(i), and its average over
all possible trajectories is Aab.

(2) The sum of the probabilities for all paths is 1.
Mathematically, we have to maximize the caliber

S(a,b) = −
N∑

i=1

pi(ab) ln pi(ab), (1)

constrained by

Aab =
N∑

i=1

pi(ab)Aab(i) and
N∑

i=1

pi(ab) = 1. (2)

Here, pi(ab) represents the probability that the system will
follow path i when going from points a to b in the phase space,
and N is the number of possible paths connecting those two
points. Using the Lagrange multipliers method, we define the
auxiliary function

S ′ = −
N∑

i=1

pi(ab) ln pi(ab) − λ

(
N∑

i=1

pi(ab) − 1

)

−η

(
N∑

i=1

pi(ab)Aab(i) − Aab

)
(3)
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and calculate stationary points with respect to pi and the two
multipliers λ and η:

∂S ′

∂pi

= 0 ⇒ − ln pi − 1 − λ − ηAab(i) = 0, (4)

∂S ′

∂λ
= 0 ⇒

N∑
i=1

pi = 1, (5)

∂S ′

∂η
= 0 ⇒

N∑
i=1

piAab(i) = Aab. (6)

Combining Eqs. (4) and (5), it is possible to eliminate λ and
arrive at an expression for the probability of path i:

pi(ab) = 1

Z
e−ηAab(i), (7)

where we define the partition function as

Z =
N∑

i=1

e−ηAab(i). (8)

Notice that

−∂(ln Z)

∂η
= Aab. (9)

Equation (7) shows the relation between the probability of
path i and its corresponding property Aab(i): path i between
a and b has maximum probability pi(ab) when Aab(i) is
minimum. Notice that if, in the last sentence, we replace
“Aab(i)” by the word “action,” we are then stating the principle
of least action with a caveat: MaxCal [plus constraints in
Eqs. (2)] contains the least action principle as its most probable
outcome, but it is not equivalent to it since MaxCal allows other
trajectories with lower probability. But, since classically there
is only one allowed trajectory, we can infer that η must be
high, thus suppressing the extra trajectories, and leaving only
the most probable one.

To be more specific, consider a simple example, where a
system can go from a to b via three possible paths, with values
of the action of 1, 2, and 3 (in arbitrary units), respectively.
The probability of these cases, calculated via Eqs. (7) and (8),
are shown in Table I. There we can see that the probability
of the paths with higher action decrease extremely fast if η is
large. Hence, a classical system could be perfectly described
by MaxCal with a large enough value of the multiplier η.

As noted by Davis and Gonzalez [9], there is a strong resem-
blance between the MaxCal formalism and the path integral
formulation of quantum mechanics [10]. More specifically,
from the path integral perspective a particle can go from a

to b via any physical path connecting them, and each path i

TABLE I. Probability as a function of the action of three different
paths (with values of their action of 1, 2, and 3, in arbitrary units), for
different η values

Aab(i) 1 2 3

p(i) (with η = 1) 0.66 0.24 0.09
p(i) (with η = 10) 0.99 10−5 10−9

p(i) (with η = 100) 1 10−44 10−87

contributes an exponential factor of the action to the probability
amplitude P amp of the process:

P
amp
i (ab) ∝ e

i
h̄
Aab(i). (10)

A comparison with Eq. (7) suggests that η is inversely
proportional to Planck’s constant, making its value very large.
Hence, when the action is classical (large values of A), this
would make the probability of nonminimal action trajectories
vanish, so that the results of MaxCal agree with those of
classical physics.

We have to mention that, although we have compared
Eqs. (7) and (10), their meanings are not the same. Equation (7)
is the probability of the particle taking path i, and, thus, the
path with minimum action will be the most likely. Also, as we
already said, if η is large, other paths will be highly suppressed.

On the other hand, Eq. (10) is not the probability but the
probability amplitude of path i. That is, in quantum mechanics
we have to add the P amp of every path, then take the absolute
value and square it in order to get the probability of the particle
going from a to b (notice the identity of the path is lost here,
because there is no such thing as a precise path in quantum
mechanics):

p(ab) ∝
∣∣∣∣∣

N∑
i=1

P
amp
i (ab)

∣∣∣∣∣
2

. (11)

In this case, the largest contribution to p(ab) comes from
the path which makes Aab(i) stationary: in the limit of large
Aab(i)/h the imaginary exponential oscillates so fast that most
paths cancel each other out in the final amplitude; the only path
not canceled is the one which makes the action stationary, i.e.,
the classical path (see Ref. [10] for more details).

III. QUANTUM MECHANICAL EQUATIONS
FROM MAXCAL

Gonzalez et al.[7] have shown that Newton’s second law can
be derived from MaxCal imposing two constraints, one related
to the magnitude of the squared displacement, and the other
related to the probability distribution of the position. Inspired
by this, and noticing the above-mentioned relation between
MaxCal and the path integral formulation of quantum me-
chanics, we ask ourselves what kind of constraints are needed
in order for the different quantum mechanical Lagrangians to
appear in the probability of path i as given by MaxCal?

The Lagrangians we propose to find are the nonrelativistic
Schrödinger, and the relativistic Klein–Gordon and Dirac. We
start with the latter two because they are more straightforward.

A. Klein–Gordon Lagrangian

Figure 1 depicts the paths connecting phase-space points
a and b, where each path i is discretized in time steps �t ,
resulting in N total paths, with ni number of segments each. Let
us propose the following constraint, where we use Einstein’s
notation (repeated indexes in the same term, one as a subscript,
the other as a superscript, mean summation with respect to
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FIG. 1. Points a and b can be connected by N different paths,
each designated by an index i. And each path’s length is discretized
in ni intervals, designated by index j .

them):

〈
ni∑

j=1

�φj

�xμ

�φj

�xμ
�4x

〉
i

= a, (12)

〈
ni∑

j=1

|φj |2�4x

〉
i

= b. (13)

Now, using the Lagrange multipliers technique, we extrem-
ize the caliber, subjected to the above constraints, and impose
also that the sum of probabilities must equal 1. That is, we
define the function

S ′ =
N∑

i=1

pi ln (pi) − λ

N∑
i=1

pi − β

N∑
i=1

⎛
⎝ ni∑

j=1

�φj

�xμ

�φj

�xμ
�4x

⎞
⎠

−γ

N∑
i=1

⎛
⎝ ni∑

j=1

|φj |2�4x

⎞
⎠, (14)

and requiring its derivatives with respect to pi and to the
multipliers, λ, β, and γ , to be zero, we obtain the probability
of path i:

pi(ab) = 1

Z
e−Aab(i), (15)

where

Aab(i) = −β

ni∑
j=1

(∂μφj )(∂μφj )�4x − γ

ni∑
j=1

|φj |2�4x, (16)

and

Z =
N∑

i=1

e−Aab(i). (17)

Notice in Eq. (16) we have replaced the rates of change of the
field �φj/�xμ by the derivatives ∂μφj . Z is a normalization
factor.

Finally, recalling Eq. (7) and comparing with Eq. (15), we
see that A is the action. And since the action is related to
the Lagrangian through A = ∫

Ld4x, we can conclude—after
transforming from the discrete to the continuous case—that
the corresponding Lagrangian is

L = 1
2 (∂μφ)(∂μφ) − 1

2m2|φ|2. (18)

In the last step we assigned the following values to the multi-
pliers to recover the well-known Klein–Gordon Lagrangian:

β → −1/2, (19)

γ → m2/2. (20)

We see that the mass is associated with the constraint in
Eq. (13), via the γ multiplier (it has to be this way, since
in relativistic field theories, the Lagrangian term quadratic in
the field is the one that gives mass to the field). To interpret
this, let us recall from the theory of Lagrange multipliers [11]
that the multiplier has a specific meaning: it is the derivative
of the function being extremized (the caliber S) with respect
to the value of the constraint [b in Eq. (13)]: m2 ∼ ∂S/∂b.
Thus, the mass of the field is associated with the rate of change
of the caliber with respect to b. That is, a large m signifies
that changing b would largely change S, getting it out of
the stationary point (in which it wants to stay, according to
MaxCal). On the contrary, a field with a small m would barely
change the value of S when varying b. In conclusion, the
mass has to do with the slope of the curve S vs b: zero slope
associated with zero mass, and increasing slopes associated
with increasing mass. Interpreting this in a more intuitive
physical way, a field with zero mass could be thought of as
having no constraints on the values that the field can take in
different points of spacetime. A massive field, on the other
hand, cannot take any value. This suggests an interpretation of
the concept of inertia: The value of the field of a large mass
cannot change easily, since the change in S would be large.
Thus, the field (or particle) can only change its state of motion
slowly, with a large inertia. But a light particle can move fast
and change its path easily, since it has no cost to change the
values of the field (thus, small inertia).

B. Dirac Lagrangian

Analogously, we now propose constraints which will lead
to the Dirac Lagrangian (L = iψ̄γ μ∂μψ − mψ̄ψ). These are

〈
ni∑

j=1

ψ̄j γ
μ �ψj

�xμ

�4x

〉
i

= a, (21)

〈
ni∑

j=1

ψ̄jψj�
4x

〉
i

= b, (22)

along with the constraint of total probability equal to 1.
Applying Lagrange multipliers to extremize the caliber, we
arrive at an expression for the probability of path i as that in
Eq. (15), but with the action now given by

Aab(i) = −β

ni∑
j=1

ψ̄γ μ(∂μψ)�4x − γ

ni∑
j=1

ψ̄ψ�4x. (23)

Or, going to the continuous limit,

L = iψ̄γ μ(∂μψ) − mψ̄ψ, (24)
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where we have assigned the following values to the multipliers:

β → −i, (25)

γ → m. (26)

We see that, in this case, it is m that is associated with the
cost of having defined values of the square of the field, and not
m2 as in the previous case. This difference seems interesting,
but should not be surprising, since the fields themselves are
intrinsically different, with Klein–Gordon fields being scalar
and Dirac fields vectorial.

C. Schrödinger Lagrangian

We could repeat the above process again, this time to
show that the Schrödinger Lagrangian can also be obtained
by proposing suitable constraints. These are〈

ni∑
j=1

�ψ

�xj

�ψ∗

�xj

�t

〉
i

= a, (27)

〈
ni∑

j=1

ψ∗ �ψ

�t
�t

〉
i

= b, (28)

〈
ni∑

j=1

ψ∗ψ�t

〉
i

= c. (29)

And again, using Lagrange multipliers and taking the contin-
uous limit, we get

L = β(∂jψ)(∂jψ
∗) + γψ∗ψ̇ + δψ∗ψ. (30)

The assignment of multipliers this time is

β → h2

8π2m
, (31)

γ → h

4πi
, (32)

δ → V. (33)

Not surprisingly, mass is not associated in this case with
the quadratic term in the field, but with the one with the
spatial derivatives. In general, relativistic theories like Klein–
Gordon and Dirac have mass provided by the Lagrangian
term that is quadratic in the field; nonrelativistic theories, like
Schrödinger, have mass in the terms with spatial derivatives.
This is a consequence of relativistic and nonrelativistic theories
obeying different dispersion relations: E2 = p2 + m2 and E =
p2/2m, respectively. Recalling that, in quantum mechanics,
the p̂ operator is associated with spatial derivatives, we see
the reason why the Schrödinger Lagrangian has m dividing
them.

IV. CONCLUSION

In this work we have shown, first, that the principle of least
action follows from MaxCal, with the constraint that the value
of the action in each path and the average action are both
known. Notice that we have not shown why the constraint has to
be on the action, but we have taken the action as a fundamental
quantity that describes (constrains) the different paths. But

MaxCal is more general than least action, as it allows not
only the classical path which extremizes the action and is thus
the most likely, but gives nonzero probability for other paths
[Eq. (7)]. This fact leads to a connection between MaxCal and
the path integral formulation of quantum mechanics, because
probability amplitudes in that formalism are also described by
exponential functions of the action [Eq. (10)]. Unless further
work says otherwise, this should be taken more as an analogy
than as a direct connection, since the relation we mentioned is
between the probability of a specific path i in MaxCal, and the
probability amplitude of a specific path i in the path integral
formulation. Those concepts, although firmly related [through
Eq. (11)], are not the same.

Inspired by this similarity, we probed the relevance of
MaxCal to quantum mechanics; in particular, the possibility of
obtaining quantum equations from that principle. And, in fact,
we showed that the Klein–Gordon, Dirac, and Schrödinger
Lagrangians can be obtained from MaxCal by imposing con-
straints on the average value of products of the field and/or its
derivatives [see constraint equations (12), (13), (21), (22), and
(27)–(29)]. The procedure we followed in order to get them
was backwards, i.e., knowing the Lagrangians, we proposed
constraints that would lead to them.

An interesting finding that arises from the constraints is that
related to the mass of the fields. In the relativistic cases, we have
seen that the mass of the field is generated from the constraints
in Eqs. (13) and (22): from the theory of Lagrange multipliers,
mass is the cost of having the average of the squared fields set
to a specific value. A large mass means that the specific value
of b in the constraint can hardly be changed, while a massless
field would signify that the value of b is not important and can
easily be changed. In turn, this appears as an explanation of the
concept of inertia; that is, it is difficult to change the values of
the field (and thus, the path of the particle) when it has a large
mass, but not when it is light.

Related to the other constraints used in the quantum cases,
one may wonder what is special about those constraints? Why
not others? To answer this question we rely on the fact, well
known in field theory, that Lagrangians need to be covariant
and, thus, their terms need to be scalars. In this way, the
terms available to a constraint (from which the Lagrangian
will be generated) are only those that are scalar; for example,
combinations of field and derivatives where all indices are
summed over. If we also require simple combinations of field
and first derivatives (higher-order derivatives are usually not
needed in most theories), then the possible terms are highly
restricted to those used in our constraints.

In summary, this work shows that the MaxCal principle,
when complemented with the right set of constraints, is useful
not only in classical mechanics but also in quantum theory
because it allows the derivation of relevant Lagrangians, like
Schrödinger, Klein–Gordon, and Dirac’s. Moreover, exploring
the nature of the constraints and of the associated Lagrange
multipliers may lead, as we have shown in relation to the mass,
to insights into important physical concepts.

Finally, an intriguing question arises from the similarity of
Eqs. (7) and (10). Is their relation just qualitative, as we have
used it here? It would be interesting to see if there is a way
to firmly connect one to the other, thus logically connecting
classical to quantum mechanics.
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