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An active network is a prototype model in nonequilibrium statistical mechanics. It can represent, for example,
a system with particles that have a self-propulsion mechanism. Each node of the network specifies a possible
location of a particle and its orientation. The orientation (which is formally like a spin degree of freedom)
determines the self-propulsion direction. The bonds represent the possibility to make transitions: to hop between
locations or to switch the orientation. In systems of experimental interest (Janus particles), the self-propulsion
is induced by illumination. An emergent aspect is the topological stochastic disorder (TSD). It is implied by the
nonuniformity of the illumination. In technical terms the TSD reflects the local nonzero circulations (affinities)
of the stochastic transitions. This type of disorder, unlike a nonhomogeneous magnetic field, is non-Hermitian
and can lead to the emergence of a complex relaxation spectrum. It is therefore dramatically distinct from the
conservative Anderson-type or Sinai-type disorder. We discuss the consequences of having TSD. In particular we
illuminate three different routes to underdamped relaxation and show that localization plays a major role in the
analysis. Implications of the bulk-edge correspondence principle are addressed too.
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I. INTRODUCTION

Gas that consists of particles that perform self-propelled
stochastic motion is a novel paradigm in statistical mechanics
[1–4]. Many publications have focused on the implied hy-
drodynamic properties of such active matter, for example, its
pressure [5], odd viscosity (for spinning particles) [6], or the
similar cross-stream migration behavior of the particles [7].
The aspect that we would like to address is not related to the
nonequilibrium steady state (NESS) of the active system, but
rather to its relaxation dynamics.

To be specific we highlight, as an example, a system that
consists of Janus particles [8–10]. Those are spherical-like
nanoparticles, coated at each of their two hemispheres with
different materials. Immersed in solution and radiated with
light, they produce self-propelled motion. If a microgear is
placed in such an active solution it will rotate [11].

Figure 1(a) shows a caricature of a Janus particle in a
one-dimensional system. In this caricature the particle can
be anywhere along the horizontal axis (n is an integer) and
can face either to the right or to the left (s = ↑,↓). The
illumination provides the self-propulsion mechanism. For a
given orientation the particle executes a biased stochastic
random walk: The motion is biased to the right (left) if the
particle is facing the right (left). Formally, the orientation of
the particle is like a spin degree of freedom and below we refer
to it as polarization.

Janus particles that form such an active system can be placed
in a disordered background environment [12]. This kind of
disorder is derived from a potential and as such is termed
conservative. Irrespective of that, the illumination might be
nonhomogeneous. This nonhomogeneity provides a different
type of disorder. As explained below, such a type of inherently
different disorder is topological rather than conservative.

Dynamical simulation. In order to show the importance of
studying the relaxation dynamics let us discuss the simulation

that is provided by Fig. 2. In an actual experiment the parti-
cles occupy a two-dimensional strip and some ordering field
encourages them to have either left or right polarization. We
prepare, at time t = 0, a solution that has a uniform density
of Janus particles, but with modulated polarization. In the
figure, the color code is such that red and blue regions occupy
right-polarized (s =↑) and left-polarized (s =↓) particles, re-
spectively. The dynamics is formally described by a stochastic
rate equation

d

dt
p = W p, (1)

where p is vector of probabilities and W is a real asymmetric
matrix that is determined by the transition rates. Due to the
illumination, the right- (left-) polarized particles execute self-
propelled stochastic motion that is biased to the right (left).
In the absence of disorder we see that the relaxation of the
system becomes underdamped instead of overdamped if the
strength of the illumination φ exceeds a critical value. We also
see that in the presence of disorder both the steady state and
the relaxation scenario become very different.

Complex spectrum. In order to understand the relaxation of
a stochastic system, as in the simulation discussed above, we
have to inspect its relaxation modes. These are the eigenvectors
of the real W matrix of Eq. (1). They decay in time as
exp(−λr t), where the {−λr} are the associated eigenvalues.
The relaxation becomes underdamped, meaning that it exhibits
oscillations in time, if some of the λr acquire an imagi-
nary part. Formally, we are dealing with the physics of real
non-Hermitian matrices, where the spectrum might become
complex [13–24].

Observations. Our objective is to provide a precise quantita-
tive framework for the analysis of relaxation in active networks.
In particular, we are interested in the implications of disorder
and the possible manifestation of localization effect in the
relaxation modes of such systems. We are going to explore
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FIG. 1. Model geometry. (a) Janus particle in a one-dimensional
random environment. The nonuniform illumination (arrows) induce
self-propulsion in the direction of the head (white). The orientation
of the head is called below polarization. (b) Lattice modeling of
the system. Each node represents a possible location n and possible
polarization s = ↑,↓. One tile of the lattice is plotted. The system
is composed of N tiles with periodic boundary conditions. The
transition rates along the vertical bonds are w = 1 in both directions,
representing random flips of polarization. The horizontal bonds are
biased: The stochastic field there E is written as the sum of a drift fn

and a self-propulsion term φn. The latter reflects that we are dealing
with an active network. (c) Illustration of a representative segment
of the lattice. The black sites are those that serve as sinks for the
stochastic flow in the presence of strong disorder. They support the
floor-level relaxation modes.

different routes towards underdamped relaxation. The tradi-
tional way of getting underdamped relaxation is to introduce
bias that causes the particle to drift in one direction. In the
present study we are going to discuss the possibility to get
underdamped relaxation due to self-propulsion. We are going
to see that uniform illumination requires a finite threshold
value, unlike nonuniform illumination, which induces com-
plexity as soon as it is introduced. We will see that stochastic
disorder can either stabilize or destabilize the overdamped
modes, depending on whether it is conservative or topological.

Active network. We deal with particles that execute self-
propelled motion. The formal modeling is in terms of a
network; for our specific configuration it is the N -tile lattice
of Fig. 1(b). The network is described by the matrix W of
Eq. (1). On each bond b we define a stochastic field Eb that
indicates how the transitions are biased. We use the notation
Bn for the circulation of Eb around the nth tile of the network.
If all the circulations Bn are zero, alias detailed balance, we
say that the system is conservative. In such a system the NESS
is a canonical equilibrium state with zero currents. Nonzero
circulations are called affinities and can drive NESS currents.

Topological disorder. In the present work we consider a type
of disorder that we call topological stochastic disorder (TSD).
It arises due to having a random Bn and therefore constitutes a
generic feature of the active network. This is in contrast with
having random Eb with zero Bn, which generates conservative
disorder. The topological disorder is a type of disorder which is
very different from, say, a random magnetic field [25], because
it breaks the Hermiticity of W , leading to the appearance of a
complex spectrum. Such a type of disorder, which arises due
to nonzero circulations, requires more than one channel, or

(a)

(b)

(c)

(d)

FIG. 2. Simulation of polarization as a function of time. The
average polarization Dn at each location n is color coded and imaged
as a function of time t . In all the panels the polarization of the initial
perpetration is modulated with wave number k = 2π/5, namely,
pn,s ∝ 1± cos(kn). Only 50 sites are displayed. (a) Overdamped
oscillations for φ = 0.5 are observed since the self-propulsion is
below the critical threshold. (b) For φ = 2, which is above the
threshold, one observes underdamped relaxation due to topological
symmetry breaking. (c) Once disorder is added, the nonuniform NESS
pattern takes over almost immediately. The parameters here are as in
Fig. 3. (d) In the latter case we provide an image of the time derivative
Ḋn, hence one can resolve how the underdamped relaxation is blurred.

more than one dimension, hence the term topological. In two
dimensions, the continuum-space limit of a stochastic random-
walk process leads to a diffusion equation. The presence of
TSD implies the appearance of a solenoidal random drift field.
The effect of the latter has been discussed in [26], where it has
been shown that it leads to a slightly superdiffusive spreading.

Floor level. Strong disorder tends to attracted the system
into sinks, as illustrated in Fig. 1(c). In the case of conserva-
tive disorder those sinks are stable minima of the stochastic
potential. In the case of TSD the stability of the sinks is
marginal. Either way, after a transient time the probability
distribution becomes concentrated within this floor level. The
term floor level refers to this set of sinks, which supports the
slow-relaxation modes of the network.

A. Related studies

1. Topological NESS

The topological nature of the NESS for the model that we
are considering, without disorder, has been discussed in [27,28]
and a connection has been established with the Su-Schrieffer-
Heeger model following the work of [29] on topological
boundary modes in isostatic lattices. In the present work we are
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not considering the NESS, but rather the relaxation modes and
their bulk localization properties due to disorder. We note also
that the NESS of similar nondisordered quasi-one-dimensional
models has been investigated in the context of traffic with
exclusion rules (see, for example, [30,31]). The main focus
in the latter case was the formation of a polarization wall due
to the entering and the exiting rates at the boundaries.

2. The Sinai model

The minimal model for stochastic motion in a disordered
lattice is due to Sinai [32–35]; it is also known as a random
walk in a random environment. In the Sinai model the particle
can hop between neighboring sites of a chain and the rates of
transition are random numbers. This leads, in the absence of
bias, to subdiffusion. Above some critical bias the drift velocity
becomes nonzero, which is known as the sliding transition.

3. The Hatano-Nelson model

The asymmetry of the W matrix in Sinai’s model can be
gauged away, hence it is similar to a Hermitian matrix, and
possesses a real spectrum. However, this is not the case if the
chain is closed into a ring (i.e., imposing periodic boundary
conditions). It has been realized [15–17] that above some
critical bias the spectrum becomes complex, and this is termed
a delocalization transition. The subtle relation to the sliding
transition in Sinai’s model was investigated in a later study
[22].

4. Anderson localization

The analysis of Sinai’s model, which describes random
walk in a nonactive disordered environment, is strongly related
to studies of Anderson-type localization. It is customary to
distinguish between two types of disorder, so-called type I
and type II [36,37]. Roughly speaking, the former arises from
on-site disorder, while the latter arises from bond disorder, in
the senses of resistor network models [38].

B. Outline

We provide a precise definition of the minimal model in
Sec. II, where we also review the different types of disorder
that can arise in a network. We highlight in Sec. III the different
routes to complexity. Section IV provides a detailed account for
the breakdown of reality due to self-propulsion in the absence
of disorder. Section V explains how the spectrum is affected by
the introduction of TSD and why the threshold for complexity
diminishes due to the disorder. In Sec. VI we introduce several
measures for the characterization of a relaxation mode, which
help us gain a deeper insight into the spectrum.

Conservative disorder is responsible for the robustness
of reality, meaning that eigenvalues remain real even if
not-too-strong circulations are introduced. In contrast, TSD
leads to complexity via topological mixing. However, there
is a variation: We observe in Sec. VII that strong stochastic
disorder, irrespective of its nature, induces lattice dilution,
leading to the formation of a floor level. Consequently, the
effective dimensionality of the lattice is reduced and a robust
reality is gained within this floor level. The topological-index
perspective of the disorder and its connection to the floor

level phenomenology are further discussed in Sec. VIII. We
summarize the work and discuss the results in Sec. IX.

II. THE MINIMAL MODEL

We consider a minimal configuration for a self-propelled
particle in a random environment, namely, we assume that the
dynamics takes place on a quasi-one-dimensional grid [see
Fig. 1(b)]. If the particle is facing to the right, we say it has
right polarization. If its black-white orientation is opposite,
we say that it has left polarization. Accordingly, its states
|n,s〉 are defined in terms of position (n is an integer) and
spin coordinate (s = ↑,↓). Below we refer to the system as
a lattice that consists of sites. Each two sites with the same
index n form a cell and two adjacent cells, along with their
connecting bonds, form a tile. The dynamics is described by the
rate equation (1). The off-diagonal elements of the W matrix
are the transition rates w (with an appropriate bond index).
The diagonal elements −γ (with an appropriate state index) are
implied by conservation of probability (the sum of each column
has to be zero). The matrix W is given explicitly in Appendix
A. The rate of transition between two sites, connected by a
bond b, is characterized by a stochastic field

Eb = ln

(
w−→

b

w←−
b

)
(2)

whose sign indicates the preferred sense of transition. Thus the
rates on a given bond can be written as wb exp(±Eb/2). In the
geometry of Fig. 1(b), the vertical bonds represent a random
flip of orientation and therefore are characterized by a zero
stochastic field. In contrast, the horizontal bonds are biased.
The stochastic field on the bond b = (n,s) that connects node
|n,s〉 to |n+1,s〉 is conveniently written as a sum of drift and
self-propulsion terms, namely,

En,↑ = fn + φn,

En,↓ = fn − φn.
(3)

The activity of the network is reflected in having nonzero
circulations, also known as affinities (analogous to magnetic
field). The circulation of the nth tile is

Bn = 2φn. (4)

If all the circulations are zero, a gauge transformation can be
used to show that W is similar to a symmetric matrix H , hence
all the eigenvalues are real, as for Hermitian Hamiltonians.
Otherwise we are dealing with the physics of non-Hermitian
matrices, where the spectrum might become complex [13–24].

A. Model parameters

The motion of the Janus particles is regarded as a hopping
process between sites of a network [see Fig. 1(b)]. The
unbiased transition rates are wb. In the continuum limit we
get diffusion with the coefficient D ∝ wb. We assume for
simplicity that all the wb are the same. Some further remarks
about the implication of having different rates for the vertical
flips are presented in Appendix B.

The motion in Fig. 1(a) is controlled by a nonzero-average
drift field f̄ and a nonzero-average self-propulsion φ̄. Disorder
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TABLE I. Different types of disorder.

Type Alias Relevant models Comments

type I diagonal disorder Anderson model (random potential) might have a mobility edge
type II bond disorder Debye model and random resistor network might lead to a percolation transition
MFD phase disorder Anderson model with random vector potential topological aspect is not pronounced
CSD Sinai model of random stochastic transitions reduces to type I via gauge transformation
RSD sign disorder random excitatory and inhibitory connections non-Hermiticity cannot be gauged away
TSD generic active networks non-Hermiticity is of topological origin

may arise due to the nonhomogeneity of the background
environment or due to the nonhomogeneity of the illumination
source. Respectively, we distinguish between conservative
stochastic disorder (CSD), for which the fn acquire a random
term ∈ [−σf ,σf ], and TSD, for which the φn acquire a random
term ∈ [−σφ,σφ]. Accordingly, the model parameters are f̄ , φ̄,
σf , and σφ and the length of the sample, N .

B. Types of disorder

It is customary to distinguish between two types of disorder,
so-called type I and type II [36,37]. We explain these terms in
the present context and highlight a different type of disorder.
The different types of disorder are summarized in Table I.

Random fn, as in the Sinai model (alias a random walk in
a random environment) [32–35], translates, under gaugelike
transformation, into type-I disorder [17], which is a diagonal
on-site disorder as in the Anderson model (electron in a random
potential). We refer to it as CSD.

Random wb, as in random resistor network models [38] or as
in the Debye model (balls connected by nonidentical springs),
translates into type-II disorder, which is an off-diagonal bond
disorder. The latter type of disorder can lead to a percolationlike
transition that affects the relaxation modes [22] and we will not
consider it further.

In the present work we consider a type of disorder that we
refer to as TSD. This type of disorder originates from having
random φn and, unlike CSD, cannot be gauged away. We note
that, physically, TSD arises naturally also in situations other
than active particles. For example, the affinities Bn may reflect
nonconservative drift fields that are induced by electromotive
forces.

With the substitution φn 	→ iφn our TSD becomes
magnetic-field disorder (MFD), which has been discussed in
the past (see, e.g., [25] and references therein). One should
be aware that there is an essential difference between TSD
and MFD: The latter has qualitatively the same effect as the
usual type-I Anderson disorder, while TSD makes the spectrum
complex.

Another type of non-Hermitian disorder that has been
discussed in the literature is random sign disorder (RSD) (see
[21] and references therein). It concerns biological networks,
where the wb have random sign, corresponding to random
excitatory and inhibitory connections. It should be realized
that RSD has nothing to do with topology: The model of [21]
is a single-channel tight-binding model with near-neighbor
transitions. In contrast, TSD requires at least two channels,
as in the case of a random magnetic field. Also, it should be
realized that the strength of TSD, unlike that of RSD, is tunable.

III. DIFFERENT ROUTES TO COMPLEXITY

We first recall the simplest result for the relaxation spec-
trum of particles that diffuse in a single-channel biased ring.
This result illustrates the delocalization route to complexity.
For any nonzero bias the spectrum becomes fully complex
λ = Dk2 + ivk, where k is the wave number,D is the diffusion
coefficient, and v is the drift velocity. A similar expression
applies for a tight-binding model (see, e.g., [23]).

The spectrum of a one-channel disordered ring, in the
absence of bias, is real. With added bias, some eigenvalues
become complex. The complexity appears only if the bias
exceeds a finite threshold, alias the delocalization threshold
[15,16]. The eigenstates that correspond to real eigenvalues
are then localized, while those that are associated with com-
plex eigenvalues are extended. As discussed in [23], the low
relaxation modes (small Re[λ]) get delocalized first, while the
high-lying relaxation modes remain real.

We consider a two-channel ring of N unit cells with periodic
boundary conditions [Fig. 1(b)]. This is the simplest example
for an active network; we are going to find two additional routes
to complexity that have to do with the nontrivial topology of the
model. We distinguish between the circulation that is induced
by the drift and the circulation that reflects the self-propulsion,
namely, ∑

fn ≡ Nf̄ , (5)∑
Bn ≡ 2Nφ̄, (6)

whereBn = 2φn is the affinity of the nth tile. For simplicity we
assume that all the couplings are identical (wb = 1 for any b).
In the absence of disorder, W is translationally symmetric and
can be written very simply using momentum and spin operators

W = (σ x − 1) +
∑
±

e±(f̄ +φ̄σ z)/2(e∓i p − 1). (7)

The Pauli operator σ x term induces the random change in
the propulsion direction (vertical transitions in Fig. 1), the ±
terms generate the forward and backward transitions, and the
−1 terms provide the diagonal elements (decay rates) that are
required for conservation of probability. The operators e±i p

and σ i are written using explicit Dirac notation in Appendix
A. We are now in position to explain how each of the parameters
of the model (f̄ , φ̄, σf , and σφ) affects the complexity of the
spectrum.

Conservative stochastic disorder. Conservative stochastic
disorder arises if all the φn are zero while the fn ∈ [−σf ,σf ]
have finite dispersion and zero average. Such type disorder can
be derived from a stochastic potential that features activation
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FIG. 3. Representative relaxation spectrum for finite propulsion
(φ̄ = 2) and TSD (σφ = 1) with n = 500. The eigenvalues are
presented in the complex plane. Each associated eigenmode is
characterized by various measures: The real and Im[λ] > 0 points
are color coded by the participation number M , while the conjugate
Im[λ] < 0 points are color coded by the effective propulsion B. See
the text for definitions. The solid line illustrates the spectrum of the
nondisordered system (13).

barriers, as discussed by Sinai and followers [32]. The asym-
metry of the W matrix can be gauged away, hence it is similar
to a Hermitian matrix, and the relaxation spectrum comes out
real. The corresponding eigenstates are Anderson localized.

Propulsion. Without disorder the relaxation spectrum can
be found analytically (see Sec. IV). Adding self-propulsion
φ̄, unlike drift, leads to a very different route to complexity
that is not related to delocalization of the eigenstates. For
low self-propulsion the spectrum remains real, while above
some critical value the relaxation modes undergo a symmetry-
breaking transition. Consequently, a circle of complex eigen-
values appears. In Fig. 3 this circle is indicated by a solid line.
If we add weak stochastic disorder the spectrum is blurred, as
illustrated in Fig. 3 for TSD and in Fig. 4(a) for CSD.

FIG. 4. Representative relaxation spectra. The presentation is the
same as in Fig. 3 but with the conjugate eigenvalues excluded. (a)
Same propulsion as in Fig. 3 but with CSD (σf = 1) instead of TSD.
(b) Same TSD as in Fig. 3, but the average propulsion is zero. (c)
Same as (b) but with weak drift (f̄ = 0.02). (d) Same as (b) but with
stronger drift (f̄ = 0.8).

Topological stochastic disorder. Another route to complex-
ity has to do with mode mixing due to TSD. Even if the
propulsion is zero on average, we still can have finite dispersion
φn ∈ [−σφ,σφ]. Then the problem becomes non-Hermitian
in a very essential way and part of the spectrum becomes
complex. This is illustrated in Fig. 4(b), where we turn off
the propulsion for the system of Fig. 3, but keep the TSD.
It should be clear that if we turn off the propulsion for the
system of Fig. 4(a) the complexity vanishes and we get a real
spectrum.

Drift. Without disorder, finite nonzero drift f̄ has the same
effect as for a single-mode ring, leading to delocalization
of the spectrum. We demonstrate in Figs. 4(c) and 4(d) the
drift-induced delocalization route to complexity. The drift
can delocalize the lower (small Re[λ]) and possibly also the
upper (large Re[λ]) part of the spectrum, where we have
single-mode physics. We also see the interplay of the drift
and the TSD in the middle part of the spectrum where the two
channels overlap. For strong drift the TSD induces an avoided
crossing, while for weak drift the TSD-induced complexity
predominates.

IV. TOPOLOGICAL SYMMETRY BREAKING

The W matrix formally operates above a Hilbert space of
states whose standard representation is

|ψ〉 =
∑
n,s

ψn,s |n,s〉. (8)

The right eigenvectors of W are the relaxation modes of
the network. The eigenvector that corresponds to the zeroth
eigenvalue λ0 = 0 is the NESS, while all the other eigenvalues
are written as {−λr}, with Re[λr ] > 0.

For our geometry, besides the NESS, there is another
special mode with the eigenvalue λ = 2. This can be seen
by considering the left eigenvector |2̃〉 = ∑

n(|n, ↑〉 − |n, ↓〉).
All the λ �= 2 eigenmodes are orthogonal to this special left
eigenvector, hence the sum

∑
n ψn,s has to be equal for both

polarizations. Consequently, it is implied that the NESS has
equal weight for clockwise and counterclockwise motion,
while for all the relaxation modes the sum of amplitudes
vanishes for each direction. The same considerations also give
the time dependence of the total polarization

D =
∑

n

Dn =
∑

n

(pn,↑ − pn,↓). (9)

Multiplying Eq. (1) from the left with |2̃〉, one obtains a
universal decay law Ḋ = −2D.

In the absence of disorder the W matrix is block diagonal
in the basis |k,s〉, where k is the wave number. For φ̄ = f̄ = 0
the spectrum consists of two bands along the real axis, namely,
λk,+ = 2 − 2 cos(k) and λk,− = 4 − 2 cos(k). The existence of
the two-channel topology is reflected by having an overlap
2 < λ < 4. Note also that all the eigenvalues are doubly
degenerate due to k 	→ −k symmetry. This holds true also
for φ̄ �= 0 (we still keep f̄ = 0); however, now the spectrum
becomes complex. The kth block of the W matrix is

W (k) = bσ x − iaσ z + c1, (10)
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where b = 1,

a =
[

2 sinh

(
φ̄

2

)]
sin(k), (11)

c =
[

2 cosh

(
φ̄

2

)]
cos(k) −

[
1 + 2 cosh

(
φ̄

2

)]
. (12)

The matrix above is similar to a real matrix bσ z − iaσ y . Such
matrices are usually encountered if there is an antiunitary
symmetry such as T or PT [13,14]. However, we will stick
with the physical representation of Eq. (10). The eigenvalues
are either real or come in complex-conjugated pairs, namely,

λk,q = −[c ±
√

b2 − a2], (13)

where q = 1,2 labels the lower and upper bands, respectively.
The spectrum is real for |a| < |b| and complex for |a| > |b|.
The latter possibility is realized if 2 sinh(φ̄/2) > 1, leading to
a critical value for self-propulsion

φc ≈ 0.96. (14)

Figure 3 shows a representative spectrum for φ̄ > φc, where
the solid line is based on Eq. (13).

The eigenmodes are labeled as |k,q〉. In the Bloch sphere
representation they reside in the XY or the YZ plane, depend-
ing on whether they are associated with real or complex eigen-
values, respectively. Close to the so-called exceptional point
(a = b) they coalesce into the same Y direction. Disregarding
normalization, the eigenmodes are

|k,q〉 =
∑

n

eikn(|n, ↑〉 ± e±iϕ |n, ↓〉), (15)

where tan(ϕ) = a/
√

b2 − a2. Strong self-propulsion (a > b)
implies ϕ = (π/2) + iθ with real θ . Consequently, the sym-
metry with respect to the orientation direction is broken and
the modes become polarized, meaning that clockwise modes
are separated from counterclockwise modes. On top we note
that the |k,s〉 have a systematic degeneracy for k 	→ −k.

The spectrum of the nondisordered model is further ana-
lyzed in Appendix B and is illustrated in a few representative
cases in Fig. 5. It is composed of two bands. As discussed
above, in the absence of f the bands are deformed into the
complex plane provided φ > φc. Figures 5(a)–5(c) illustrate
this deformation for increasing values of φ. It is important to
notice that the ±k symmetry is not broken, hence each of the
two −λk,q trajectories is degenerated and encloses a zero area.
This is no longer true if we add a nonzero f . In the latter case
the ±k degeneracy is removed and the λk,s trajectories encloses
a finite area.

V. INTRODUCTION OF TSD

We now consider what happens if the illumination is
nonuniform. Thus we have TSD with some variation σφ on top
of the average value φ̄. At this point one may wonder whether
it is feasible to introduce TSD with zero-average propulsion
(the illuminated particles in Fig. 1 are always self-propelled
in the direction that they are facing). After little reflection
one realizes that it is possible to introduce such TSD if the
black-white coating of the particle is reversed in its lower
half. Then one can use two sources of illumination: an upper

(a)

(b)

(c)

(d)

FIG. 5. Bloch spectrumλk,s . The two bands areq = 1 (blue, lower
half-plane) and q = 2 (red, upper half-plane). (a)–(c) f = 0 and (a)
φ = 0.98, (b)φ = 1.2, and (c)φ = 1.6. Note thatφc ≈ 0.96. Equation
(13) has been used. For presentation the horizontal pieces of the band
have been shifted off the real axis. (d) Same φ as in (a) but with an
added f = 0.01 that lifts the ±k degeneracy. The black arrows show
the direction in which λk is changing as k ∈ [0,2π ] is increased from
zero and eventually returns.

illumination source that induces self-propulsion (for a given
polarization) to one direction and a lower illumination source
that induces self-propulsion (for the same polarization) to the
other direction. If the two sources are of equal average intensity,
the combined effect is to have zero-average propulsion and
hence unbiased TSD.

Let us see how the diagonalization procedure for W is
affected in the presence of nonuniform illumination, without
assuming any restrictions on the values of φ̄ and σφ . The stan-
dard site basis is |n,s〉. In order to get rid of the vertical coupling
we can switch to the basis |n,±〉, where ± are the modes that
are defined by σ x . In the absence of propulsion (or TSD) we get
two noninteracting chains (see the illustration in Fig. 6). Each
chain can be diagonalized, hence we go to the basis |k,±〉. If
we introduce disorder and neglect the interband couplings, the
spectrum is still real and can be labeled |α,±〉. The α states,
unlike the k states, are not free waves and become localized as
disorder is increased. In the |α,±〉 basis we can write

W = H + A, (16)

where H is Hermitian and A is an anti-Hermitian matrix due
to the self-propulsion. The disorder-induced Hermitian and
anti-Hermitian couplings are represented, respectively, by the
vertical and diagonal arrows in Fig. 6.

In the absence of disorder A couples only states with the
same k, hence W takes the block-diagonal form (10), where
A = −iaσ z are the anti-Hermitian interband couplings. Then
we get the Bloch eigenstates |k,q〉, where q = 1,2. With
weak TSD the matrix W is no longer block diagonal. It does
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FIG. 6. Diagonalization procedure. We go from the site represen-
tation |n,s〉 of Fig. 1(b) to the mode representation |α,±〉, which is
illustrated on the left. The diagonal arrows represent anti-Hermitian
couplings due to self-propulsion. The thick double-sided arrows
represent the Hermitian hopping elements between cells. The disorder
affects all those couplings and also adds vertical hopping elements.
The unperturbed diagonal energies areλ = 2 andλ = 4. With hopping
we get two bands [0,4] and [2,6] that are illustrated by the solid line
on the right. Neglecting the interband couplings, the spectrum is still
real, represented by the blue vertical segments. The complex spectrum
appears due to band mixing, as explained in the text.

not require strong disorder in order to induce band mixing.
The condition for band mixing is to have A couplings that
are larger compared with the level spacing. This is a very
easy condition which is implied by perturbation theory (see
Appendix C). Consequently, very weak disorder is enough to
induce complexity within the range 2 < Re[λ] < 4. We note
that the appearance of disorder-induced Hermitian couplings
in H of Eq. (16) does not change this picture: It scramble the
levels of the two bands, but does not alter much their density
in the overlap region.

The explanation above illuminates why uniform φn, unlike
random φn that has the same average intensity, requires a
finite threshold (14) in order to induce complexity in the
spectrum. Figure 7 displays how the overall fraction of com-
plex eigenstates depends on σφ , while Fig. 8(a) shows their

(a)

(b)

FIG. 7. Spectral distribution of the eigenvalues. (a) Fractions of
eigenvalues per spectral window versus the disorder strength σφ , with
φ̄ = f̄ = σf = 0. (b) Fraction of complex eigenvalues (out of all
eigenvalues) divided into the different spectral windows. In some
realizations of the system there are residual complex eigenvalues in
the first window (Re[λ] < 2), with a small imaginary part. It is not
clear whether these are numerical issues or not. The threshold for
complexity here is Im[λ] > 10−4. The plots are for rings of N = 500
cells, with φn = αnσφ , where αn ∈ [−1,1] are random numbers. Each
point corresponds to a different σφ , while the αn are not modified.

FIG. 8. Fraction of complex eigenvalues. (a) Fraction of complex
eigenvalues relative to the number of eigenvalues in the second
window (Re[λ] ∈ [2,4]) for the same ring as in Fig. 7 and for nonzero
σf too. In the latter case the fraction becomes smaller. (b) Total
fraction of complex eigenvalues for a simple ring. Each point in the
plots is averaged over 100 realizations. The solid and dashed lines are
for σ = 3 and σ = 6, respectively. The different lines (from bottom
to top at B > 4) are for rings of length L = 5,10,20,30,60.

percentage within the range 2 < λ < 4. In order to further
explain the consequences of TSD, we now turn to characterize
the eigenstates.

VI. TOPOLOGICAL CHARACTERIZATION
OF THE EIGENMODES

Assuming square-integrable normalized eigenstates, we
formally define Pn,s = |ψn,s |2 and Pn = ∑

s Pn,s such that∑
Pn = ∑

Pn,s = 1. Additionally, we define, using a har-
monic average, a topological weight for each tile

P ∗
n = 8

[ ∑
site∈n

P −1
n,s

]−1

, (17)

where site ∈ n refers to the four sites from which the nth tile
is formed. The prefactor is chosen such that P ∗

n = 1/N for a
uniform occupation. A vanishingly small P ∗

n means that the
nth cell does not form a closed ring.

It is now possible to introduce several measures that char-
acterize a given eigenmode:

M =
[∑

n,s

P 2
n,s

]−1

, (18)

L =
[∑

n

P 2
n

]−1

, (19)

L∗ =
[∑

n

P ∗
n

]
L, (20)

Q =
∑

(n,s)∈floor

Pn,s . (21)

The first two measures characterize the volume that is occupied
by the eigenmodes: M is the number of sites that participate
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FIG. 9. Participating sites for each eigenmode. (a) Participation
number M versus Re[λ] for σφ = 1 and σf = 0.1, with φ̄ = f̄ = 0.
(b) Same as (a) but with the disorder parameters swapped: σf = 1
and σφ = 0.1. (c) Various occupations volumes versus σφ . In (a) and
(b) the points are color coded by Im[λ]. In (c) each point is an average
over all the eigenstates within 2 < Re[λ] < 4. The inset shows that
the inverse localization length has a roughly quadratic dependence on
the disorder strength, as in the Anderson model.

in the formation of the eigenmode, while L is the respective
localization length. The topological localization length L∗ is
further discussed below. The definition and the significance of
Q will be discussed in the next section.

It is important to realize that the eigenstates might be
polarized, meaning that Pn,↑ − Pn,↓ is not zero. Polarization
can arise either due to symmetry breaking, as discussed in
Sec. IV, or due to the formation of a floor level, which is
discussed in the next section. For a strictly polarized eigenstate,
L = M as opposed to L = M/2. Numerical results for M , L,
and L∗ are presented in Fig. 9.

The topological localization length L∗ reflects the effective
circulation which is experienced by a given eigenmode. It
is determined by the total topological weight

∑
P ∗

n , which
is the occupation probability of the region that experiences
propulsion. If the total topological weight is much smaller
than unity, it means that the non-Hermiticity can be gauged
away from the volume that supports the eigenmode, hence
the eigenvalue is real (or with very small imaginary part). If
the total topological weight is non-negligible, it makes sense
to define the effective circulation that is experienced by the
eigenmode as follows:

B =
∑

n

PnBn. (22)

FIG. 10. (a) Effective circulation B of the eigenstates versus
their

√
L∗/L, calculated for TSD with σφ = 2 (red) and σφ = 4

(blue), as well as φ̄ = f̄ = σf = 0. The solid and dashed lines are
given by Eq. (23). (b) We define B̃ = ∑

n Pn|Bn| and verify that it
agrees with the estimate ∼(L∗/L)σφ . Both panels refer to the same
set of eigenstates, namely, those that reside in the spectral window
2 < Re[λ] < 4.

In the absence of disorder, the eigenmodes are uniform and
we get B = 2φ̄. In the presence of disorder, the eigenmodes
get localized, but if they are uniform within the localization
volume (with zero polarization) we still get B ≈ 2φ̄. On the
other extreme, if the eigenmodes are completely polarized we
get a vanishing B. For the intermediate situation, where the
eigenmode is supported partially by topologically connected
cells and partially by dangling sites, the bare 2φ̄ is multiplied
by the total topological weight of the eigenmode.

The effective circulation for each state in Eq. (22) can be es-
timated using the measures L and L∗ as follows: By definition,∑

Pn = L∗/L. There are L∗ terms in the sum; accordingly
each term can be estimated as ∼1/L. It follows that B is
normally distributed with zero mean and standard deviation

SD(B) =
√

L∗

L
SD(Bn) = 2

(2σφ)√
12

√
L∗

L
. (23)

This estimate is tested in Fig. 10. We conjecture that B affects
the complexity of the eigenmode. A simple argument that
supports this conjecture goes as follows. All the asymmetric
transition of dangling bonds can be gauged away using a
similarity transformation; hence W is similar to a matrix
H + A, where H is real and symmetric and the antisymmetric
matrix A is supported only by the topologically connected
cells. Multiplying Wψ = λψ from the left by ψ†, we deduce
that Im[λ] = ∑

Aij Im[ψ∗
i ψj ]. Consequently, we conclude

that from statistical perspective Im[λ] is proportional to the
topological weight of the eigenmode.

The above conjecture provides a qualitative explanation
for the remarkable difference between TSD and CSD in
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Figs. 3 and 4(b), respectively. The transverse scattering of the
complex eigenvalues in the former case becomes larger as the
localization volume M becomes smaller. Modes with larger
B experience (by definition) a larger effective propulsion and
therefore they are pushed to a larger radius. The CSD, unlike
TSD, does not have a systematic (M-dependent) effect on B,
because the Bn are the same for all cells.

One wonders what determines the complexity saturation
value of F in Fig. 8(a). For one-dimensional rings that were
studied in [22], an analytical treatment has been introduced:
For stronger disorder the saturation value becomes smaller, and
the approach to this value is smeared, as illustrated in Fig. 8(b).
We now use these results to provide a simple explanation for
the disorder dependence of F in our model system. A given
eigenstate with localization length L exists on a sublattice
of size L. Ignoring the detailed bond structure, it can be
regarded as an eigenstate of a local ring of size ∼L. The
σf of CSD is by definition the σ disorder for such a local
ring, while the σφ of TSD controls the effective B and hence
is analogous to the affinity of the one-dimensional ring. It is
therefore expected that σf rather than σφ will have a dominant
influence on F . Indeed, we see in Fig. 8(a) that F is sensitive to
CSD: Increasing σf , unlike increasing σφ , affects the saturation
value. It is true that a further increase of σφ affects the L of the
eigenstates too, but this has almost no implication. To see why,
we illustrate in Fig. 8(b) how the F of a simple ring is affected
by its length L, which plays the role of localization length in
the model under study.

VII. FORMATION OF THE FLOOR LEVEL

In the presence of strong disorder, the floor-level sites are
those that serve as sinks for the probability flow [see Fig. 1(c)
for illustration]. The NESS and the low-lying relaxation modes
mainly occupy these floor-level sites. This hypothesis is estab-
lished by Fig. 11(a), where we plot the floor occupation Q that
has been defined in Eq. (21).

In Fig. 7(a) we show how the eigenvalues are distributed
with respect to Re[λ]. Generally speaking, we see that the
spectrum is stretched upward along Re[λ]. This can be easily
explained by noting that the diagonal elements of the W matrix
become very large for strong disorder, namely,

γn,s = 1 + eφn/2 + e−φn−1/2. (24)

However, a careful look reveals that within Re[λ] ∈ [0,2]
we have an approximate 25% fraction of real eigenvalues,
irrespective of the TSD strength. The 25% is not surprising in
the limit of weak disorder: Their reality is implied by the band
structure. However, their presence and reality persist also for
very strong disorder due to the formation of the floor level.
From Eq. (24) it follows that for the sink site 1 < γ < 3.
Furthermore, as the disorder is increased γ → 1. The hopping
between the floor-level states (via high-lying states) leads to the
formation of the floor-level band, as established by Fig. 9(c).
If we have TSD only, the fraction of floor-level sites is 25%.
Adding propulsion, this fraction becomes

Ffloor = (σφ − φ̄)(σφ + φ̄)

4σ 2
φ

. (25)

FIG. 11. Floor-level occupation. (a) Floor-level occupation Q

versus Re[λ] for σφ = 8, with φ̄ = f̄ = σf = 0. (b) The fraction
of floor-level eigenstates drops down from 25% as φ̄ is increased.
Floor-level eigenstates are defined as those that have Q > 0.7. This
is compared with F from Eq. (25) and with the number of states with
Re[λ] < 2 (σφ = 8). (c) Fraction of floor-level eigenstates versus σf

and σφ . The average propulsion is φ̄ = 2.

Consequently, as the disorder is increased we expect a
crossover from band-structure implied occupation to the floor-
level implied occupation that is illustrated in Fig. 11(a).

Summarizing the TSD case (with zero-average propulsion),
we realize that in the absence of disorder, the low-lying eigen-
modes are real and nonpolarized because they all belong to a
single-channel symmetric mode |k,+〉 of Eq. (15) with ϕ = 0.
Increasing the disorder strength, the low-lying eigenmodes
occupy only the floor level, hence become polarized (two sites
with the same n cannot both serve as sinks), and therefore
remain real. Note, however, that we cannot exclude that what
we call here real possesses a very small imaginary part due
some residual hopping. On the basis of the numerics it is
difficult to obtain a conclusive statement, but from a practical
(physical) point of view such a conclusive statement is of no
importance.

The same calculation of Eq. (25) holds if we have CSD in-
stead of TSD, namely, with σφ replaced by σf [see Fig. 11(c)].
In contrast with the TSD case, in the strong CSD limit, the
sinks come in strongly coupled pairs (two sites with the same
n are coupled by a direct vertical bond wflip = 1 rather than
via high-lying states with weff � 1). Consequently, half of the
floor states have λ > 2, as implied by Fig. 6. Accordingly,
for strong CSD the fraction of states within Re[λ] ∈ [0,2] is
approximately 12.5% rather than 25%.

VIII. TOPOLOGICAL INDEX

The bulk-edge correspondence principle suggests that lo-
calized states should appear at interfaces, connecting regions
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of the sample characterized by a different topological number.
Below we illuminate the relation between this statement and
the floor-level phenomenology that has been introduced in the
preceding section.

A translationally invariant sample can be characterized by
the winding number

w = 1

2πi

∫ 2π

0
dk

d

dk
ln(det[W (k)]), (26)

which counts the number of times that the eigenenergies
encircle the zero energy. Similar to the case of a vanishing band
gap in the Hermitian case, the winding number is ill defined
when dealing with a conservative system, which always has
a λ = 0 eigenvalue. To circumvent this problem, following
[27,28], one has to introduce an F bias, as explained in
Appendix B.

Considering an interface between two bulk regions L and
R, the topological index is defined as

δw = wL − wR. (27)

The interface will localize left (right) zero-energy edge modes
if in some finite neighborhood ofF = 0 the index δw is positive
(negative) independently of F . It is important to realize that two
bands are not required for observing topological phenomena
in non-Hermitian Hamiltonian, which stands in contrast with
Hermitian systems [24].

In Appendix B we calculate the topological number of
a translationally invariant system given by Eq. (7). We find
that a nonzero topological index is associated with interfaces
between regions with opposite drift field, independent of the
self-propulsion. We further observe that probability density
can accumulate also at interfaces between regions that have
the same topological number. We point out (see the last
paragraph of Appendix B) that the localization in the latter
case is less pronounced and is diminished if the length of the
nondisordered regions is increased.

The above observations lead to the conclusion that CSD is
more effective (compared with TSD) in introducing localized
states. The implication of this observation is demonstrated
in Fig. 9. We see in Fig. 9(b) a remarkable increased in the
likelihood to observe eigenmodes with small M . Another way
to phrase this conclusion is to say that eigenmodes that reside
in the floor level tend to localize if CSD is dominating and tend
to be more extended if TSD is dominating.

IX. SUMMARY AND DISCUSSION

The relaxation modes of a stochastic network can be either
overdamped or underdamped depending on whether their λ are
real or complex. In a nonactive unbiased disordered network,
say a ring, the relaxation is overdamped. However, if we add
bias (finite f̄ ) the low modes become delocalized and we
can have underdamped relaxation, which is associated with
correlated currents over the whole ring.

The picture of relaxation is much richer if we consider
an active network. Without disorder the self-propelled motion
(finite φ̄) implies that above a critical value φc the relaxation
modes become polarized due to topological symmetry break-
ing. Once disorder is taken into account, the picture changes
dramatically. An emergent feature of active networks is a new

type of disorder: TSD. Random φn, unlike uniform φn, does not
require a finite threshold to induce complexity in the spectrum.
Either way, in the absence of drift, the underdamped modes
are gapped away from the λ = 0 NESS and characterized by a
decay rate that is comparable with the transition rates (wb = 1
in our numerical examples).

Thus we have highlighted that a stochastic network can
exhibit three routes to complexity: (a) delocalization of a re-
laxation mode due to drift, (b) topological symmetry breaking
of a relaxation mode, and (c) TSD-induced band mixing of real
relaxation modes. The two latter routes to complexity reflect
that we are dealing with an active network. These mechanisms
are local is some sense and are not associated with global
delocalization of the eigenmodes.

Additionally we have shown a theme that distinguishes
active matter from passive matter, namely, the emergence of
underdamped relaxation modes. Here one should be careful
with terminology. Underdamped relaxation has been discussed
in the context of active matter [39], but it was associated with
the finite inertia of the particles. In contrast, the type of under-
damped relaxation that we have discussed here is specifically
related to the essence of having an active network, namely, the
nonconservative nature of the active stochastic field.

We have presented a detailed investigation of the Fourier-
Laplace spectrum for a minimal model of an active network
Fig. 1. A time-domain illustration of the dynamics has been
displayed in Fig. 2 by means of the local polarization Dn.
This illustration shows how the underdamped relaxation due
to self-propulsion is blurred by the introduction of disorder.
Our objective was to provide a quantitative analysis for this
dynamical behavior.

In Sec. VI we have introduced several measures for the
characterization of a relaxation mode: the number of lattice
sites that support the mode (M), the number of floor-level sites
that are involved (Q), their localization lengths (L), and the
effective circulation that they experience (B). These measures
helped to gain deeper insight into the spectrum.

A few remarks are in order. (i) If the average self-propulsion
is zero, the effect of CSD is to stabilize the reality of the
spectrum, while TSD induces complexity in the central part
of the spectrum via band mixing. (ii) If we further increase
the stochastic disorder, the fraction of complex eigenmodes
become smaller. There are two issues here: the formation of
the floor level due to the effective dilution of the lattice and the
fragmentation of the lattice into smaller regions that support the
localized eigenmodes. (iii) Opposing the common perspective
that connects delocalization and complexity in a single-channel
system [15], TSD both makes the spectrum complex and
localizes the states. (iv) The effect of TSD can be distinguished
from the effect of CSD also if the average self-propulsion is
not zero (finite φ̄). The CSD affects democratically all the
underdamped modes, while the TSD has a larger effect on
the more localized modes.

We can adopt a more general perspective with regard to
the floor-level phenomenology, which can be applied for any
active network. Strong stochastic disorder, irrespective of its
nature, induces lattice dilution, leading to the formation of a
floor level that is spanned by the sites that serve as sinks for the
stochastic flow. Consequently, the effective dimensionality of
the lattice decreases. In our geometry the floor-level sites form
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a single-channel chain, hence a robust reality is gained within
the floor-level band.

The floor level consists of local sinks of the stochastic
flow. In particular, local sinks appear at interfaces between
segments characterized by different topological numbers that
are determined by the sign of the drift flow, irrespective of
the self-propulsion. Still, we observe that probability density
can accumulate at interfaces between regions that have the
same topological number, e.g., in the presence of TSD and
uniform drift. Our numerical analysis shows that the degree of
localization in the latter case is less pronounced and smeared
away if the nondisordered regions are lengthy. This observation
highlights the role of topological protection and its implication
on localization in nonequilibrium stochastic flow.
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APPENDIX A: THE W MATRIX

The matrix W can be regarded as the representation of a
non-Hermitian Hamiltonian. It consist of three terms:

W = Wflip + W hop −
∑
n,s

|n,s〉γn,s〈n,s|.

Using the Dirac’s bra-ket notation, the explicit expressions for
the flipping and hopping terms are

Wflip =
∑

n

|n, ↑〉〈n, ↓| + |n, ↓〉〈n, ↑|,

W hop =
∑
n,s

|n+1,s〉〈n,s|eEn,s /2 + |n,s〉〈n+1,s|e−En,s /2,

with En,s that are given by Eq. (3). The decay rates are implied
by conservation of probability:

γn,s = 1 + eEn,s/2 + e−En−1,s /2. (A1)

The translation operators e±i p of Eq. (7) are defined
by e∓i p|n,s〉 = |n±1,s〉. The σ i operators are defined by
〈n′,s ′|σ i |n,s〉 = (σi)s ′sδn′n in terms of Pauli matrices.

APPENDIX B: THE NONDISORDERED SPECTRUM

Pedagogically, it is useful to consider a single-channel
tight-binding model, which is biased by stochastic field f .
Additionally, we introduce an F bias [27,28], which affects the
off-diagonal rates, but not the diagonal elements. Accordingly,

W = −2 cosh

(
f

2

)
+

∑
±

e±(f/2+F )e∓i p. (B1)

The Bloch spectrum is {−λk} with

λk = 2 cosh

(
f

2

)
− 2 cosh

(
f

2
+F

)
cos(k)

+ i2 sinh

(
f

2
+F

)
sin(k).

This spectrum goes through the origin for F = 0, which
reflects the existence of the NESS for a conservative matrix.

However, for any nonzero F we can define the winding number
w of the −λk trajectory relative to the origin, namely,

w = sgn[|f + 2F | − f ]. (B2)

If we have two regions (left and right) that do not have the same
f , the difference δw ≡ wL − wR is well defined in the limit
F → 0 and does not depend on whether we take the limit from
the positive or from the negative side. For the topological index
of Eq. (27) we get δw = 1. By the bulk-edge correspondence
principle it is implied that a bound state should reside at one of
the two interfaces between the two bulk regions which acts as
a sink for the flow. (We assume periodic boundary conditions,
so the interface is in fact two locations along the ring.)

We now can consider on equal footing our model system
(7), where we have two coupled chains, with flip rate b = 1.
For generality we assume below general b. Here the winding
number is calculated from the 2 × 2 matrix W (k). As in
the single-channel example the topological-index calculation
requires us to introduce an F bias. The resulting matrix reads

W (k) = bσx + 2 cosh

(
f + φσz

2
+ F − ik

)

− b − 2 cosh

(
f + φσz

2

)
(B3)

with eigenvalues {−λk}, where

λk,q = b − 4 cosh

(
φ

2

)
sinh

(
f +F−ik

2

)
sinh

(
F−ik

2

)

∓
√

b2+16 sinh

(
φ

2

)2

cosh

(
f +F−ik

2

)2

sinh

(
F−ik

2

)2

.

The index q = 1,2 corresponds to ∓. Note consistency with
Eq. (B1) upon the substitution b = φ = 0. We get two partially
overlapping bands provided b < 2. The spectrum in a few
representative cases has been illustrated in Fig. 5. The ±k

degeneracy is removed if we add a nonzero f , which parallels
the single-channel analysis. This has been demonstrated in
Fig. 5(c). With an additional F bias the loop looks similar
but does not go through the origin. Our analysis shows that
the presence of a finite self-propulsion does not alter the
topological index, namely, the expression for w is Eq. (B2)
as for a single chain.

If we have an interface between two regimes that do not
have the same (f,φ) bias, there is still a possibility to observe
interface states, even if the topological index is zero. This is
demonstrated in Fig. 12. We see there that strong localization
near the interface is observed only in Fig. 12(a) where the
δw �= 0. In Fig. 12(b) the high-probability interface and the
low-probability interface are mediated by a linear variation in
the zero drift (f = 0) region, as in Ohmic systems. In Fig. 12(c)
the sink in one chain is in fact a saddle, due to its coupling to the
other chain, hence the localization is weak. If a longer sample
is taken, the hump in Fig. 12(c) is smeared out (not shown).

APPENDIX C: LINEAR ALGEBRA OF
NON-HERMITIAN MATRICES

A non-Hermitian operator A has right eigenvectors that
satisfy A|x〉 = λx |x〉, where |x〉 is chosen to have the
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FIG. 12. The NESS for a system that is composed of two regions.
The probabilities on the upper and lower chains are plotted as dashed
blue and solid red lines. (a) The two regions are with opposite f . The
sink interface is located at n = 10, while the other interface is at n =
60. (b) The [10,60] region is with φ only and the other region is with
f only. (c) The two regions are with opposite φ. Strong localization
near the interface is observed only in case (a), where the topological
index is nonzero. The insets of (a) and (b) show close-ups.

normalization 〈x|x〉 = 1. These eigenvectors are in general
nonorthogonal: 〈x|y〉 �= 0. With any right eigenvector we
can associate a left eigenvector through the adjoint opera-
tor: A†|x̃〉 = λ∗

x|x̃〉. The right and left eigenvectors form a
biorthogonal set and we choose the normalization of the left
eigenvectors such that 〈x̃|y〉 = δx,y . For a complete basis
1 = ∑

x |x〉〈x̃|. The matrix representation By,x of an operator
B, in the basis |x〉, is defined via B|y〉 = ∑

x Bx,y |x〉. One
deduces that Bx,y = 〈x̃|B|y〉 and B = ∑

x,y |x〉Bx,y〈ỹ|.
Given a non-Hermitian matrix H0 and some perturbation

V , we define the right and left unperturbed eigenvectors |n〉
and 〈m̃|. In this basis H0 is diagonal with eigenvalues λ(0)

n .
The perturbed eigenvalues in second order are [40]

λn = λ(0)
n + λ(1)

n + λ(2)
n , (C1)

λ(1)
n = 〈ñ|V |n〉, (C2)

λ(2)
n =

∑
m

〈ñ|V |m〉〈m̃|V |n〉
λ

(0)
n − λ

(0)
m

. (C3)

Note that Vn,m will take different forms depending on the
normalization of the basis, while the product Vn,mVm,n is
independent of normalization due to the biorthornormality.

The α eigenstates of Fig. 6 are perturbed versions of k eigen-
states. On the basis of standard Fourier-analysis argumentation,
the uncertainty in k is determined by the inverse localization
length 1/L. Given an α eigenstate, we can associate with it an
average k value. A demonstration of this insight is provided
by Fig. 13(a). It displays the magnitude of the anti-Hermitian

(a) (b)

FIG. 13. (a) Image of |AijA
∗
ji |1/2 in the |α,±〉 basis. The in-

dices are sorted by λ
(0)
i . The propulsion is φ̄ = 2, σφ = 0.2, and

f̄ = σf = 0. States that have similar k content are strongly coupled.
If φ̄ = 0 (not displayed) all the couplings becomes comparable as
implied by Eq. (C4). (b) Here φ̄ = 0 and σφ = 1. The elements
are divided by the eigenvalue differences |λ(0)

i − λ
(0)
j |. Large values

implies strong coupling that induces strong mixing. Note that in both
panels diagonals are excluded. The color scale in (a) is arbitrary, while
that of (b) is absolute.

couplings between α states in the presence of propulsion with
low TSD. We see that those that have similar k context are
strongly coupled. If the average propulsion is switched off, all
the elements become comparable in magnitude. Let us find an
analytic estimate in the latter case.

The explicit expression for the anti-Hermitian perturbation
A is implied by inspection of W hop, namely,

A =
∑

n

sinh

(
φn

2

)
[|n + 1〉〈n| − |n〉〈n + 1|]σ z.

For the matrix elements of the anti-Hermitian perturba-
tion we get 〈k2,−|A|k1,+〉 = A(q,k̄), where q = k1−k2,
k̄ = (k1 + k2)/2, and

A(q,k̄) = − i

N

∑
n

2 sinh

(
φn

2

)
eiq(n+1/2) sin(k̄). (C4)

We can use this expression in order to estimate the anti-
Hermitian couplings between α states due to weak TSD.
Optionally we can calculate those couplings numerically, as
demonstrated in Fig. 13(b). Red implies strong coupling that
induces strong mixing.

Eigenvalues in the Re[λ] ∈ [2,4] window of an unbiased
system become complex whenever the coupling |A(q,k̄)| of
Eq. (C4) is bigger than (half) the eigenvalue difference between
the states. The sum in Eq. (C4) is the sum of N independent
random terms, with zero average, and hence for weak TSD,
disregarding a prefactor of order unity,

|A(q,k)| ≈ σφ√
N

| sin(k)|. (C5)

On the other hand, the spacing within Re[λ] ∈ [2,4] is on
average proportional to 1/N . It follows that for large N , the
coupling to the spacing ratio is proportional to

√
N , leading

to strong mixing and the emergence of complex eigenvalues,
even if the TSD is very weak.
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