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Simulation of knock probability in an internal combustion engine
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In spark-ignition internal combustion engines, fluctuations of the in-cylinder pressure trace and the tendency of
combustion knock are usually different from one cycle to another. These cycle-to-cycle variations are affected by
the initial state at ignition time and the subsequent burning. The occurrence of the phenomena is unpredictable,
and their stochastic nature offers challenges in the optimization of engine control strategies. In this paper, a
simulator providing a series of cycle-to-cycle varied in-cylinder pressures is introduced. The Wiebe function and
Livengood-Wu integration are used to describe the determinacy of combustion. Various means, including the
Markov chain, are introduced to express the stochastic quantities during combustion. In addition, the combustion

of a given knock probability is simulated.
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I. INTRODUCTION

It is well known that combustion in a chamber is a
phenomenon with stochasticity[1-3]. In a spark-ignited in-
ternal engine, the combustion event in the cylinder performs
cycle-by-cycle under external actuation such as fuel injec-
tion, valve timing, ignition, etc. However, the stochasticity in
combustion can be observed even under conditions without
external actuation and changing thermal environments. As a
result, this randomness leads to the cycle-to-cycle variation
of engine output such as indicated mean efficient pressure
(IMEP), thermal efficiency, and emissions. In the past three
decades, much literature on cycle-to-cycle combustion has
been published [4-10]. For example, a statistical analysis of the
cyclic combustion event is explained from the view of physics
[11], and experimental analyses on cyclic variation have also
been provided [12]. In addition, attempts at modeling the cyclic
transient in the cylinder state have been proposed in Ref. [13],
which focuses on the cyclic variation influence of the residual
gas fraction.

Meanwhile, motivated by the strict regulation on emission
and energy consumption for production engines, the attention
of developing technology has been recently focused on high-
efficiency combustion engines in the automotive industry [14].
Furthermore, as an efficient approach, model-based develop-
ment has been a new research trend in the automotive industry
[15]. From the view of control algorithm development for
the electrical control unit (ECU) of engines, 1D models that
represent the in-cylinder behavior of combustion engines are
most widely used in control design and simulation. However,
mathematical representation of the cycle-to-cycle variations of
in-cylinder combustion, especially the stochastic characteris-
tics of in-cylinder combustion phenomena, still remain to be
studied.

In this paper, a simple 1D dynamic model is introduced
to simulate combustion with cycle-to-cycle variations. The

“tetu-sin @sophia.ac.jp

2470-0045/2018/98(1)/012102(10)

012102-1

in-cylinder pressure and knock are chosen to be simulated. The
in-cylinder pressure can illustrate the combustion progress,
and the random knock is directly caused by the cycle-to-
cycle variation. The Markov chain and multivariate normal
distribution are introduced to represent the randomness and
chaos of combustion, respectively, according to the physical
reality. The proposed 1D model can simulate the statistical
information of numerous cycles successfully, conditional on
ignoring the chaotic and stochastic characteristics of real fluids
and combustion. Table I describes the variables used in this

paper.

II. PHYSICAL BACKGROUND AND PROBLEM
DESCRIPTION

According to the fact that commonly used engines of
gasoline-fueled automobiles have four strokes and operate
under an Otto cycle, these engines are also applied in this study.

The working process of the experimental engine is shown
in Fig. 1. In a spark-ignition engine, the downward moving
piston enlarges the volume of the cylinder, and fresh air and
fuel are inducted through the intake valve during the first intake
stroke. Then, the mixture of air and fuel are compressed by the
upward moving piston in the compression stroke. Just before
reaching the minimal cylinder volume, the combustion is
initiated by a high-voltage spark, and the power stroke follows.
The explosion of hot gases pushes the piston downward [16].
The most important phenomenon focused on in the simulator
of the spark ignition engine is the in-cylinder combustion. The
energy is provided by combustion, and the randomness and
chaos of the engine are caused by the combustion; thus, they
are the focus in this work. As the piston moves upward again
in the exhaust stroke, the discharged gases are vented through
the exhaust valve. The intake, compression, combustion, and
exhaust stroke compose one engine cycle. The engine is
operated cycle by cycle.

To illustrate the piston position and working progress of the
engine, crank angle 6 is used in this simulator. The crank shaft
is an important link of the chain transferring power from the
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TABLE I. Nomenclature.

Variable Description

0 Crank angle (deg)

14 In-cylinder pressure (pa)

1% In-cylinder volume (m?)

T In-cylinder temperature (K)

(0] Heat release from start of combustion (J)
R Ideal gas constant(8.314J mol~! - K1)
K Specific heat ratio of the mixed gas

610 Crank angle interval from start of combustion until
10% of the mass burnt (deg)
Boo Crank angle interval from start of combustion until

90% of the mass burnt (deg)

Qtotal Total heat release of the indicated cycle (J)
() Parameter of the Markov chain

N Normal distribution

X Mass fraction burnt

1 Livengood-Wu knock integration

On Octane number of fuel

K Expected knock probability (%)

K* Knock probability (%)

piston to the load in the engine. The crank angle ranges from
0 to 720 degrees in each cycle. The crank angle equals 0 when
the intake stroke starts, and the in-cylinder volume is minimal.

When the in-cylinder pressures are expressed against the
crank angle, the disparity of the pressure trace can easily
be observed from one cycle to another. As shown in Fig. 2,
the region where the pressure traces diverge coincides with
the combustion period. Those cycle-to-cycle variations are
affected by the early flame development and subsequent
flame front propagation [16]. To describe the cycle-to-cycle
variations, the in-cylinder combustion needs to be studied in
detail.

Violent cycle-to-cycle variations can lead to an abnormal
phenomenon called knock. Knock is a form of abnormal
combustion in spark-ignition engines, which is characterized
by high pressure oscillations [17]. After spark ignition, the
flame front, which is the surface separating the burned and
unburned gases, moves from the ignition plug to the entire
cylinder. Part of the unburned gas is compressed by the piston
and the burned gas. The high pressure and temperature in

Fresh air
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FIG. 1. Schematic view of spark-ignition engine.
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FIG. 2. In-cylinder pressure of 10 successive cycles.

this area cause spontaneous combustion to occur. The knock
vibration is caused by this double ignition, which reduces the
engine efficiency. Heavy knock may lead to engine failure, so
when studying cycle-to-cycle variations, a method to monitor
the knock is needed.

III. EXPERIMENT AND DATA PROCESSING

To obtain the physics of cycle-to-cycle combustion, an
experiment is conducted on a test bench, in which a Toyota
27ZR-FXE gasoline engine is coupled to a Horiba Dynas3-
LI250 low inertial alternative current dynamometer as shown
in Fig. 3. The engine parameters are presented in Table II. The
control and measurement system of the test bench includes
an electronic engine control unit, a SPARC controller of
the dynamometer, and a dSPACE1006 multiprocessor system
connected to a personal computer. In addition, a high-speed
data acquisition card, dSSPACE2004, is equipped to collect the
submillisecond pressure data.

In the experiment, the engine is operated under fixed
operating conditions, which include intake valve closing (IVC)
at 250 degrees and ignition angle at 344 degrees. In addition,

HORIBA
dynamometer

ESTEC 2ZR-FXE
Gasoline Engine
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FIG. 3. Configuration of the engine-dynamometer test bench.
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TABLE II. Specification of the experimental gasoline engine.

Engine type 27R-FXE, L-type
Displacement 1797 ml
Cylinder number 4
Compression ratio 13.0
Maximal speed 6000 rpm

Maximal power
Maximal torque
Cylinder diameter
Stroke

72 kW @ 5200 rpm
142 Nm @ 3600 rpm
80.5 mm
88.3 mm

engine speed is restricted at 1200 rpm (revolution per min) by
the dynamometer. Under this condition, the combustion knock
probability is 3%, which is important information to adjust the
parameters in the knock model. During the experiment, the
in-cylinder pressure is measured against the crank angle. As
shown in Fig. 4, the experimental data are the pressure-crank
angle curve of 1979 cycles.

The experimental data are processed cycle by cycle to
derive the randomness of combustion. A set of parameters are
selected to characterize the combustion process. According to
the structure of the combustion model, which is introduced in
the next section, the set of parameters are selected as Q a1, 90,
and 619. Qotal 18 the total heat release of the current cycle. 6y is
the crank angle interval from the start of combustion until 90%
of the mass burnt, which indicates the end of combustion. 6},
is the crank angle interval from the start of combustion until
10% of the mass burnt. Parameter 6, is the symbol of ignition
delay, which means the delay of the crank angle from ignition
to the beginning of combustion.

When the measured data of each cycle are studied, there
are two widely accepted assumptions. First is that the mixed
gas in the cylinder is treated as an ideal gas, from which the
following can be inferred:

pV =nRT, (1)

1
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FIG. 4. Measured in-cylinder pressure.
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FIG. 5. The schematic diagram of the calculation of Qi 690,
and 6.

where n is the mole number of the mixed gas in the cylinder,
and U is the internal energy of the gas.

The second assumption is that the in-cylinder combustion
is an isolated process. The heat loss is ignored:

dQ = —dU + pdV. 3)

Under the constraints of Egs. (1) and (2), Eq. (3) can be
rewritten as

dQ

1
1anT + pdV

1
——d(pV)+ pdV 4)
Kk —1

K 1
pdV + Vdp.
Kk —1 Kk —1
The in-cylinder combustion is started by the spark when
the crank angle reaches the spark angle (SA = 334 degrees in
this paper). Thus, the heat release at each crank angle can be
calculated as

0 0 <6 <334
= O /d
Q f (—Q>d9 334 < 6 < 7200 )
331 \ dO

34

For every cycle, the heat release (Q) curve can be plotted
against the crank angle (). The measured parameters Qotal,
099, and 6 can be calculated according to the heat release
curve of each cycle, as shown in Fig. 5.

IV. PROPOSED MODEL FOR SIMULATION

The purpose of proposing this model is to simulate the
detail states (such as pressure) of the engine working at a
certain knock probability. The model needs to calculate quickly
enough to be used for model-based control. Thus, the 1D model
is introduced to make sure the calculations are simple, and
various improvements are added to simulate the cycle-to-cycle
variations.

The 1D model ignores the special distribution and hy-
dromechanic performance, which lead to the cycle-to-cycle
variations. To simulate the stochastic cycle-to-cycle variations,
random parameters need to be introduced to represent those
phenomena. In addition, based on the observation of the
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FIG. 6. Structure of the simulation model.

experiments, the knocking probability under the same engine
working conditions is not constant because of the uncontrolled
environment condition. In the presented simulation, the param-
eters of the combustion model need to match the variable knock
probability.

Therefore, the model is represented by three parts. The
first part is to generate the random parameter and describe
the nominal condition of the engine. The second part is
to simulate the in-cylinder combustion and revolute the in-
cylinder pressure. The last part is to diagnose if knock occurs
and calculate the knock probability. The simulator structure is
shown in Fig. 6.

A. Generation of combustion randomness

To simulate the cycle-to-cycle varied combustion, the pa-
rameters Q ol f90, and 6o are dealt with as a random number.
If the distribution of parameters are designed appropriately,
they influence the accuracy of the proposed model. Accord-
ing to the measured data and the physical background, the
distribution of Q. and Oy is selected as the multivariate
normal distribution, and a Markov chain is chosen to describe
the evolution of 6.

1. Multivariate normal distribution

The parameters Qo1 oo, and 8jp of each cycle are
ascertained by the data processing presented in Sec. III. The
experimental distribution of the three parameters of all 1979
cycles can be acquired. As shown in Fig. 7, the experimental
mean (g and variance 092 of Oy are

=43.0424, o} =4.6115.
Mo 0 (6)

In the proposed model, the 6y is chosen to be the parameter
to characterize the cycle-to-cycle variations. When the nominal
operating condition is fixed, the cycle-to-cycle variations
influences knock probability significantly. To get a given knock
probability, the distribution of 899 must be adjusted. When the
knock probability is 3%, which is same as the experiment,
a normal distribution characterized by the average value of
43.0424 and the variance of 4.6115 can be selected to describe

the distribution of parameters 6go. The 89 of the current cycle
can be obtained randomly based on the normal distribution:

P(Bo0) = N (6ol 110,07
_ 1 e*ﬁ(%oﬂte)z @)
(2ra})"?

The parameter Qo can also be described as a normal
distribution. However, Qi are not independent from the
parameter 69y according to the experimental data, as shown
in Fig. 8. The correlation of 69y and Q. can be quantified
by Pearson product-moment correlation coefficient rg o, which
equals 0.5608. There is a larger 9y in the cycle when the
heat release Qi is higher. Due to this independence, the
distribution of Q. needs to be calculated by the covariance
matrix X and the gy of the current cycle. Then, the covariance
matrix of Ogg and Qi is expressed as

— Oy 0909re0
= 2 | (3)
0p0QreQ O'Q

Frequency[%]

36 38 40 42 44 46 48 50 52
Hgo[deg]

FIG. 7. Experimental 6y, frequency distribution.
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FIG. 8. Relationship of the total heat release Qo (¥ axis) and
Oy (x axis) according to the experimental data.

where
rog = 0.5608, o = 60.0462

aé is the variance of Q. The aé is given as 60.0462

according to the experimental data. When 6y is decided, the
distribution of Q. can be calculated by the covariance matrix
based on the calculation of conditional probability[18]. The
parameter Q. of the current cycle can be obtained randomly
based on the multivariate normal distribution:

P(Qotail90) = N (100, A p) ©9)
where
Ago Ago _1
A — = Z ’
[AQG AQQ]

Kol = g — AélQAQ9(99O — ),

2. Markov chain

As shown in Fig. 9, there is a slight asymmetry of the
experimental 6, distribution. The mean value w©(69) and
variance o 2(6,0) can be calculated, but the normal distribution
is not suitable to describe it:

w(B10) = 21.4494, 6%(6,9) = 1.5260. (10)

For in-cylinder combustion, 6} can represent the ignition
delay that is an important index of combustion and influence
the in-cylinder pressure in the current cycle. The ignition
strongly depends on how difficult it is for the in-cylinder gas
to be set on fire. Additionally, the fraction and temperature of
residual gas of prior cycle influence the difficulty of ignition.
Because of this physical background, the distribution of 6
is not suitable to be treated as a normal distribution. As
mentioned, the combustion states of prior cycle have some
influence on the 6 of next one cycle. The distribution of 6
can represent the combustion states to some extent. In this
case, if the distribution of ) is regarded as a state, the process
of continuous in-cylinder combustion has a Markov property,

12

oo

Frequency[%]
(=)}

18 19 20 21 22 23 24 25 26 27
01 0[deg]

FIG. 9. Experimental 6,y frequency distribution.

which means the probability of whether the distribution of
010 will change only depends on the current distribution of
010- To describe the process in which the probability of one
state changes to another only depends on the current state, a
Markov chain is used extensively. Thus, 6y can be generated
by a discrete-time Markov chain.

As mentioned above, to get the stochastic 8}, a two-hidden-
states Markov chain is modeled. There are two states, each of
which represents one certain normal distribution of stochastic
610. It is called a hidden state because it cannot be confirmed
by the measured data. The value of 6, is obtained at discrete
time ¢ for one state and at time ¢ 4- 1 the state that may change
into another at a certain probability.

The Markov chain can be described by ©:

@ =(A'7B7n)7

11
A=|:a“ a12j|, B:[ﬁffj, T = [my,m]. o

asy any

The figure g;;, which is the element of stochastic transition
matrix A, describes the probability that if 6} is given by state
i at time ¢, then at time ¢ + 1, 6} is calculated by state j.
The distribution N; (019 u; ,Uiz) is the element of vector B that
defines the probability distribution of 6}y at the certain state
i. The element of the initial state distribution vector & is the
number 5; that defines the probability of the initial state of i.

To find the unknown parameters of a Markov chain, the
Baum-Welch Algorithm is widely used [18]. We express the
sequence of the observed data as O and the sequence of hidden
state as /, where L is the length of the measured data:

0 =(017027 e 70L)’
I =(i17i27 e 7iL)' (12)

The evaluation criteria of the Markov chain parameter
O can be presented as the log-likelihood function F(®) of
the experimental data generated by a certain Markov chain.
The log function is monotonically increasing, and when the
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log-likelihood function reaches its upper bound, the likelihood
function is maximum, which means that the parameter ® is
selected as most likely right:

F(®) = P(0|©)logP(010). (13)

To find the best coordinated parameter ® = (A, B,x), the
Baum-Welch algorithm is used to find a group of parameters
to make the function F(@®) reach its upper bound. The Baum-
Welch algorithm is also used to find a new function Q that is
smaller than F, and then, the parameter © is changed step-by-
step to enlarge function Q and find this upper bound. Function
Q is defined as

0(©.6) = > P(0.1|6)logP(0.110). (14)
1

Function Q is used in iterative optimization. © is the
unknown parameter needed to be found to enlarge Q, and 3]
is the known parameter that is found in the last step. Thus, it
can be proven that

F(®) =P(0|®)logP(0|0©)
P(O|1,0)
P(I)
P(0|1,09)
P(I)

=P(0|®)log Z P(I)
1

>P(0|©) ) " P(I)log
1

=P(01©) Y " P(I)logP(0.1|©) (5)

1
:ZP(O,II@)logP(O,HG))
1
>0(0,0).

The first inequality sign is due to the convex property of
the log function, and the second inequality sign is due to the
definition of function Q.

According to the definition of a Markov chain,

P(0.1|10) = m;, N;, (01)aiyi, - -
x N, (or—1ai, i, N;, (or). (16)

Thus, the function Q can be expressed as

0(©.0) = "logm;, P(0.1|©)
1

L-1
+ Z (Z logai1i1+1>P(0’I|é) )
1

=1

L
+> (ZlogM,>P(0,1|(i)).
1

=1

Then, the optimal ® can be calculated by optimizing A, B,
and & separately. The iteration method is used to find parameter
O to let Q reach its upper bound:

0" = arg max 000,017, (18)

It was proven in Ref. [19] that by using the iteration of
Eq. (14), the value of Q could reach one of the local optimums

of function F. The initial value of © needs to be changed
several times to the global optimum. The final @ = (A,B,x)
is expressed as

A= [0.3049 O.6951i| 7

0.1041 0.8959
B— N(619]22.8744,1.6569) (19)
T[N (619]21.2363,1.1565) |
n =[0,1].

The log-likelihood function is introduced to describe the
probabilities of the experimental results under the normal
distribution and the distribution of the Markov chain. The
function is monotonically increasing with the likelihood of ex-
perimental data under a certain model. Thus, the log-likelihood
function can represent the degree of confidence to some extent.

F[010IN (1(010),0%(010))] = —3.2258 x 107,
F[010|® = (A,B,m)] = —3.2022 x 1073, (20)

A normal distribution defined by the experimental mean
1w(019) and variance o2(01¢) is introduced in contrast. The
log-likelihood is that a Markov chain defined by @ is slightly
larger than that of the contrastive normal distribution. Thus,
the Markov chain is more likely to generate the experimental
results, and it is reasonable to determine parameter 6,y by the
fitted Markov chain according to the experiment results.

Still, a simple explanation of the Markov chain is needed.
The 6y generated by the Markov chain is a description of
the ignition delay of in-cylinder combustion. According to the
Markov chain @, the ignition is divided into the following two
categories: abnormal ignition and normal ignition. Abnormal
ignition corresponds to the first state of B, and normal ignition
corresponds to the second. The ignition delay of abnormal
ignition is unstable and longer on average than that of normal
ignition as defined by B. Moreover, as an explanation of matrix
A, normal ignition is more likely to occur regardless of whether
the last ignition is normal or abnormal. However, an abnormal
ignition is more likely to lead to another abnormal one than
normal ignition. The above explanation is practical because
abnormal ignition may lead to unstable combustion. The
temperature and fraction of residual gas may vary greatly due
to the unstable combustion of the last cycle. Then, abnormal
ignition is more likely to occur.

B. Combustion model

When modeling the cyclic varied in-cylinder combustion,
a functional description ranging from determinism to random-
ness is needed [13]. The Wiebe function, a frequently used
equation, is chosen to simulate combustion [17]:

,a(i)mﬂ
xp=1—e " 21

In0.9
m=-——
In(B10/6090)

where 0 is the crank angle, a and m are the nondimensional
parameters calculated according to the definition of 6y and
010, respectively, and x;, is the fraction of fuel burned at the
crank angle 6.

a =1n0.1, (22)
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The fraction of fuel burned can be regarded as a symbol of
the combustion process. 0y and 6o are given in the first parts
of the current model. Then, the heat release at each crank angle
6 is calculated as follows:

dQ

— Q™2 23)
d@ - total d@ )

where Qo 1S the total heat release of the current cycle that is
received from the first part of the current model.

Ignoring the thermal losses, the change in in-cylinder
pressure p is given as

dp  k—1(dQ K av
a0~ v \ao «—1Ya0 )

where V is the cylinder volume at the present crank angle, and
k is the heat capacity ratio of the gas-oil mixture. In this paper,
k = 1.32 and the fluctuation of « are ignored. Meanwhile,
the initial value ppyc of in-cylinder pressure p is the pressure
when the intake value closes. pryc equals the intake manifold
pressure of the engine nominal condition.

(24)

C. Knock model

In this part of the model, an existing method is used to
detect knock based on the in-cylinder pressure. According to
this method, the relationship between the knock probability
and the parameter distribution is derived. Bayesian estimation
is also applied to calculate the knock probability.

1. Integral predictable model

The Livengood-Wu integral predictable knock model,
which is based on the Arrhenius function, is used to detect
knock. This model divides the cylinder into burned and un-
burned zones. Each zone is considered homogeneous in terms
of temperature, pressure, and gas mixture composition. Knock
occurs when spontaneous ignition happens in the unburned
zones [20]. Under certain environmental conditions, the self-
ignition delay T can be expressed as

on\© a
T=C (%) pCet, (25)
where Cyi, Cy, C3, and Cy are the fitting coefficients. Thus,
under a varying environment, the self-ignition index is defined
as an integral of 1/, and self-ignition occurs when the index
I = 1. At this point, knock happens,

I = ft <l>dt, (26)
five T

where Ty, is the unburned gas temperature that can be calcu-
lated based on an adiabatic assumption.

1—L
Tup = Twc<i) 27)
pive

Tivc and pryc are the temperature and pressure when the intake
value closes, prve = 0.6 bar according to the experiment, and
Tivc equals the environment temperature.

The values of parameters C,, C3, and Cy4 are given in the
scientific literature [21]:

C, =3.402, C3 =1.700, C4 = 3800. (28)

* * simulated point

fitted curve

. — — — knock limitation

()Qo[dcg]

FIG. 10. Fitted relationship between the Livengood-Wu knock
integration / and 6y.

Parameter C, is modified to make the knock rate consistent
with the experimental results:

C; =12091. (29)

2. Parameter adjusting based on the knock model

In the same nominal operating conditions, the knock-
ing probability changes by the immeasurable disturbance of
environment. To characterize this phenomenon, a simulator
generating a series of combustion of given knocking prob-
ability is needed. It is reasonable to assume that the mean
value of the model parameters are decided by the nominal
operating conditions. The knock probability fluctuation due
to the immeasurable disturbance is reflected by the alteration
of the variance of model parameters. The 092, variance of 6y
is selected to describe the environment fluctuation. Moreover,
the aé variance of Qi calculated by o7 varies along with
environment.

It is clear that if the knock probability equals 3%, which
is same as the experiment result, the variance of 8y is 4.6115
and equals the experimental value. The variance of 89y under
other knock probabilities needs to be calculated. One thousand
cycles under the 3% knock probability are simulated, and the
Livengood-Wu integration I is calculated. The lower 89y, which
indicates quicker combustion, is likely to generate higher
Livengood-Wu integration, leading to high knock probability,
as illustrated in Fig. 10.

B9 and [ are fitted by a cubic polynomial as follows:

I = f(By) = —8.551e — 5 x 65, + 0.01366 x 63,
—0.7537 x 6y + 14.63. (30)

The estimated limitation of knock 65, = 38.18 can be
obtained by the solution of f(6y,) = 1. According to the fitted
curve of gy and 1, if Oy is less than 6, in this nominal operating
condition, the Livengood-Wu integration [ is likely more than
1, and then knock happens. Thus, the distribution of 8yy can
determine the knock probability to a certain degree; although,
the randomness of Q. and 6y can also affect the knock

012102-7



HUANYU DI AND TIELONG SHEN

PHYSICAL REVIEW E 98, 012102 (2018)

probability. Therefore, when the knock probability K is given,
P(090|099 < 38.1) ~ P(I|I > 1)=K. (31)

The variance of 6y, is chosen to be 092* to adjust the knock
probability into the given value:
2% Ho — 050
=— 32
% T N(1-K) (32)
where N ~! means the inverse function of the cumulative den-
sity function of the standard normal distribution. By replacing
the original variance o7 = 4.6115 with the newly calculated
092*, the combustion and knock can be simulated.

3. Bayesian estimation of knock probability

To explain the accuracy of the proposed simulator, a
precise estimation of knock probability is needed. A Bayesian
estimation is selected to calculate the knock probability K*.
Furthermore, whether knock occurs is a binomial distribution.
For the sake of convenience, a § distribution with coefficients
o and B is selected to describe the knock probability as a prior
distribution because the S distribution is a conjugate prior
distribution of binomial distribution, and the calculation can
be simplified using conjugate prior distribution:

p(K*) = B(a.p). (33)

Under this assumption, the expectation of the knock prob-
ability is used as the estimation of knock probability and can
be calculated as

o
(K™) py (34

The B distribution of knock probability is updated on
the basis of the simulated results of whether knock occurs.
According to the Bayesian estimation, « and 8 are updated in
the ith cycle:

a; = aj—1 + ki,
Bi= Bi-1+1—k, (35)

where k; is a dummy symbol of knock. k; = 1 means knock
happens. The initial value of « and B is given on the basis of
the given knock probability K:

oy = NK,
Po= N(K —1). (36)

D. Simulated results

According to the combustion model and the generated
random parameters, the in-cylinder pressure during continuous
1000 cycles indicates that the operating conditions of the
simulation are same as the experimental conditions.

As mentioned above, knock is an abnormal phenomenon
of in-cylinder combustion. Thus, it is reasonable to set a
low given knock probability. The given probability are set
to 1%, 3%, and 5%. The proposed simulator successfully
provides the in-cylinder pressure with cycle-to-cycle variation.
The simulated in-cylinder pressure of 1000 consecutive cycles
is presented in Fig. 11. The oscillation range of maximum
pressure (AP,) can illustrate the cycle-to-cycle variation.
Figure 11(a) shows the in-cylinder pressure curves when a
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FIG. 11. Simulated in-cylinder pressure for 1000 cycles. (a)
Given knock probability K = 0.01. (b) Given knock probability
K = 0.03. (c) Given knock probability K = 0.05.

given knock probability equals 1%, and the oscillation range of
maximum pressure A P,,; = 15.85 bar; Fig. 11(b) shows when
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FIG. 12. Simulated Livengood-Wu knock integration / for 1000
cycles. (a) Given knock probability K = 0.01. (b) Given knock
probability K = 0.03. (c) Given knock probability K = 0.05.

the probability equals 3%, A P,» = 19.96 bar; and Fig. 11(c)
shows 5%, A P,,», = 20.13 bar.

Combustion begins when the crank angle reaches 344
degrees since the in-cylinder curves diverge from one cycle
to another, which is the same as the experimental results.
Figure 11 shows in this simulation that when the given knock
probability becomes higher, combustion is more unstable, and
the curves of the simulated in-cylinder pressure become more
dispersive. This matches the results of the real experiment.

According to the simulated pressure, the Livengood-Wu
integration / is calculated as shown in Fig. 12. In Fig. 12, knock
happens when the solid lines that represent the Livengood-Wu
knock integration / exceed the knock limitation marked by
the dashed lines. When the given knock probability becomes
higher, more curves of calculated Livengood-Wu knock inte-
gration I exceed the dashed line.

As shown in Fig. 13, the solid line shows the simulated
knock probabilities calculated by the Bayesian estimation, and
the dashed lines represent the given knock probabilities. The
simulated knock probability is increased when knock happens
in this cycle, otherwise it is decreased. The changing range
of knock probability during one cycle reduces, because the
simulated data applied in Bayesian estimation is accumulated.
The simulated knock probabilities are 0.8%, 2.8%, and 5.2%
after the calculation of 1000 cycles, which are close to the
given points.

By analyzing the simulation result, it can be inferred
that this simulator can describe the engine combustion based
on the physical background and simulate the cycle-to-cycle
variation according to real experiment properties. Moreover,
the proposed model can simulate the in-cylinder combustion
under different knock probabilities.
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FIG. 13. Simulated Livengood-Wu knock integration / for 500
cycles.

V. CONCLUSION

In this paper, an approach is developed to simulate the
stochastic and deterministic characteristics of in-cylinder com-
bustion, which are further applied to simulate given knock
probabilities by a 1D dynamic model. A multivariate normal
distribution and a Markov chain were introduced to describe
the randomness of combustion. A dynamic equation and the
Wiebe function are selected to explain the determinants of
combustion. The Livengood-Wu integration is used to estimate
whether knock happens.

In the proposed model, the combustion and in-cylinder
pressure are determined by the combustion parameters. The
mean values of the combustion parameters are determined by
the nominal operating conditions according to the experimental
data, and the variance of several combustion parameters are
affected by the given knock probability.

This 1D dynamic model is simple enough, so the calculation
can well match actual engine operation. Therefore, this model
can be used in the real-time control of spark-ignition engines.
It should be noted that in this paper, a static operation engine
model is targeted to simulate the knock probability. Hence,
the parameter depends on the operating conditions. If the
conditions change, then the parameters should be recalibrated.
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