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Anisotropy in electrical conductivity of films of aligned intersecting conducting rods
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Numerical simulations by means of the Monte Carlo method have been performed to study the electrical
properties of a two-dimensional composite filled with rodlike particles. The main goal was to study the effect
of the alignment of such rods on the anisotropy of its electrical conductivity. A continuous model was used. In
this model, the rods have zero-width (i.e., infinite aspect ratio) and they may intersect each other. To involve
both the low conductive host matrix and highly conductive fillers (rods) in the consideration, a discretization
algorithm based on the use of a supporting mesh was applied. The discretization is equivalent to the substitution
of rods with the polyominoes. Once discretized, the Frank-Lobb algorithm was applied to evaluate the electrical
conductivity. Our main findings are (i) the alignment of the rods essentially affects the electrical conductivity
and its anisotropy, (ii) the discrete nature of computer simulations is crucial. For slightly disordered system,
high electrical anisotropy was observed at small filler content, suggesting a method to enable the production of
optically transparent and highly anisotropic conducting films.
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I. INTRODUCTION

Thin films filled with highly conductive rodlike particles
(such as carbon nanotubes, metal nanowires, etc.) are of
increasing interest, particularly, for the production of flexible
transparent conductors (for review, see, e.g., Ref. [1] and the
references therein). Transparent conducting electrode devices
find diverse applications in solar cells, touch-screens, and
transparent heaters [2–6]. These promising applications are
inspiring both theoretical and experimental studies in this
field [7].

Geometrical percolation is defined as the formation of a
connected cluster of particles that spans the whole system [8].
In the different models, it may be assumed that the particles
can either penetrate each other (soft overlapping particles) or
may contain both internal “hard cores” (an impenetrable part
of the particle) and external “soft shells” responsible for charge
transfer [9]. It is useful to introduce a number density term, n,
defined as the number of particles per unit volume for three-
dimensional (3D) systems or per unit area for two-dimensional
(2D) systems. For randomly distributed, overlapping particles,
the total fraction of the space covered by the particles (the
filling fraction) can be evaluated as in Ref. [10],

p = 1 − exp(−nVp), (1)
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where Vp is the volume or area of each individual particle for
the 3D or 2D problems, respectively.

Percolation problems for elongated particles have been
extensively studied both in 3D and 2D geometries. Investi-
gated 3D geometries include randomly oriented overlapping
ellipsoids [11,12], overlapping capped cylinders [9,13–15],
soft-core capped cylinders [16], and soft-core prisms [17]. For
2D percolation, randomly oriented overlapping ellipses [18,19]
and rectangles [20] have also been considered. Analytical
approximations and Monte Carlo (MC) simulations have been
applied to derive the percolation thresholds for overlapping
ellipsoids [12] and overlapping ellipses [19].

The most popular models for describing percolation prob-
lems have been the excluded volume (3D) or excluded area
(2D) approaches. It has been conjectured that the number
density at the geometrical percolation threshold,nc, is inversely
proportional to the excluded volume (3D) or excluded area
(2D) of the particles, Vex [14],

nc ∝ V −1
ex . (2)

The value of Vex depends upon the system dimensionality,
the geometry of the particles, and their relative orientations.

In 3D systems for oriented cylinders of length l and diameter
d, the excluded volume Vex is given by

Vex = 2dl2[〈sin θ〉 + π/a + (2π/3)/a2], (3)

where θ is the angle between two particles, a = l/d is the
aspect ratio, and 〈·〉 corresponds to the number-averaged value.
For random orientations of cylinders, 〈sin θ〉 = π/4, and, in the
limit of a → ∞ (slender-rod limit), we have Vex = (π/2)dl2.

In the slender-rod limit, the excluded volume rule for capped
cylinders was confirmed by cluster expansion approach [21]
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and MC simulations [22]. However, for a finite aspect ratio,
important deviations from this rule were observed [22,23].
From the numerical data of simulations [16] the following
general expression for nc was derived:

nc = (1 + c1a
−c2 )V −1

ex , (4)

where c1 = 3.526 and c2 = 0.569.
The effects of partial penetration on percolation behavior

have also been analyzed [9,15,16]. The degree of penetration
was defined by the ratio of the diameter of the core to the
outer diameter of the soft shell, γ [16]. For the soft-core limit
γ = 0 and for the hard-core γ = 1. An inverse proportionality
rule [Eq. (2)] was also observed for this hard core/soft shell
model. For the slender-rod limit (a → ∞), the constant of
proportionality was shown to be dominated by the aspect ratio
a, with there being little dependence on the γ value. The effects
of size dispersity on electrical percolation in rod networks have
also been analyzed [24–26]. The impact of the orientation of the
cylinders on percolation behavior was discussed in Ref. [27].
A detailed review of the effects of aspect ratio, dispersity in
filler size and electrical properties, orientation, flexibility, and
waviness on the percolation behavior of systems of rodlike
particles has recently been presented by Ref. [28].

In 2D systems for oriented capped rectangles of length l

and width d, the value of Vex can be derived from the formulas
presented in Ref. [14]:

Vex = l2[〈sin θ〉 + 4/a + π/a2]. (5)

For random orientations of rectangles, 〈sin θ〉 = 2/π , and in
the limit of a → ∞ we have Vex = (2/π )l2.

The following interpolation formulas for the total critical
filling fraction of particles at the percolation points have been
obtained for randomly oriented ellipses [18],

pc = 1 − (1 + 4y)/(19 + 4y), (6)

and rectangles [20],

pc = 1 − (1.28 + y)/(6.73 + y). (7)

Here, y = a + 1/a, where a is the aspect ratio.
Considerable attention has been paid to the 2D percola-

tion problem of zero-width rods (a = ∞) [10,29–35]. An
inverse proportionality rule nc ∝ V −1

ex ∝ l−2 (2) has also been
confirmed for this system. For randomly oriented rods, Pike
and Seager using a MC simulation obtained ncl

2 � 5.71
[29]. Subsequently, for ncl

2, the following values have been
obtained: 5.615 [30], 5.63 [34], 5.6372858(6) [10], 5.754
[35], and 5.63726 ± 0.00002 [33]. The total excluded area for
this problem can be estimated as V t

ex = ncVex = (2/π )ncl
2 ≈

0.64ncl
2.

The more general case of an anisotropic system of rods
has also been analyzed [13,30,36]. The rods were aligned with
respect to a selected direction, x. Their axes were randomly
distributed within some interval such that, −θm � θ � θm,
where θm � π/2. The isotropic case is given by θm = π/2,
and the smaller the θm the higher the degree of orientation.
The macroscopic anisotropy of the system was characterized
by the value

A = 〈| cos θ |〉/〈| sin θ |〉 = sin θm/(1 − cos θm). (8)

Here and below A = P‖/P⊥ to simplify notation. For the
isotropic case, A = 1, whereas for the highly anisotropic case
(θm → 0), A → ∞ [29,37].

The percolation threshold for this system increases with
the macroscopic anisotropy A [14,36]. The dependence of
the percolation number density on the degree of macroscopic
anisotropy was approximated as

n∗
c = nc/ni

c = 0.5(A + A−1), (9)

where ni
c is the critical density of rods for the isotropic case.

Transport properties and, in particular, the electrical con-
ductivity of systems filled with anisotropic conducting par-
ticles are closely related to geometric percolation behavior.
The electrical percolation can reflect not only the geometric
connectivity of the particles but also aspects of the charge
transfer mechanism between individual particles [16]. The
conductivity exponent t for the 2D percolation of rods has been
discussed in several works [30,38–41]. Experimental studies
on the electrical conductivity in a composite of conducting
rods gave the following interval for the conductivity exponent:
1.5 < t < 2.1 [38]. Balberg et al. obtained a value of t =
1.24 ± 0.03 by analyzing the conductivity of a percolation
cluster of rods [30]. On the contrary, for the situation with
differences between the resistances inside the rod, Rs , and
at the rod-rod junctions, Rj , it was proposed that the con-
ductivity exponent t can vary from 0 when Rj � Rs to the
universal value of lattice percolation, t � 1.3 when Rj 
 Rs

[39]. Subsequently, MC simulations indicated that the t value
extracted from the size-dependent conductivities of systems
exactly at the percolation threshold was independent of Rj/Rs

(t = 1.280 ± 0.014) [40]. However, the t value extracted from
the density-dependent conductivities of systems well above the
percolation threshold were significantly dependent on Rj/Rs .
A numerical MC study of the conductivity of random rod
networks for a wide range of densities and junction-to-rod
conductance ratios has been performed [41]. Three limiting
cases with different conductivity exponents were identified,
viz., one in the vicinity of the percolation threshold, and two
for high densities.

The percolation of rods and the effects of rod alignment
on the electrical anisotropy of systems have been examined
in several experimental and simulation works [2,4,16,42–46].
For systems with aligned conductive fibers, different behaviors
of electrical conductivity and different percolation thresholds
were observed in the longitudinal and transverse directions
[42,43]. Injection-molded polymer composites filled with
carbon-fibers demonstrated electrical anisotropy along differ-
ent principal directions [44]. The observed behavior reflected
a preferred axial orientation of fibers within the samples.
The effect of carbon nanotube alignment on the percolation
conductivity of polymer composites has been studied both
experimentally and by means of MC simulations [45]. It
has been demonstrated that percolation conductivity depends
on both alignment and concentration. Moreover, the highest
conductivity was observed for slightly aligned, rather than
isotropic systems. When particles are strongly aligned, the
film resistivity becomes highly dependent on the measurement
direction [47]. MC simulation of partially oriented carbon
nanotubes also revealed the effects of alignment on electrical
conductivity [48]. The electrical conductivity of percolated
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networks of rods with various aspect ratios and degrees of axial
alignment has been simulated [46]. For anisotropic systems, a
particular type of angular distribution produced by interaction
with a flow has been considered. At a fixed volume fraction and
aspect ratio, the simulated electrical conductivity decreased
dramatically once a critical degree of orientation had been
reached. Electrical percolation in quasi-two-dimensional metal
nanowire networks has been simulated [3]. The electrical
conductivity was evaluated by assuming that all the electrical
resistance resulted from contact resistance at the rod-rod junc-
tions. The preconditioned conjugate gradient iterative method
was used to solve a system of linear Kirchhoff’s equations.
The data were presented as a calculated plot of the optical
transmittance versus the sheet resistance. The conditions for
both optimal sheet resistance and optical transmittance were
formulated. For ultratransparent electrodes based on aligned
silver rods significant electrical anisotropy was observed for
films with high transmission (>99%) [4]. For films with lower
transmission, the electrical anisotropy becomes negligible.
This phenomenon was attributed to the effects of the junctions
between the rods.

However, no detailed study on the relationship between
anisotropy in electrical conductivity and the optical trans-
parency of a two-dimensional film of partially oriented con-
ducting rods has previously been performed. In this work, we
consider continuous models of 2D systems where the rods
have zero-width (i.e., an infinite aspect ratio) and they may
intersect each other. For calculation of the filling fraction
and electrical conductivity a discretization algorithm based
on the use of a supporting mesh, viz., a square lattice of size
m × m (m = 64 − 2048) was applied. The discretization of
the structure of the infinitely thin rods is equivalent to the
substitution of rods with polyominoes (e.g., see Ref. [49]).
The cells of supporting mesh covered by rods were assumed
to be nontransparent and electrically conducting. Review on
different methods of discretization can be found in literature
(see, e.g., Ref. [50]). The Frank–Lobb algorithm was applied
to evaluate the electrical conductivity.

The rest of the paper is constructed as follows. In Sec. II, the
technical details of the simulations are described, all necessary
quantities are defined, and some test results are shown. Section
III presents our principal findings. Section IV summarizes the
main results.

II. METHODS

A. Generation of 2D system of rodlike particles onto a plane

Rods of length l and zero thickness, d = 0 (i.e., with an in-
finite aspect ratio, a = l/d = ∞) were deposited onto a plane
substrate with a desired number density, n. Newly deposited
particles were allowed to overlap previously deposited ones.
Periodic boundary conditions were assumed, i.e., the rods were
deposited onto a torus. The size of the system was L × L. This
size, L, was measured in the units of l.

The rods were aligned with respect to a selected direction,
x. To characterize the anisotropy, we used the mean order
parameter defined as (see, e.g, Ref. [51])

s = 2〈cos2 θ〉 − 1. (10)

FIG. 1. Order parameter, s, versus the degree of anisotropy, A.
Model I calculated using Eq. (12), Model II calculated numerically.

Two distinct possibilities were taken into account for the
anisotropic deposition of particles. Model I was equivalent to
that considered in Refs. [13,30,36]; the rods being randomly
distributed within the interval −θm < θ < θm, i.e., only some
angles were allowed with equal probabilities [36]. In this case,

s = 2

θm

∫ θm

0
cos2 θ dθ − 1 = sin 2θm

2θm

. (11)

The order parameter, s, defined as Eq. (10), and the degree
of anisotropy, A, defined as Eq. (8), are related to each other
as

s = 2A(A2 − 1)

(A2 + 1)2 arctan[2A/(A2 − 1)]
. (12)

In Model II, the orientations of the rods were distributed
according to a normal distribution, i.e., all angles, θ , were
allowed, but with different probabilities. In this latter case,

s = 2√
2πσ 2

∫ ∞

−∞
exp

(
− θ2

2σ 2

)
cos2 θ dθ − 1. (13)

The variance of the normal distribution [σ 2 = Var(θ )] is
related to the desired mean order parameter as

Var(θ ) = −0.5 ln s. (14)

Figure 1 shows the order parameter, s, versus the degree of
anisotropy, A, for both models.

Obviously, both the models are completely equivalent
for the two limiting cases s = 0 and s = 1. Nevertheless,
they demonstrate slightly different behaviors for intermediate
values of s.

B. Computation of the electrical conductivity

To take account of the electrical properties of both the
low conductive substrate and highly conductive fillers, a
discretization approach, involving a supporting mesh, viz., a
square lattice of size m × m (m = 64–2048) was used. The
length of one mesh cell corresponds to L/m = 32l/m. When
any part of a rod was situated inside a face (cell) of the
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FIG. 2. Transformation of the continuous problem of rods into a
“zoo of lattice animals” (linear polyominoes).

supporting mesh, this cell was treated as nontransparent and
conducting, otherwise the cell was assumed to be transparent
and insulating. Such a discretization generated a “zoo of lattice
animals,” i.e., a set of polyominoes of different shapes and
sizes, especially, for smaller values of m (see Fig. 2). This set
is not complete because discretization of a rod cannot produce
polyominoes of all possible shapes but only the so-called linear
polyominoes, i.e., those polyominoes possessing the property
that a line can be drawn that intersects the interior of every
square in the polyomino [52].

Each occupied cell (a face of the mesh) was treated as con-
ducting. To transform the mesh into a random resistor network
(RRN), each cell was associated with a set of four conductors
(Fig. 3). The electrical conductivity of the particles σp was
supposed to be much larger than the electrical conductivity
of the substrate σm, i.e., the electrical conductivity contrast
� = σp/σm 
 1. This finite electrical contrast can lead to the
smearing of the percolation transition in the presence of an
“external field” of order of �−1 [53]. We put σm = 1, and
σp = 106 in arbitrary units. Different electrical conductivities
corresponding to the empty cells, σm, occupied cells, σp, and
between empty and occupied cells, σpm = 2σpσm/(σp + σm)
were assumed (Fig. 3). In our calculations, the torus was
unrolled, the two conducting buses were applied to the opposite
borders of the mesh, and the electrical conductivity was calcu-
lated between these buses in the horizontal, σx and vertical σy

directions (see Refs. [54,55] for the detail).
The Frank-Lobb algorithm was applied to calculate the

electrical conductivity [56]. For a quantitative description of
the anisotropy of the electrical conductivity in the longitudinal

FIG. 3. Transformation of the supporting mesh into a resistor net-
work. All possible combinations of the conductivities are indicated.

FIG. 4. Comparison of the results obtained within the frameworks
of Models I and II. Electrical conductivity, σ , versus the filling
fraction, p, for m = 2048 and s = 0.8. Here, the filled and open
symbols correspond to the longitudinal and transversal directions,
respectively. The lines are provided simply as visual guides. Solid
lines correspond to Model I, dashed lines correspond to Model II.

and transversal directions, the electrical conductivity ratio,
defined from the electrical contrast �,

σy/σx = �δ, (15)

or δ = | log10σy−log10σx

log10σp−log10σm
|, was used [57]. δ = 0 for isotropic

systems and δ ≈ 1 for highly anisotropic systems with σy/

σx ≈ �.
To characterize the insulator–conductor phase transition, we

used the mean geometric value

σg = √
σmσp, (16)

and treated a system with conductivity σ > σg as conducting,
while a system with a conductivity σ < σg was considered
to be insulating. Note that the mean geometric conductivity
corresponds exactly to the prediction for the percolation
threshold in the case of 2D systems with equal concentrations
of the phases pc = 1/2 when both phases are in geometrically
equivalent conditions (on average) [58].

The use of the supporting mesh for the calculation of
electrical conductivity is equivalent to the discretization of the
structure of the infinitely thin rods and the substitution of them
by anisotropic particles with a finite aspect ratio of the order
of k∗ = m/L.

Although Model II looks a little bit more realistic, Model
I has previously been widely used. This is the reason why all
our computations were performed within the frameworks of
both models. Figure 4 presents examples of comparison of the
electrical conductivity, σ , versus the filling fraction, p, for both
models. We have found that differences in the results are of the
same order as the statistical errors. Therefore, in this article we
have presented all the results only for Model II. Throughout
the text, the error bars in the figures correspond to the standard
deviations of the means. When not shown explicitly, they are
of the order of the marker size.
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(a)

(b)

FIG. 5. Example of scaling analysis for electrical conductivity,
σ vs filling fraction, p, for the different values of L/l = 16,32,64
but with a fixed value m/L = 16. (a) Longitudinal conductivity,
(b) transversal conductivity. The lines are provided simply as visual
guides.

The filling fraction, p, defined as the number of occupied
cells divided by the total number of cells (i.e., m2) was used
to characterize the system after discretization. We treated
the filling fraction, p, as the optical absorbance of the 2D
film. Hence, the quantity 1 − p can be considered as the
transparency of the film.

In all calculations, the quantities under consideration were
typically averaged over 100 independent statistical runs for
m � 256, over 25 for m = 512, over 10 for m = 1024, and
over 5 for m = 2048, unless otherwise explicitly specified in
the text.

C. Scaling analysis

In the present work, all calculations were performed using
L/l = 32, where l is the length of a rod. Our choice is based on
a scaling analysis. We performed calculation of the electrical
conductivities for regions of different sizes L/l = 16,32,64.
Figure 5 compares the results for a fixed value of k∗. The
differences in the electrical conductivity in the vicinity of zones

FIG. 6. Examples of the size distribution of “lattice animals”
(polyominoes) vs. angle for different values of m in the polar diagram.
The results were averaged over 105 independently located rods.
k∗ = m/L. Only each tenth point is shown to allow a clearer view.
The curves correspond to Eq. (17). Two gray arcs correspond to the
values of the polar radius 1 and

√
2.

of the insulator-to-conductor transition were insignificant, and
were almost completely absent outside of these regions.

III. RESULTS

A. Polyominoes formed by discretization

The discretization transformed the continuous problem of
rods into a lattice problem of linear polyominoes, i.e., particles
having different shapes and length. The mean number of cells,
k, in such a polyomino depends on the angle θ between the
axis of the rod and the selected direction, x,

k

k∗ = 1

k∗ +
√

2 sin
(
θ + π

4

)
, 0 � θ � π

4
, (17)

where k∗ = m/L (see the Appendix for details).
Figure 6 demonstrates how the size of a polyomino depends

on the angle θ . In computer simulation, a rod was randomly
placed onto the plane with the angle θ = 0 to the axis x and the
size of the generated polyomino was calculated. Then, the rod
was turned to an angle equal to 1◦ and the size of the generated
polyomino calculated once again. These turns continued until
the angle reached θ = 90◦. After that, the results for each
angle were averaged over 105 independent placements of the
rods. The dependence obtained by means of this simulation is
indistinguishable from Eq. (17).

Figure 7 shows the distribution of polyominoes, by size,
for different values of m calculated according to the analytical
expression Eq. (A9). For instance, when k∗ = 128, the possible
sizes of polyominoes vary from 128 to 309. The probabilities
are exact, and such non-monotonic behavior is an intrinsic
property, not a computational error.

Size of a polyomino depends on the orientation of a
generating rod. Even in a case of a sole rod, number of
occupied cells varies from k∗ to

√
2k∗ whenm → ∞ [see Fig. 6

and Eq. (17)]. Hence, there is no one-to-one correspondence
between the number concentration of rods, n, and the filling
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FIG. 7. Examples of the distribution of “lattice animals” (poly-
ominoes), by size, in an isotropic system (s = 0) for three different
values of m according to Eq. (A9). The solid lines are provided simply
as visual guides. The vertical dashed line corresponds to

√
2.

fraction, p, i.e., one cannot predict the exact value of the
packing density even when the number of deposited rods is
known.

The square mesh discretization of the original continuous
system produces the polyominoes of different shapes and sizes.
It is noticeable, that these dispersity and polymorphism are
inherent properties of the discrete system. They never vanish
even when m → ∞. This evidences that the properties of such
a discrete system are related, but not identical, to the properties
of the original continuous system.

B. Electrical conductivity behavior

Figure 8 presents the dependencies of the critical values of
the filling ratio, pc [Fig. 8(a)] and number density, nc [Fig.
8(b)], versus the order parameter, s, at different values of m.
These values of pc and nc in the longitudinal direction (filled
symbols) always exceeded those in the transversal direction
(open symbols) and the rate of growth of these with increase
of order parameter s. Moreover, an increase of m resulted in a
decrease of pc and an increase in nc.

The correlations between critical values of the filling ratio,
pc, and number density, nc, presented in Fig. 9 evidence the
quite different behavior of completely ordered (s = 1) and
partially disordered (s �= 1) systems. When m → ∞ (infinite
discretization), for completely ordered systems (s = 1), we
observed an infinite increase in value of nc in the longitudinal
direction, whereas such increase was finite in the transversal
direction (see dashed lines in Fig. 9). For partially disordered
(s �= 1) systems, such increase was always finite in both
directions.

The data obtained from the pc(m) dependencies were used
for fitting with the power equation 1/nc(m) = 1/nc(∞) +
α/mβ and for evaluation of the values of nc(∞). The examples
of such fittings are presented in Fig. 10.

Figure 11 presents the relative critical number density, n∗ =
nc/ni

c, versus the order parameter, s. Here, the values were
obtained in the limit of m → ∞ and where ni

c corresponds to

FIG. 8. Critical values of the filling ratio, pc (a), and the number
density, nc (b), versus the order parameter, s, at different values of m.
Here, the filled and open symbols correspond to the longitudinal and
transversal directions, respectively. The lines are provided simply as
visual guides.

the isotropic case, s = 0. The dashed line was obtained using
the approximation derived in [14,36]. Note that the estimated
value of nc

i ≈ 6.044 noticeably exceeds that obtained for the
zero-width rods, e.g., nc

i ≈ 5.64 [10,33]. This evidently reflects
the transformation of the zero-width rods to polyominoes
of different shapes and sizes. Significant anisotropy in the
n∗ values was observed and the calculated values in the
longitudinal direction were very close to the approximation
of Eq. (9).

Figure 12 presents examples of the electrical anisotropy
ratio, δ, versus the filling fraction, p, for a fixed value of
m = 2048 and for different values of the order parameter, s

[Fig. 12(a)], as well as for two values of the order parameter,
s = 0.8 and s = 1 and different values of m [Figs. 12(b) and
12(c)]. It is remarkable that the position of the δ(p) maximum
at pm was almost independent of m for an ideally oriented
system [Fig. 12(c)]. However, the value of pm significantly
decreased with increasing m (increase in the effective aspect
ratio of the rods) for s < 1 [see, e.g., Fig. 12(c) for s = 0.8].
For the given m [see, e.g., m = 2048 in Fig. 12(a)] the value
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FIG. 9. Critical number density, nc, versus the critical filling ratio,
pc at different values of m and the order parameter, s. Here, the
filled and open symbols correspond to the longitudinal and transversal
directions, respectively. The lines are provided simply as visual
guides.

of pm decreased with decrease of the order parameter, while
significant electrical anisotropy was observed for s < 1. For
example, for s = 0.5 the anisotropy value was δ ≈ 0.18 at
pm ≈ 0.1. Note that we can expect even more complexity in the
presence of rod-rod junction resistances [4]. So, the alignment
of the rods can significantly affect the electrical anisotropy
and optical transmission in their dependence on the values of
s and m. This corresponds to the possibility of preparing an
of optically transparent system with small values of pm and a
high electrical anisotropy using rods with a high aspect ratio.

IV. CONCLUSION

We have simulated the electrical properties of 2D films
composed of a low conductive substrate (host matrix) and

FIG. 10. Examples of fittings of 1/nc versus 1/m with the power
equation 1/nc(m) = 1/nc(∞) + α/mβ used for evaluation of the
values of nc(∞). Here, α and β are the fitting parameters.

FIG. 11. Relative critical number density, n∗ = nc/ni
c, (ni

c ≈
6.044) versus order parameter, s, for the values obtained in the limit
of m → ∞. Here, the filled and open symbols correspond to the
longitudinal and transversal directions, respectively. The dashed line
was obtained using Eq. (9).

highly conductive zero-width rods (fillers). The rods were
randomly deposited onto a plane substrate with overlapping
being allowed. Moreover, they were aligned with respect
to a selected direction and to a desired order parameter,
s. To evaluate the filling fraction (or nontransparency), p,
and the electrical conductivity, σ , a discretization approach
involving a supporting square mesh was used. This approach
allowed assessment of the electrical conductivities both of the
insulating (low conductive) host matrix and high conducting
filler particles. As a result of discretization, the zero-width
conducting rods are transformed into conducting polyominoes
of different shapes and sizes. It was demonstrated that the
polymorphism and dispersity of the polyominoes could not be
eliminated even at infinitely fine discretization. For example,
for a disordered system (s = 0) the estimated critical number
density for the polyominoes ni

c ≈ 6 was greater than that for
zero-width rods, ni

c = 5.6372858(6) [10]. Alignment of the
fillers could result in noticeable electrical anisotropy. The
electrical properties of the films with perfectly aligned rods
(s = 1) were different from that for slightly disordered systems
(0.6 < s < 1). For a perfectly aligned system, the highest
film anisotropy was observed at high filler content (p ≈ 0.55)
for essentially nontransparent films. For nonperfectly aligned
systems, high electrical anisotropy was observed at smaller
filler content and this suggests a potential method for the
production of optically transparent and highly anisotropic
conducting films.
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FIG. 12. Electrical anisotropy ratio, δ, versus the filling fraction,
p, (a) for m = 2048 and different values of order parameter s, (b) for
fixed value of order parameter, s = 0.8, and different values of m, (c)
for fixed value of order parameter, s = 1, and different values of m.

APPENDIX: SIZE DISTRIBUTION OF POLYOMINOES

Let there be a line segment (a rod) of length l, which is
randomly placed on a sheet of checkered paper with cells of unit
size 1 × 1. All cells in which there is at least some part of the

FIG. 13. Example of a polygon formed by a line segment on a
checkered paper. The size of the polyomino is 8.

linear segment are considered as belonging to the polyomino
(Fig. 13).

Where the numbers of intersections with horizontal and
vertical lines by a line segment are denoted as Ny,Nx , respec-
tively, only two possibilities can be realized, viz, Ni = �li� or
Ni = �li� + 1, where i = x,y and �·� means the floor function,
i.e., the function that takes as its input a real number and gives
as an output the greatest integer less than or equal to the input
number (Fig. 14).

Thus, the probabilities, P , that a line segment intersects the
given number of vertical (horizontal) lines are

P (Nx = �lx� + 1) = {lx} = {l cos θ} = px, (A1)

P (Nx = �lx�) = 1 − {lx} = 1 − px = qx, (A2)

P (Ny = �ly� + 1) = {ly} = {l sin θ} = py, (A3)

P (Ny = �ly�) = 1 − {ly} = 1 − py = qy. (A4)

Here lx = l cos θ , ly = l sin θ , {·} means the fractional part of
the number.

The number of cells in the polyomino is equal to

N = Nx + Ny + 1.

Since

min(Nx) + min(Ny) + 1 � N � max(Nx) + max(Ny) + 1,

only a few possibilities can be taken into account. Hence,
the probabilities of producing polyominoes of given

FIG. 14. Example of a horizontal line segment on checkered
paper, 5 < l < 6, i.e., �lx� = 5. The line segment may intersect only
5 or 6 vertical lines.
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sizes are

P1 = P (N = �lx� + �ly� + 1) = qxqy, (A5)

P2 = P (N = �lx� + �ly� + 2) = pxqy + qxpy, (A6)

P3 = P (N = �lx� + �ly� + 3) = pxpy. (A7)

Thus, the probability that a rod with angle θ relating to the
axis x produces a k-omino equals

Prob(k|θ ) =

⎧⎪⎨
⎪⎩

pxpy, if k = �lx� + �ly� + 3,

pxqy + qxpy, if k = �lx� + �ly� + 2,

qxqy, if k = �lx� + �ly� + 1
0, otherwise.

(A8)

If all angles θ are equiprobable, then the probability of
finding a k-omino can be obtained by the integration of
Prob(k|θ ) over all possible angles

Prob(k) = 4

π

∫ π/4

0
Prob(k|θ ) dθ. (A9)

The mathematical expectation, i.e., mean size of the poly-
ominoes, k, is

k = (�lx� + �ly� + 3)P3 + (�lx� + �ly� + 2)P2

+ (�lx� + �ly� + 1)P1. (A10)

Substitution of P1,P2,P3 from Eq. (A5) and px,py,qx,qy from
Eq. (A1) into Eq. (A10) after obvious transformations yields

k = 1 +
√

2l sin
(
θ + π

4

)
. (A11)

In our work, the size of the line segment is an integer number
l = k∗, where k∗ = m/L, hence,

k

k∗ = 1

k∗ +
√

2 sin
(
θ + π

4

)
. (A12)

The possible sizes of the polyominoes lie in the interval k ∈
[k∗,(1 + √

2)k∗).
For the limiting case, when k∗ 
 1, Eq. (A12) simplifies to

k

k∗ =
√

2 sin
(
θ + π

4

)
. (A13)

The probability density function of the mean polyomino
size (PDF) is

f (k) = 4

π
√

2 − (k/k∗ − k∗−1)2
. (A14)

For k∗ 
 1, the dispersion of possible sizes of the polyominoes
generated by different rods with a fixed angle tends to zero,
hence, Eq. (A14) may be treated as the size distribution of the
polyominoes. The PDF has a singularity at k = √

2k∗. In this
limiting case, the mean size of the polyominoes is 4k∗/π .
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