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The electrical conductivity of two-dimensional films filled with rodlike particles (rods) was simulated by the
Monte Carlo method. The main attention has been paid to the investigation of the effect of the rod alignment on
the electrical properties of the films. Both continuous and lattice approaches were used. Intersections of particles
were forbidden. Our main findings are (i) both models demonstrate similar behaviors, (ii) at low concentration
of rods, both approaches lead to the same dependencies of the electrical conductivity on the concentration of the
rods, (iii) the alignment of the rods essentially affects the electrical conductivity, (iv) at some concentrations of
partially aligned rods, the films may be conducting only in one direction, and (v) the films may simultaneously
be both highly transparent and electrically anisotropic.
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I. INTRODUCTION

Thin films composed of elongated conductive particles,
such as carbon nanotubes, metal nanowires, etc., are of in-
creasing interest, particularly for the production of flexible
transparent conductors (for reviews, see, e.g., [1-3] and the
references therein). Promising applications inspire both exper-
imental studies and simulations of the electrical properties of
composite systems with rodlike highly conducting fillers [4].

The transport properties—in particular, electrical
conductivity—of binary systems with conducting fillers
inside an insulating host matrix are closely connected with
their percolating properties (for reviews, see, e.g., [5,6] and
the references therein). One of the first works devoted to
the percolation and conductivity of two-dimensional (2D)
systems of objects of different shapes, particularly rods, is
[7]. This seminal work discussed the behavior of a 2D system
of interpenetrating objects of different shapes, in particular
rods. Since then the electrical conductivity and percolation
phenomena have been extensively simulated for 2D systems
using continuous approaches [8—11].

In recent years, much attention has been paid to the effect
of rod alignment on the electrical conductivity, percolation
behavior, and transparency of thin films. Of particular interest
are aligned systems based on carbon nanotubes (CNTs) [12].
There are different ways to produce aligned single-walled
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carbon nanotubes (for a review, see, e.g., [12] and the ref-
erences therein). Particular attention is paid to the effect
of the filler alignment on the electrical properties of such
composites. The effect of nanotube alignment on percolation
conductivity in carbon nanotube/polymer composites has been
studied both experimentally and by means of Monte Carlo
simulations [13]. One of the main findings was that the
highest conductivity occurs for slightly aligned, rather than
isotropic, rods. Monte Carlo simulations have been used to
study the effects of nanotube alignment in single-walled carbon
nanotube films [14]. These films consist of multiple layers of
conductive nanotube networks with percolative transport as
the dominant conduction mechanism. The authors reported that
minimum resistivity occurred for a partially aligned rather than
aperfectly aligned nanotube film. When nanotubes are strongly
aligned, the film resistivity becomes highly dependent on the
measurement direction [14]. The electrical conductivity of
composites with aligned straight and wavy nanotubes is either
lower or higher than that of composites with random nanotube
orientation, depending on the degree of alignment; for wavy
nanotubes, the highest conductivity occurs when they are
slightly aligned [15]. The type of distribution for a preferential
orientation of CNTs in the network has a drastic effect on the
resulting electrical properties [16]. The relationships between
rod alignment, electrical conductivity, percolation behavior,
and the transparency of thin films have been also discussed
in [17,18]. The electrical conductivity of quasi-2D mono- and
polydisperse rod networks having rods of various aspect ratios
has been simulated in [19].

The critical rod length found in the above work was recal-
culated in [20] as the critical number density n, = 5.71 £ 0.24
and a more precise value was found, n, = 5.63726(2) [20]. The
number density, i.e., number of objects per unit area, is defined
asn = N/L?, where N is the total number of objects and L is
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the linear size of the square region under consideration. This
quantity (also denoted as the density, filling factor, or filling
density) is the natural quantity used to characterize 2D systems
of widthless rods.

In the effective medium approximation and its modifica-
tions, e.g., the so-called generalized effective medium equa-
tion, the electrical conductivity of the composite depends on
the electrical conductivity of both components (see, e.g., [21]).
In methods involving consideration of the tunneling effect, the
conductivity of the matrix is taken into account only by the
tunneling between the conductive fillers [15,22]. The hopping
conductivity in composites made of straight [23] and flexible
[24] metallic nanowires randomly and isotropically suspended
in an insulator has been theoretically studied.

The current distribution in conducting nanowire networks
has been studied using analytical as well as Monte Carlo
approaches [25]. The current carrying backbone region has also
been quantified in comparison to isolated and dangling regions
as a function of the wire density. The current distribution in the
backbone was investigated using Kirchhoff’s law.

Recently, the effect of filler alignment on the electrical
conductivity of 2D composites has been simulated within a
continuous approach for intersecting rodlike particles [26]. The
multiscale percolation behavior of the effective conductivity
has been studied using a lattice model [27,28]. A lattice ap-
proach has also been applied to study the electrical conductivity
of a monolayer produced by the random sequential adsorption
(RSA) of nonoverlapping conductive rodlike particles onto an
insulating substrate [29].

In the present research, our investigation is focused on the
case of nonintersecting particles both in continuous and lattice
approaches. The effects of rod alignment on the electrical
conductivity of the films has been compared using both
approaches.

The rest of the paper is constructed as follows. In Sec. II,
the technical details of the simulations are described and
all necessary quantities are defined. Section III presents our
principal findings. Section IV summarizes the main results.

II. METHODS

Random sequential adsorption (RSA) [30] was used to pro-
duce a distribution of rods with each desired initial density and
degree of anisotropy. Overlapping with previously deposited
rods was strictly forbidden; as a result, a monolayer was
formed. Adhesion between deposited rods and the substrate
was assumed to be very strong, so once deposited, a rod
could not slip over the substrate or leave it (detachment was
impossible). The substrate was supposed to be transparent,
while the particles were supposed to be nontransparent.

In the continuous model, the rods have zero width (i.e.,
infinite aspect ratio) and their positions and orientations are
determined by the real numbers. In contrast, in the lattice
model, the rods have a finite aspect ratio, they occupy the lattice
sites, and only two mutually perpendicular orientations of rods
are permitted.

A. Continuous model

Rods with length /5 and zero thickness, d; = 0 (i.e., with
infinite aspect ratio, k = [;/d; = 00), were randomly and

sequentially deposited onto a plane with periodic boundary
conditions (PBCs), i.e., onto a torus. Deposition of rods con-
tinued until the desired initial number density n, was reached.
Basically, an anisotropic orientation of the rods was assumed,
i.e., the particles were deposited with the given anisotropy. To
characterize the anisotropy, we used the mean order parameter
calculated as

|
s = N ;COSZQ,-, (1)

where 6; is the angle between the axis of the ith rod and the
horizontal axis x, and N is the total number of rods in the
system (see, e.g, [31]).

The orientations of rods were distributed according to a
normal distribution, i.e., all angles were allowed with different
probabilities [32]. In this case, the variance of the normal
distribution, o2, was connected with the desired mean order
parameter as in [26]

02 =-05Ins. 2)

Equation (2) was used to calculate the variance of the normal
distribution providing the desired anisotropy of the system of
deposited rods.

Unlike the model in [26], a newly deposited particle was not
permitted to overlap previously deposited ones. The kinetics
of RSA deposition for such systems has been studied in detail
[33-35]. Note that since the rods have zero thickness, jamming
is never reached, i.e., the jamming number density n; = oo.
Jamming is the state when no additional object can be placed
because all presented voids are too small or their shapes are
inappropriate. In contrast, for rods with large but finite aspect
ratios k, the jamming number density is finite and increases
with k as n; ~ k%8 [35,36].

The length of the system under consideration was L along
both the horizontal direction x and the vertical direction y. In
the continuous model, all calculations were performed using
L/l =32.

B. Lattice model

The lattice models are useful when the particles only occupy
the preferred sites of a lattice commensurate with substrate
surface (e.g., on a single crystal surface) [37]. In the lattice
model, rodlike particles were considered as linear k-mers of
two mutually perpendicular orientations (k.- and k,-mers) on a
square lattice. A linear k-meris arectangle of size 1 x k (ork x
1) lattice units, with its corners located at the underlying lattice
nodes, i.e., an edge-connected 1 x k union of cells in the planar
square lattice. It may also be defined as a straight polyomino,
viz., a straight k-omino [38] or k-omino of type I [39]. The
deposition of linear k-mers onto the 2D square lattice with
PBCs (a torus) was performed until a desired packing density,
p € [0,p;], was reached, where p; was the jamming packing
density. The anisotropic deposition of k-mers was examined,
i.e., the two possible orientations of the k-mers along the x
and y axes had different probabilities. Since the k-mers are
allowed to have only two orientations (6 = 0 and 6 = 7 /2),
the definition of the mean order parameter of the system (1)
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FIG. 1. Transformation of continuous system of rods into a
discrete system of polyominoes.

reduces to
s= 3)

where N, and N, are the numbers of k.-mers and k,-mers,
respectively, and N = N, + N, is the total number of k-
mers. The value s = 0 corresponds to the isotropic system,
whereas the value s = %1 represents a strongly anisotropic
alternative (nematic). The RSA produces monolayers with
desired anisotropy only in two limiting cases, viz., for isotropic
deposition of rods (s = 0) and for strictly anisotropic, i.e.,
aligned rods (s = 1). In other cases, when 0 < s < 1, the
significant deviations of predetermined order parameter from
the one actually obtained can be observed [40]. To ensure
deposition with any desired degree of anisotropy a modification
of the RSA has been exploited, viz., the so-called relaxation
random sequential adsorption (RRSA) [40]. The RRSA model
better preserves the predetermined anisotropy.

C. Computation of the electrical conductivity

To calculate the electrical conductivity within the contin-
uous model, a discretization approach was used. The plane
was covered by a supporting square mesh of size m x m
(m = 64,128,256,512,1024, or 2048). Note that k* =m/L
corresponds to the rod length, /;. When a cell of the supporting
mesh contains any part of a rod, it is assumed to be occupied
and conducting, while an empty cell is assumed to be insu-
lating. Discretization transforms the rods into polyominoes of
different shapes and sizes, especially for smaller values of m
(see Fig. 1). This discretization can produce only one particular
kind of polyomino, i.e., those polyominoes which satisfy the
condition that a line can be drawn that intersects each cell of
the polyomino. In fact, an increase in m at a constant value
of L means an increase in the size of the polyomino. In real
composites containing CNTs, these fillers, because of their
flexibility, are not straight, but have a waved shape. Therefore,
modeling with polyominoes presumably better reflects the real
situation.

To characterize the system after the discretization, the pack-
ing density (also denoted as packing fraction) is a convenient
quantity. The packing density p is defined as the number of
occupied cells divided by the total number of cells, i.e., m2.
Since any occupied cell is associated with a nontransparentrod,
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FIG. 2. Example of the packing density p vs the number density
nfors =0, 1 and m = 256, 2048. The continuous model.

the cell is assumed to be nontransparent. Hence, the packing
density p can be also treated as the optical absorbance, whereas
the quantity 1 — p can be used to characterize the transparency
of the film. There is no one-to-one correspondence between
the number density n and the packing density p; i.e., different
placements of the same number of rods at a fixed value of
order parameter s can produce different packing densities after
discretization. The statistical dependence p(n) is close to linear
only for a small number density of rods, and it depends on the
values of s and m (Fig. 2). By contrast, for the RSA of objects
with nonzero areas (when the jamming concentration is always
p;j < 1), in our continuous model, the real packing density
after discretization may reach 1 and, naturally, it remains
constant with any further increase in the number of rods. Here,
and below, the statistical error is of the order of the marker
size.

Forbiddance of intersections of rods obviously does not lead
to the forbiddance of intersections of polyominoes. Moreover,
polydispersity and polymorphism are inherent properties of
the discrete system produced by means of discretization of
the continuous system; they never vanish even when m — oo
[26]. This fact evidences that the properties of such discrete
systems are related but not identical to the properties of the
original continuous system.

To transform the lattice into a random resistor network
(RRN), the PBCs were removed (the torus was unwrapped
into a plane) and each cell was associated with a set of four
conductors. Different electrical conductivities corresponding
to the empty cells, o,,, occupied cells, o,, and between
empty and occupied cells, op, = 20,0,,/(c, + 0,), were
assumed (Fig. 3). A large contrast in electrical conductivity
was assumed, A = 0, /0, > 1. We puto,, = 1 and 0, = 10°
in arbitrary units.

In our calculations, two conducting buses subjected to a
potential difference were applied to the opposite borders of
such a plane. Electrical conductivity was calculated in the
direction along the alignment of the particles (longitudinal
conductivity, ||) and in the direction across the alignment
(transversal conductivity, L) (see [41,42] for details).
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FIG. 3. Fragment of a square lattice with three deposited 3-mers
of different orientations. All possible combinations of the conductiv-
ities are indicated.

Two algorithms were applied to calculate the electrical
conductivity, viz., the Frank-Lobb algorithm [43] (continuous
model) and the direct electrifying algorithm [44] (lattice
model). For a quantitative description of the anisotropy of
the electrical conductivity in the longitudinal and transversal
directions, the anisotropy parameter o /o, = A®, or

5 — |10g10‘7H/UL|’ @
logo A
was used [29]. Here A = o, /0, is the electrical contrast. The
anisotropy parameter is, in fact, the logarithm of the electrical
conductivity ratio normalized by the logarithm of the electrical
contrast. § = 0 for isotropic systems and § ~ 1 for highly
anisotropic systems with o /o ~ A.

To characterize the insulator-conductor transition, we used

the value

Oy = /om0y 5)
We treated a system with conductivity o > o, as conducting
while a system with conductivity o < o, was considered as
insulating. We denoted values of the number density and the
packing density corresponding to o, asn, and p,, respectively.
Basically, a lattice size of L = 100k was used and all the quan-
tities under consideration were averaged over ten independent
statistical runs, unless otherwise explicitly specified in the text.
Using the continuous model, the effects on the electrical
conductivity of the packing density of rods, p, and the
anisotropy in their orientation, s, as well as the size of the
supporting square mesh, m, were investigated.
With the lattice model, we studied the effect of k-mer length
and the anisotropy of their deposition on the electrical conduc-
tivity o of the monolayer. The values of k were 2,4,8, ...,128.

III. RESULTS
A. Continuous model

Figure 4 demonstrates the dependencies of the longitudinal
and transversal effective electrical conductivities o versus
the order parameter s for m = 128 (k* = 4), number density

log,, o

log,, o

FIG. 4. Continuous model: Longitudinal and transversal effective
electrical conductivity o vs order parameter s for (a) m = 128, n =
1.4, 1.5 and (b) m = 2048, n = 13.56, 20. The dashed line corre-
sponds to the value o,. The solid lines are provided simply as visual
guides.

n=14,1.5 (p =0.45,0.48), and m = 2048 (k* = 64), n =
13.56,20 (p = 0.25,0.34). The smaller values correspond to
0(0) = 0,. A system, which in the isotropic state (s = 0) was
at the insulator-conductor transition, becomes an insulator in
both directions when the order parameter approaches 1.

Figure 5 presents examples of the anisotropy of the effective
electrical conductivities § versus the packing density p, for
different values of the order parameter s and for m = 2048
and m = 256. With an increase in the order parameter s the
anisotropy increases. The position of the maximum on the
curves shifts toward a larger value of p as the value of s
increases. The plots show curvatures of different signs outside
the vicinity of the maximum for m = 2048 and m = 256.
Figure 5 suggests that a sample may have high electrical
anisotropy and be transparent when the fillers are long enough
and are not perfectly aligned in one direction.

This insulator-conductor transition [0 (p,s) = o,] occurs at
different values of the order parameter s depending on the
packing density p. Hence, for each given value of k, there is the
phase diagram in a plane (p,s) (Fig. 6). The critical curves s(p)
divide the phase plane (p,s) into two regions, viz., conducting
and insulating. The areas between the two curves (pointed out
by arrows) correspond to those samples which are conductors
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FIG. 5. Continuous model: Anisotropy of the effective electrical
conductivity § [Eq. (4)] vs packing density p for different values of
the order parameter s. (a) m = 256 (k* = 8), (b)m = 2048 (k* = 64).
The results are averaged over ten independent statistical runs, except
at s = 1 (five runs). The lines are provided simply as visual guides.

in one direction (o} > o,) and insulators in the perpendicular
direction (0| < 0y).

B. Lattice model

Primary attention has been paid to the particular packing
density p* ~ 0.5[p.(1) + p.(0)], where p.(s) is the perco-
lation threshold for the particular value of the mean order
parameter s (see Table I). This choice is determined by the
fact that at this packing density, the system is expected to
undergo the conductor-insulator phase transition when the
order parameter changes from O to 1.

Figure 7 shows examples of the dependencies of the elec-
trical conductivity o on the order parameter s for k = 4 and
k = 64. The data are presented for two particular values of the
packing density, p = p.(0)and p = p*, where p.(s). Here, the
value of p = p* corresponds to the mean percolation packing
density for systems with order parameters s =0 and s = 1
and this value can be useful for analysis of the conductivity
behavior with changes in s.

Clear anisotropy of the electrical conductivity was observed
at both p = p.(0) and p = p*. At p = p.(0) for short rods
[k = 4, Fig. 7(a)] where an increase in s resulted in a decrease
of the values of both the longitudinal and transversal conduc-
tivities as a result the system going into an insulating state.

(a) 1.0+ T T T = F = - = T =
1 Conductor for || /
0.8 Insulator for L \h:
| 1
0.6 Conducting
] state 1
(%)
0.4 — —
Insulating |
state ! m=512
0.2 H | —_— T
|
m \ -—— ” 4
0.0 T T T T T
0.20 0.25 0.30 0.35 0.40 0.45
p
(b) 1.0 — T T T T o F = f
J ! ]
0.8 Conductor for || ! |
’ Insulator for L \:\
J l ]
0.6 : Conducting N
E state E
%] \
0.4 — \ -
Insulating ! |
state ! m=2048
0.2 ) _ -
|
J X I ]
0.0 —_—

FIG. 6. Continuous model: Examples of the phase diagram in the
(p,s) plane. (a) m = 512 (k* = 16), (b) m = 2048 (k* = 64).

However, for long rods [k = 64, Fig. 7(b)] different behavior
was observed, viz., with an increase of s the system remained
in the conducting state for the longitudinal direction whereas
it went into the insulating state for the transversal direction.
The conductor-insulator phase transition was clearly seen
when the packing density was close to the value p* (Fig. 7). For
small values of k (k é 16), this transition in the longitudinal
and transversal conductivities occurs over a small range of
values of s [Fig. 7(a)]. With increasing k, the values of s for
the transition in the two directions are increasingly different.
For k = 32, the longitudinal conductor-insulator transition no
longer occurs, the lattice remaining a conductor for all values of
s. Monolayers produced by deposition of long rods essentially
demonstrate electrical anisotropy, such that they may be
conducting in one direction and insulating in the perpendicular

TABLE I. Percolation threshold p, for k-mers of different length
k and two particular values of the order parameter s =0 and s =
1,L — oo (extracted from [45]).

stk 2 4 8 16 32 64 128

0.0 0.5619 0.5050 0.4697 0.4638 0.4748 0.4928 0.5115
1.0 0.5862 0.5672 0.5526 0.5442 0.5397 0.5376 0.5366
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FIG. 7. Lattice model: Examples of the effective longitudinal and
transversal electrical conductivities vs s for two particular values of
the packing density, p = p* (boxes) and p = p, (circles). (a) k = 4,
L = 10°k. (b) k = 64,L = 100k. The dashed line corresponds to the
value o,. The solid lines are provided simply as visual guides.

direction. The example for k = 64 is presented in Fig. 7(b). At
p =~ p., the system has similar electrical properties along both
directions, o ~ 10° when the order parameter s = 0. When s
increases from 0 to 1, the transversal electrical conductivity
decreases, whereas the longitudinal conductivity increases.
Thus, when s = 1, anisotropy of the placement of the fillers
produces anisotropy in the electrical conductivity.

An increase in the anisotropy of the electrical properties, §,
with an increase in the order parameter s is shown in Fig. 8
for different values of k. The larger the values of k and s
the more significant the increase in the anisotropy that can be
observed.

It is of note that the phase diagrams for k = 16 and k = 64
are quite different (Fig. 9). Namely, for k£ = 16, the system
undergoes the transition from an insulating to a conducting
state through a highly anisotropic state both at a fixed value
of packing density when the order parameter increases and
at a fixed value of the order parameter when the packing
density increases. In contrast, for k = 64, increase in the
order parameter never leads to a highly anisotropic state at
any value of the packing density, the system bypassing the
highly anisotropic state as it undergoes the transition from a
conducting to an insulating state. However, a highly anisotropic

T T T
(@) k=8, L =100k

031 ——s=1.0 7]
——s5=0.95
——s=0.8

02——s=05 _
——5=0.25

p
(b)0-5|'|'|'|'|'|'|'|'
k=064, L =100k
044——s=10 i
——s5=0.95
——s5=0.8

034——s=05 .
——s=0.25

0.2 1 —

0.1 5 —

oo

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
p

FIG. 8. Lattice model: Anisotropy of the effective electrical con-
ductivity § [Eq. (4)] vs the packing density p for different values of
the order parameter s. (a) k = 8, (b) k = 64. The results are averaged
over ten independent statistical runs. The lines are provided simply
as visual guides.

state is reachable during the transition from insulator to
conductor when the order parameter is fixed while the packing
density increases.

C. Comparison of the models

Figure 10 compares the dependencies of the longitudinal
and transversal effective electrical conductivities, o, versus the
packing density p, with s = 0,1, obtained using each of the
continuous and the lattice models. For the continuous model
m = 2048 (k* = 64), and for the lattice model k = 64,L =
100%. Note that the quantity

o] dlno
oO| =
dp p—0

is called the “intrinsic conductivity” (see, e.g., [46,47]). The
intrinsic conductivity is equal to the slope of the tangent to the
curve o (p) atthe point p = 0. Itis remarkable that both models
demonstrate indistinguishable dependencies of their electrical
conductivities on the packing density when p =~ 0; i.e. the
intrinsic conductivities calculated with both the continuous and
lattice models are the same. Moreover, both the continuous and
the lattice models show similar behavior of the dependencies

(6)
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FIG. 9. Lattice model: Examples of the phase diagrams in the
(p,s) plane. (a) k = 16, (b) k = 64. L = 100k.

of the electrical conductivities on the packing density when
s = 1. In the anisotropic case, s = 1, no large differences in
the results from the two models can be observed. When all
the particles are oriented in one direction, the rods deposited
onto a plane are closely analogous to k-mers deposited onto a
square lattice. In the isotropic case, the differences are fairly
noticeable. For s = 0, the conductor-insulator transition in the
continuous model occurs at a smaller value of packing density
p. These differences are apparently due in part to the fact
that, in the lattice model, the k-mers are equiprobably oriented
along only two mutually perpendicular directions, whereas in
the continuous model, the rods are placed equiprobably in all
directions. In the latter case, the rods generate polyominoes
of different shapes and sizes, and this seems to lead to
the appearance of additional paths for the electrical current.
Although the size of the k-mers chosen for comparison is
equal to the characteristic length of the rods after discretization,
k* =m/L = 2048/32 = 64, this correspondence on the basis
of size is somewhat nominal for the isotropic case.
Nevertheless, the models demonstrate quite different prop-
erties in the ordered (nematic) state (s = 1) when p cor-
responds to o(0) = o,. In the continuous model, the film
is insulating in both directions, while in the lattice model,
the film is insulating in one direction and conducting in the
perpendicular direction (compare Figs. 4 and 7).
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FIG. 10. Example of the longitudinal and transversal effective
electrical conductivities vs packing density p, for values of the order
parameter s = 0, 1. For the continuous model, m = 2048 (k* = 64),
the results are averaged over ten independent statistical runs, except
ats = 1 (5 runs). For the lattice model, k = 64, L = 100k, the results
are averaged over ten independent statistical runs. The dashed line
corresponds to the value o,.

For both models, the anisotropies of the effective electrical
conductivities demonstrate similar behavior (Figs. 8 and 5).
Nevertheless, the quantitative differences are quite remarkable,
viz., the anisotropy is approximately two-fold lower in the
lattice model than in the continuous model.

IV. CONCLUSION

The effect of the alignment of rodlike particles on the
electrical conductivity of 2D composites has been investigated
using continuous and lattice models. In both models, highly
conductive elongated particles were randomly placed, without
intersections, on a poorly conductive substrate. In the lattice
model, the k-mers were constrained to only the horizontal and
vertical directions, while in the continuous model, the zero-
width rods could be placed with any planar orientation. To cal-
culate the electrical conductivity of the layer in the continuous
model, the layer was further discretized, which made it possible
to reduce the situation to a problem of the effective sizes of
the resulting polyominoes on the substrate. Our studies have
shown that, as well as size and concentration of the fillers, their
alignment affects the electrical conductivity of the monolayer.
Since both models demonstrated similar behavior, the use of
the lattice model for qualitatively explaining the electrical
properties of composite materials containing elongated objects
looks quite reasonable. Our simulations suggest that highly
transparent and electrically anisotropic 2D composites can
be produced by the deposition of almost-aligned elongated
conductive particles onto a transparent insulating substrate.

In both models, the dependencies of the electrical conduc-
tivities on the packing densities are the same when the packing
density is small. This means that the intrinsic conductivities
in the case of the continuous model are exactly the same as
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previously calculated within the framework of the lattice model
[29].

The continuous model has an obvious drawback, viz., any
cell of the supporting mesh will be treated as conductive
without respect to the number of rods intersecting the cell,
their orientations, or their positions inside such a cell. The
obvious way to improve the model is to account for such effects.
Nevertheless, such an enhancement is unlikely to change
the qualitative behavior of the system, although quantitative
changes would be very likely.
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