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Structure of sticky-hard-sphere random aggregates: The viewpoint of contact
coordination and tetrahedra
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We study more than 104 random aggregates of 106 monodisperse sticky hard spheres each, generated by
various static algorithms. Their packing fraction varies from 0.370 up to 0.593. These aggregates are shown
to be based on two types of disordered structures: random regular polytetrahedra and random aggregates, the
former giving rise to δ peaks on pair distribution functions. Distortion of structural (Delaunay) tetrahedra is
studied by two parameters, which show some similarities and some differences in terms of overall tendencies.
Isotropy of aggregates is characterized by the nematic order parameter. The overall structure is then studied by
distinguishing spheres in function of their contact coordination number (CCN). Distributions of average CCN
around spheres of a given CCN value show trends that depend on packing fraction and building algorithms.
The radial dependence of the average CCN turns out to be dependent upon the CCN of the central sphere and
shows discontinuities that resemble those of the pair distribution function. Moreover, it is shown that structural
details appear when the CCN is used as pseudochemical parameter, such as various angular distribution of bond
angles, partial pair distribution functions, Ashcroft-Langreth and Bhatia-Thornton partial structure factors. These
allow distinguishing aggregates with the same values of packing fraction or average tetrahedral distortion or even
similar global pair distribution function, indicative of the great interest of paying attention to contact coordination
numbers to study more precisely the structure of random aggregates.
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I. INTRODUCTION

Random aggregates (RA) of monodisperse spheres are
of great interest to simulate various physical systems, such
as amorphous solids, liquids, powders, etc. In particular, a
fine characterization of their local or longer range structural
properties is of interest to classify the various types of random
aggregates of spheres that can exist and study their properties.

Many different approaches allow building random aggre-
gates of spheres. Broadly, they may be divided into two
categories. The first one consists of algorithms for which all
spheres are introduced at once and then the system relaxes
towards some more or less disordered structural state (e.g.,
molecular dynamics [1], the Lubachevsky-Stillinger algorithm
[2], the Jodrey-Tory algorithm [3], or Monte Carlo relaxation of
chains of hard sphere [4]). This family of algorithms produces
aggregates whose properties mimic what was found in many
disordered systems, notably, the dependence of the contact
coordination number with packing fraction, and they are also
able to produce aggregates with packing fraction equal to
or even superior to the random-close-packing (RCP) value
γRCP ≈ 0.64 or equal to or lower than the random-loose-
packing (RLP) value γRLP ≈ 0.555 (see [5]). However, γRLP

presents a strong dependence on interparticle interactions [6],
which suggests that no geometrical property must be associated
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with the RLP transition, whereas the RCP state might have
structural or geometrical constraints that set an upper bound to
γRCP, such as the proportion of spheres involved in quasiperfect
tetrahedra, as observed by Anikeenko and Medvedev [7].

The second large category of algorithms introduces spheres
in the aggregate one by one and sets their position definitely
at once (see, e.g., [8]). Aggregates built by such methods have
two important differences from those of the first category: First,
their average contact coordination number remains close to 6;
second, it is impossible to produce aggregates with packing
fraction higher than 0.6. Hence, the latter family of algorithms
gives access to random aggregates with somewhat different
structural properties from the former. Moreover, using sticky
hard spheres, contact neighbors are rigorously defined by
Dirac δ functions and this allows studying various properties
related to the coordination number of spheres in a simple and
unambiguous manner.

In [9], a study of several hundred sequentially built ag-
gregates was conducted. It was found that for the lowest
packing fractions, δ peaks appear on the pair distribution
function, which corresponds to the formation of a disordered
polytetrahedral structure in the random-packing aggregate.

The present study extends the results obtained in [9] by
looking at structural tetrahedra, isotropy, contact coordination
numbers, partial distribution functions, and partial structure
factors, corresponding to pairs of spheres with equal or
different contact coordination numbers. It also introduces
a family of random aggregates formed by spheres added
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in regular building tetrahedra, which appears essential to
understand the composite nature of other sequentially built
random aggregates.

II. STUDIED AGGREGATES

More than 10 000 aggregates, each one containing 106

spheres with radius rs = 1 (and hence diameter d = 2), were
built and studied.1 They fall into two broad families: random ir-
regular polytetrahedral aggregates (RIPAs) and random regular
polytetrahedral aggregates (RRPAs). All of them were built by
adding spheres one by one at their final position, tangentially
to three existing ones.

A. Random irregular polytetrahedral aggregates

Most aggregates were of RIPA type. They were built using
algorithms that have been presented in detail in [9] and are
only summarized here. A seed of three spheres forming an
equilateral triangle is used. Each new sphere P is positioned
tangentially to at least three already present spheres (noted O,
A, and B). The new sphere can be introduced in a hole whose
size is maximized (MAX algorithms) or chosen randomly
(RAN algorithms) in the vicinity of the local origin O, itself
chosen randomly in the aggregate. Moreover, it is possible to
insert from 1 up to 9 spheres at once (according to the index
Nins, the number of spheres inserted) around a given origin O

(algorithms MAX-1 to MAX-9 and RAN-1 to RAN-9). Finally,
the neighborhood explored to choose spheres A and B around
O is a cube whose edge length a can be varied: It controls
strongly the packing fraction of the aggregates. The larger the
value of a, the higher the packing fraction. It is varied between
about 3.4 and 8 as, for a < 3.4, no aggregate can be generated
and for a > 8, the maximum packing fraction is reached and no
evolution of the generated aggregates is noted for higher values
of a (see Fig. 2 in [9]). More than 300 aggregates of 106 spheres
were built, by varying a for each family of these algorithms.

An additional modification with regard to the aggregates
studied in [9] was to choose the origin O as close as possible to
the center (0,0,0) of the growing aggregate (RMIN algorithms),
instead of in a purely random fashion. This change has the
effect of increasing the maximum packing fraction, reached
for MAX-1 and a > 3.5, of about 1%, from 0.586 to 0.593. All
other aggregates generated by RMIN-MAX algorithms have a
slightly higher packing fraction than their MAX counterparts
(i.e., same values of a and Nins) with no significant changes
concerning the structural results presented in [9]. This mod-
ification also allows for a more homogeneous growth of the
aggregate. Only the results obtained for RMIN-MAX-1 will
be used hereafter.2

1Hereafter, unless otherwise mentioned, all distances are expressed
in rs as the unit of length (rs = 1). Similarly, r−1

s is the unit in
reciprocal space.

2Yet another family of algorithms has been developed for which
the newly added sphere is positioned by controlling the value of the
building tetrahedra distortion. However, this strategy leads to the exact
same P (r) as the one obtained for RA built with the positioning in
function of the hole size and has the same maximum packing fraction;
these aggregates will not be further studied here.

Finally, as it turned out that the previous families of aggre-
gates had some inhomogeneities of their packing fraction close
to (0,0,0), some aggregates were generated by using as the seed
a set of N spheres taken in previously built aggregates, instead
of an equilateral triangle (N -RMIN-MAX-1 algorithm). The
positions of the spheres composing the seed are taken from
an aggregate with the same values of other parameters (a and
Nins), far from the origin (0,0,0), which has the effect to remove
the central area with higher packing fraction. Typically, the
number of spheres in the seed is between 30 and 600. However,
this modification entails only slight changes of pair distribution
functions or structure factors.

B. Random regular polytetrahedral aggregates

The other algorithm that has been used produces aggregates
with only regular building tetrahedra [10]. In this case, the
newly inserted sphere P forms a regular tetrahedron with the
three already contacting spheres O, A, and B, i.e., PO =
PA = PB = OA = OB = AB = 2. For these algorithms, a

has virtually no impact on packing fraction, but the number of
inserted spheres around a given local origin (Nins) does.

Once again, the local origin O can be chosen at random, or
as the closest one to the center of the aggregate. When it is cho-
sen randomly (RRPA), the maximum packing fraction (0.418)
is reached for Nins = 3 and a minimum of 0.408 is observed
for Nins = 1 and beyond 4. When O is chosen as the closest
possible origin from the aggregate center (RMIN-RRPA), the
maximum packing fraction is 0.456 and is reached for Nins >

4. Similar aggregates, so-called saturated polytetrahedra, have
been studied by Medvedev and Pilyugina [11]. They found a
packing fraction of 0.435 for aggregates consisting of about
576 000 spheres. This value falls in between the maximum
ones obtained for aggregates choosing O randomly (lower
bound) and those taking O as the closest sphere from the origin
(higher bound). It should be noted that RIPAs and RRPAs
distinguish aggregates based on their building algorithms, not
their structure, which will be discussed in details below.

The isotropy and the randomness of all aggregates have
been systematically checked through the distribution of i-j
bonds and the nematic tensor formalism and turn out to be
satisfactory. More details on the latter point are provided in
the Appendix.

III. PACKING FRACTION

A. Basic relations

The radius Rm of a large spherical aggregate centered in
(0,0,0) and made of N spheres centered in �Ri is given to a
good approximation by [10]

Rag =
√

R2
quad, (1)

where Rquad is the average quadratic radius of all spheres in
the aggregate

R2
quad = 5

3

1

N

N∑
i=1

R2
i . (2)

However, finite aggregates are not fully spherical and
exhibit local order oscillations. Therefore, their packing
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FIG. 1. The γ (RSC/Rag) for several (a) MAX-1 aggregates and (b) RMIN-MAX-1 aggregates built with various values of a and a single
N -RMIN-MAX-1 aggregate (seed composed of 600 spheres), for the sake of comparison, with S centered in (0,0,0).

fraction varies as a function of the radius RSC of the
sphere cut into the aggregate bulk and deserves special
attention.

The volume Vs(r) shared by a sphere of radius rs = 1 whose
center is at a distance r from the origin (0,0,0) with another
sphere S , of radius RSC, centered in (0,0,0) is [12]

Vs(r,RSC) =

⎧⎪⎨
⎪⎩

4
3πr3

s , r � RSC − rs

π
(RSC+rs−r)2

(
r2+2rrs−3r2

s +2rRSC+6RSCrs−3R2
SC

)
12r

, RSC − rs < r < RSC + rs

0, r � RSC + rs .

(3)

These relationships can also be used for any sphere S centered
in x, y, and z by a mere change of reference frame. Hence, the
packing fraction of the sphere S can be directly determined for
any radius RSC as

γ (RSC) =
∑N

i=1 Vs(ri,RSC)
4
3πR3

SC

, (4)

where i accounts for all spheres in the aggregate. Finally,
it is possible to determine the packing fraction of shells of
arbitrary thickness w = Ro − Ri , where Ri is the inner radius
and Ro the outer radius of the shell, simply by removing the
portion of spheres outside of the shell, according to the volume
complementary of the relation (3).

B. Packing fraction of spheres inscribed in the aggregate

The evolution of the packing fraction of spheres inscribed
in the aggregate as a function of their radius γ = f (RSC/Rag)
(Fig. 1) shows that, for all aggregates, whatever their building
algorithm, the packing fraction decreases slightly when RSC

increases. A seed effect appears as for MAX-1 and RMIN-
MAX-1 aggregates (three spheres forming an equilateral tri-
angle as the seed), a first regime of fast decrease is observed
for RSC < 0.2Rag, i.e., for a number of spheres below approx-
imately 8000, and then the packing fraction tends to plateau,
whereas for N -RMIN-MAX-1 aggregates (the seed consisting
of spheres taken far from the origin in a previously generated
aggregate), this initial decrease is much faster. Nevertheless,
the exact range of effect of the seed can only be asserted by
the packing fraction of shells studied hereafter.

This effect probably stems from the fact that contacting
equilateral-triangle configurations are extremely rare in high-
packing-fraction aggregates. As a matter of fact, this seed
dependence disappears for lower-packing-fraction aggregates,
in which such configurations are rather frequent. On the other
hand, N -RMIN-MAX-1 and RMIN-MAX-1 aggregates show
exactly the same behavior for larger values of RSC.

For every aggregate, a second regime is observed when
RSC → Rag, i.e., when S reaches the limit of the aggregate:
Logically, the packing fraction decreases faster. For a perfectly
spherical aggregate, when RSC > Rag + rs , then the packing
fraction of S should decrease as R−3

SC . When this decrease is
at first more progressive, it shows that the aggregate has an
imperfect shape and either has protuberances on its surface or
is not overall perfectly spherical.

For the same value of a, RMIN-MAX-1 aggregates tend
to have a higher packing fraction than the corresponding
MAX-1 aggregates, as well as a sharper decrease of γ when
RSC → Rag, which shows that RMIN-MAX-1 aggregates have
a more regular surface than MAX-1 aggregates. For the latter,
the thickness of the imperfect aggregate is about 1.5d for
a = 3.5 (γ = 0.586) and about 5d for a = 1.79 (γ = 0.370).
For RMIN-MAX-1 aggregates, the thickness of the imperfect
aggregate is roughly d/4 for a = 3.5 (γ = 0.593) and about
1.5d for a = 1.78 (γ = 0.378).

C. Packing fraction of shells

Figures 2(a) and 2(b) represent the variation of packing
fraction in shells with thickness w = 0.1 for the densest
aggregates produced by algorithms MAX-1, RMIN-MAX-1,
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FIG. 2. Packing fraction of shells with thickness w = 0.1rs on the densest aggregates built with three strategies: MAX-1 (three-sphere seed),
RMIN-MAX-1 (three-sphere seed, RMIN), and N -RMIN-MAX-1 with a spherical seed of radius 10 extracted from a previously generated
aggregate with the same value for a and Nins for (a) relatively small r (r/Rag ∈ [0,0.5]) and (b) large r (r/Rag ∈ [0.5,1]).

and N -RMIN-MAX-1. Globally, the packing fraction of such
shells oscillates with r . Its average value decreases from a
higher value near the seed to a smoother behavior when r

increases. The N -RMIN-MAX-1 aggregate presents virtually
no effect of the seed: The packing fraction of shells reaches
the average behavior for very small values of r , which seems
logical as for these aggregates the seed consists of a set of
spheres with the average structure. The RMIN-MAX-1 and N -
RMIN-MAX-1 aggregates converge for r ∈ [0.1Rag,0.15Rag]:
The effect of the initial equilateral-triangle seed of RMIN-
MAX-1 aggregates seems then to act on about 103 spheres
in the whole aggregate, consisting of 106 spheres, i.e., sig-
nificantly less than suggested above by the comparison, in
Fig. 1(b), of γ = f (RSC/Rag) for the two same aggregates.
Figure 3 compares two aggregates built by RMIN-MAX-1
and N -RMIN-MAX-1 algorithms, where spheres are colored
based on their contact coordination number (CCN). It appears
that the former aggregate has a brighter atypical central area in

the region of the seed, denoting unusual structural properties
with respect to the rest of the aggregate, whereas the latter
displays a seed area much more similar to the rest of the
aggregate.

Moreover, for aggregates with lower packing fraction (i.e.,
for aggregates built using lower values ofa and in which regular
polytetrahedra appear), the range of aggregates affected by
the seed decreases and completely disappears for the lowest-
packing-fraction aggregates. In that case, indeed, the structure
contains a significant amount of equilateral triangles and the
initial seed ceases to be special in comparison with the rest of
the structure. At large values of r [Fig. 2(b)], oscillations can
still be detected in the packing fraction of shells, however with
a much smaller amplitude. A slight decrease of the average
value is noticeable: The farther a shell is from the center of the
aggregate, the lower its packing fraction is, on average. The
origin of this phenomenon is not obvious to us. For r > Rag,
the packing fraction of shells falls rapidly to 0.

FIG. 3. Slices of aggregates generated by two algorithms: (a) RMIN-MAX-1 with a = 4 and (b) N -RMIN-MAX-1 with a = 4 and a seed
consisting of N = 400 spheres. Colors (grayscale) correspond to the contact coordination number: Brighter spheres have a higher CCN. (These
figures were generated with OVITO software [13].)
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FIG. 4. Slices of aggregates generated by two algorithms: (a) RMIN-MAX-1 with a = 4 and (b) RRPA. Colors (grayscale) correspond to
the contact coordination number: Brighter spheres have a higher CCN. (These figures were generated with OVITO software [13].)

IV. TETRAHEDRAL STRUCTURE

The structure of random packings of spheres is commonly
assessed via the tetrahedra connecting sphere centers, forming
the so-called Delaunay tessellation [14] (these tetrahedra are
noted by the subscript D in what follows). For the present
study, Delaunay tessellations were built using the CGAL library
[15,16].

In [9], another type of tetrahedra was studied, called
building tetrahedra (denoted by the subscript BT hereafter).
A building tetrahedron is formed by spheres O, A, B, and P

when adding the new sphere P tangentially to the three other
ones, O, A, and B. It should be noted that such tetrahedra may
or may not belong to Delaunay’s tessellation. The distortion of
building tetrahedra was shown to be a very significant structural
parameter, allowing the correlation of various structural traits
of the aggregates. In this section, we focus on two distortion
parameters of Delaunay tetrahedra.

A. Distortion parameters

The first tetrahedral distortion parameter has been defined
for the characterization of building tetrahedra [9] by the
relation

κBT = 3d2 + OA2 + OB2 + AB2

6d2
, (5)

where O, A, and B are the three sphere centers used to
add the new sphere P and the term 3d2 corresponds to the
three necessary sphere contacts PO, PA, and PB imposed to
building tetrahedra by the algorithm. The maximum value of
κBT is 2 and is obtained for a centered equilateral triangle with
side d

√
3 of three spheres, with the additional sphere P at its

barycenter, while the κBT minimum value, 1, corresponds to a
regular tetrahedron.

The definition of the parameter κBT is immediately extended
to Delaunay tetrahedra by the relation

κD =
∑

i

∑
j>i

d2
ij

6d2
, (6)

where i and j are the vertices of the tetrahedron and dij is the
vertex length. The smallest distance possible between sphere
centers is dij = d = 2, hence the smallest possible value is
obtained for a regular tetrahedron and is κD = 1.

The last distortion parameter to be studied hereafter is the
longest edge length Lmax of the considered tetrahedron. The
smallest possible value of Lmax is d, which is found in the case
of a regular tetrahedron. The behavior of Lmax has already been
studied, along with others, notably by Anikeenko et al. [17] on
aggregates built using the Jodrey-Tory (JT) algorithm [3] and
the Lubachevsky-Stillinger (LS) algorithm [2,18]. Anikeenko
et al. [17] found that Lmax, in spite of its simplicity, shows
great consistency when compared with two other parameters,
namely, the edge differences and the procrustean distance.

B. Distributions of distortion parameters

Globally, the distribution of distortion parameters suggests
that two limiting aggregates exist, the densest one, produced
by (RMIN)-MAX-1 algorithms (here for γ = 0.586) and the
RRPA. The first limiting aggregate will be called a fully random
(FR) component and the second one a regular polytetrahedral
(RP) component. The terms FR and RP components refer to
structural traits of the aggregates studied here. As a matter
of fact, RRPAs are fully RP, whereas RIPAs may share
features of these two basic components in a variable proportion,
depending on their packing fraction and building algorithm.
Figure 4 shows local structures of the RIPA with the smallest
proportion of RP component [Fig. 4(a)] and a RRPA [Fig. 4(b)].
The RRPA presents larger holes in the structure, however the
polytetrahedral nature of the latter is quite difficult to visualize.
On the other hand, it is clear that the RIPA with high packing
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FIG. 5. Normalized distributions of (a) κD and (b) Lmax for various packing fractions. Aggregates were generated with the MAX-1 algorithm,
with the exception of the RRPA. Error bars are smaller than the point size.

fraction presents a much more homogeneous structure than the
RRPA.

Figure 5(a) presents various distributions of κD obtained
for aggregates built using the MAX-1 algorithm (RIPA) and
one RRPA and Fig. 5(b) represents the distribution of Lmax for
the same aggregates. Concerning MAX-1, these distributions
present very similar behaviors: Their maximum decreases
with packing fraction while their full width at half maxi-
mum (FWHM) increases when packing fraction decreases. A
bimodal component appears for the lowest-packing-fraction
aggregates on both distributions, respectively centered around
κD ≈ 2 and Lmax ≈ 3.5. These two values may be related
in this way: Assuming that tetrahedra with Lmax ≈ 3.5 have
their five other edge lengths regularly distributed in the range
[2,3.5] leads to a κD value of approximately 1.96, i.e., close
to 2, suggesting that these two modes are indeed associated.
The δ peaks appear for the lowest packing fraction, which
is consistent with the existence of well defined distances
observed on pair distribution functions for the same aggregates,
noting the existence of regular polytetrahedra and recurrent
configurations of spheres in the structure (see [9]). The RRPA,
on the other hand, appears as a limiting case. Indeed, the first
peak observed forκD andLmax distributions in the case of MAX
aggregates completely disappears and is replaced by a series of
δ peaks (some out of scale) and a slow evolution with respect
to the second mode of the distributions of MAX aggregates.

Moreover, the distributions of κD present a discontinuity
at κD ≈ 1.33, and the distributions of Lmax have one at
Lmax = 2.827, which is likely associated with the former. The
distributions of the lowest-packing-fraction aggregates have
a change of slope for Lmax = 4. Additional work is needed
to analyze precisely the configurations corresponding to these
discontinuities.

C. Average values of distortion parameters

Although average distortion parameters are basic structural
parameters, they do not determine the packing fraction of the
aggregate because they only involve the short-range order of
spheres (through the tetrahedral description) but do not take
into account longer-range order. It is therefore worth studying
the variation of packing fraction with distortion parameters

for all aggregates. Overall, on average, the higher the packing
fraction, the less distorted the tetrahedra, which can appear as
slightly counterintuitive as the lowest-packing-fraction aggre-
gates have a high RP component in their structure and as RP
means a regular tetrahedral basis.

Figure 6(a) presents the dependence of κ̄D on packing
fraction, which decreases when γ increases and turns out to
be linear for each family of algorithms. More specifically, the
various algorithms are roughly distinguished as, for MAX-i
aggregates, the average distortion increases with i for a given
packing fraction. The RMIN-MAX-1 aggregate stands on its
own, with a slightly different slope. The same is observed for
RAN-i aggregates, which span a larger interval of κ̄D for a
given packing fraction (approximately 3 times as wide as that of
MAX aggregates) and a certain overlap is observed as MAX-1
to MAX-4 are between RAN-4 and RAN-6 for γ < 0.5, which
is the maximum packing fraction that RAN aggregates can
reach.

The behavior of L̄max = f (γ ) is globally the same
[Fig. 6(b)] as it also decreases when packing fraction increases.
However, its behavior deviates more from linearity: In the case
of MAX-1 and RMIN-MAX-1 aggregates a change of slope is
observed between 0.47 and 0.5 and they behave very differently
from the rest of the aggregates, with a higher value of L̄max than
any other aggregate for a given packing fraction. Furthermore,
there is no overlap between RAN and MAX aggregates. The
RAN aggregates appear more dispersed than MAX aggregates
and, for the latter, they more or less converge on the same curve
(that of MAX-9) with the noticeable exception of MAX-1 ag-
gregates. Hence, surprisingly, the average distortions measured
by both indicators do not agree as, for example, in the case of
κ̄D , RMIN-MAX-1 aggregates appear as the least distorted and
as the most distorted according to L̄max.

D. Proportion of regular and quasiregular Delaunay tetrahedra

Using either distortion parameter, it is possible to evaluate
the volume fraction of regular Delaunay tetrahedra (�V , with
κD = 1 or Lmax = 2), which globally decreases when the
packing fraction increases, as the RP component of aggregates
decreases also. The RRPA algorithms in particular give the
highest �V , ranging from 0.101 for γ = 0.452 to 0.073 for

012101-6



STRUCTURE OF STICKY-HARD-SPHERE RANDOM … PHYSICAL REVIEW E 98, 012101 (2018)

FIG. 6. Dependence of (a) κ̄D and (b) L̄max with packing fraction. Error bars are smaller than the point size.

γ = 0.415. These values remain rather low and prompt the
following question: What is the geometrical upper bound of the
volume fraction of regular tetrahedra in random aggregates?

The results for random packings of RIPA type are presented
in Fig. 7(a), which represents the variation of �V with packing
fraction. The highest proportion is obtained for RAN-6 aggre-
gates (�V = 0.141 and γ = 0.422). RAN-1 turns out to be
the family of aggregates with the smallest fraction of perfect
tetrahedra for γ ∈ [0.45,0.48]; outside of this interval, it is
RMIN-MAX-1. The proportion of perfect tetrahedra goes to 0
at the highest packing fractions.

Anikeenko and Medvedev [7] have studied the volume
fraction of quasiregular Delaunay tetrahedra (PQRT), i.e., with
Lmax < 2.3, within aggregates generated with JT and LS algo-
rithms [see Fig. 7(b) of the present article]. They have found
that this volume proportion increases with packing fraction in
their studied interval of packing fraction, i.e., roughly between
0.53 and 0.71. Figure 7(b) superimposes their results with
the ones found in the present study. Interestingly, the curves
for MAX-4 and MAX-3 match over a rather narrow packing
fraction interval, around γ = 0.55, and all MAX-i and RMIN-
MAX aggregates show a similar increase of the volume fraction
of tetrahedra with Lmax < 2.3 for γ ∈ [0.56,0.59], however
with less satisfying quantitative agreement. The highest value
of the volume fraction of quasiregular tetrahedra found here is
0.127 and is obtained for RMIN-RRPA aggregates.

This comparison shows that regular and quasiregular tetra-
hedra are two distinct populations: �V decreases when the
packing fraction increases and goes to 0 beyond a threshold
that depends on the algorithm but is roughly γ = 0.57, whereas
PQRT goes to a minimum for a given packing fraction that
depends on the algorithm (between γ = 0.55 and γ = 0.57)
and then increases with packing fraction beyond this value
of γ .

V. EFFECT OF SPHERE COORDINATION

The CCN of each sphere is determined when the aggregate
is built: When a sphere is added in contact with another one,
both their CCNs are increased by 1. Hence, by the end of the
building process, each sphere is associated with its CCN.

A. Contact coordination number

1. Partial distributions of contact coordination numbers

Let ηij be the number of contacts between spheres with
CCNs i and j , respectively. The (normalized) distributions of
ηij can be easily determined from the sphere positions for all
values of i and j . Figure 8 introduces distributions of ηij for
three aggregates built by RMIN-MAX-1 algorithms, from the
highest to the lowest packing fraction [Figs. 8(a)–8(c)] and a
RRPA [with the highest packing fraction among RRPAs; see
Fig. 8(d)].

These distributions show a progressive shift of the maxima
from high to low packing fraction [Figs. 8(a)–8(c)]. At high
packing fraction, spheres with low CCN tend to be surrounded
by spheres with higher CCN, thus reducing local fluctuations
of the CCN. Then, as the packing fraction decreases, all ηij

curves more or less collapse, meaning that in this regime,
all spheres, whatever their contact coordination number ηi ,
have the same ηij distribution, centered on the average contact
coordination number, hence a very similar environment in
terms of contact neighbors. Finally, for even lower packing
fraction, an inversion is observed and high-CCN spheres
are preferentially surrounded by high-CCN spheres, which
corresponds to a contact segregation effect. At the same time,
the FWHMs of the distributions widen as the packing fraction
decreases and they become less symmetrical. For the lowest
packing fraction [Fig. 8(c)] ηij distributions are very highly
spread, with still a higher proportion of high-CCN spheres in
the vicinity of other high-CCN spheres.

The RRPA presents rather similar ηij distributions
[Fig. 8(d)] as low-packing-fraction RIPAs, going through a
minimum for ηi5. However, the order of the various ηij

distributions appears inverted in the case of the RRPA as,
on the high-j end, the spheres with the highest proportion of
contact with high-CCN spheres are spheres with lower CCN
(i), i.e., η3,11 > η4,11 > · · · > η12,11, whereas for RIPA with
low packing fraction, the opposite situation is observed, i.e.,
η12,11 > η11,11 > · · · > η3,11 [Fig. 8(c)].

2. Evolution of 〈ηi j〉 around spheres with i

The average value of ηij around spheres with CCN
i, 〈ηij 〉, can easily be determined from the distributions
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FIG. 7. (a) Dependence of the volume fraction �V of perfect tetrahedra (Lmax = 2) with packing fraction. (b) Dependence of the volume
fraction �V of tetrahedra with Lmax < 2.3 for the aggregates of the present study and results obtained by Anikeenko and Medvedev in [7].

presented above. Figure 9 presents the evolution of 〈ηij 〉
for all values of i as a function of packing fraction for
MAX-1 and RMIN-MAX-1 algorithms. The inversion sug-
gested by the shift of the maximum of distributions in the
preceding section appears clearly for RMIN-MAX-1 aggre-
gates [Fig. 9(b)] as they form a crossover for γ ≈ 0.52
which separates a low- and a high-packing-fraction regime.

In the low-packing-fraction regime, high-coordination spheres
tend to be surrounded by spheres with higher CCN than the
spheres surrounding low-CCN sphere, i.e., 〈η12,j 〉 > 〈η11,j 〉 >

· · · > 〈η4,j 〉, with the exception of the limit case 〈η3,j 〉,
corresponding to the segregation effect seen when discussing
ηij distributions. In the high-packing-fraction regime, this
situation is inverted: Spheres with low CCN are surrounded,

FIG. 8. Normalized distributions of ηij (lines are mere guides for the eye) for aggregates produced by the RMIN-MAX-1 algorithm with
(a) γ = 0.593, (b) γ = 0.538, and (c) γ = 0.378 and for (d) the RRPA with γ = 0.456.
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FIG. 9. The 〈ηij 〉 for various values of i in the case of the (a) MAX-1 and (b) RMIN-MAX-1 algorithms.

on average, by spheres with higher CCN, thus reducing density
fluctuations.

In the case of aggregates generated by the MAX-1
algorithm, this crossover is not captured but might take
place at higher values of packing fraction (unaccessible by
this algorithm) as all curves begin to collapse for γ >

0.55. In this case, only the low-packing-fraction regime is
observed.

3. Radial dependence of the average contact coordination number

The radial dependence of the average contact coordination
number 〈CCN〉 of spheres within [r,r + dr] from an i coor-
dinated sphere has been determined for all aggregates and all
values of i. Figure 10 introduces two examples obtained for the
RMIN-MAX-1 aggregates with the highest and lowest packing
fractions [Figs. 10(a) and 10(b)].

At high packing fraction [see Fig. 10(a)], the average value
of the CCN of spheres at a distance r < 3.5 from a low
coordinated sphere is higher than that of spheres surrounding
a sphere with higher CCN. Then, as the packing fraction
decreases, the relative positions of the various curves for
r < 3.5 are progressively inverted: They are superimposed for

γ ≈ 0.54, which incidentally matches the packing fraction of
the crossover of the various 〈ηij 〉 curves in Fig. 9(b) for the
same aggregates. At even lower packing fraction, the inversion
is complete as it is exemplified in Fig. 10(b): Low coordinated
spheres are on average surrounded by quasi-first-neighbor
spheres with low CCN and vice versa. This regime corresponds
to a segregation effect in the range of quasifirst neighbors
instead of contact neighbors. At even larger values of r (r > 4),
this segregation effect gets inverted.

All curves end up superimposed on one another beyond
some value r = re, however re increases when the packing
fraction decreases (from re ≈ 4 for γ = 0.593 up to re ≈ 6.5
for γ = 0.378), suggesting that structural inhomogeneities
extend over larger and larger scales as γ decreases. Discon-
tinuities are observed at r = d

√
3 and r = 2d, which match

discontinuities of the various pair distribution functions (PDFs)
of the same aggregates (cf. Sec. V C 1 b below and [9]). The
amplitude of these discontinuities increases with the CCN of
the central sphere. At low packing fraction [Fig. 9(b)], strong
local increases of 〈CCN〉 are noticeable for values of r which
match δ peaks on the PDF, hence corresponding to distances
characteristic of the presence of regular polytetrahedra in the
aggregate (cf. Sec. V C 1 b below).

FIG. 10. Radial value of the average CCN around i coordinated spheres in RMIN-MAX-1 aggregates with (a) γ = 0.593 and (b) γ = 0.378.
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FIG. 11. (a) Bond angle distributions for high- and low-density aggregates (values for α = π/3 fall out of the range of the figure).
(b) Dependence of the 1.9106-rad δ peak in the bond angle distribution with the irregularity index of building tetrahedra κ̄BT.

B. Bond angle distributions

Two spheres i and j form a bond when they are contact
neighbors. The bond angles α around a sphere i are defined
as the angles formed between all possible vectors �Rij between
contacting neighbors. Hence, for a sphere i with n contact
neighbors there are n(n − 1)/2 bond angles.

1. Global bond angle distributions

Bond angle distributions α have been calculated. The small-
est possible bond angle is between three contacting spheres,
i.e., α = π/3, and the largest is of course π .

Figure 11(a) presents bond angle distributions for the most
and least dense aggregates obtained by the MAX-1 algorithm.
It shows that the distribution of the densest aggregate is
mostly smooth, marked by two discontinuities. The first one,
the minimum value, is α = π/3, which corresponds to the
configuration of three spheres in contact with each other. The
value here is so high that it is outside the scale of the figure.
The second discontinuity occurs for α = 2.093 ± 0.002, close
to 2π/3, which corresponds to the situation where four spheres
form two coplanar equilateral triangles sharing a common
side. In [19] Karayiannis et al. obtained a very similar bond
distribution in their structures of chains of joined monodisperse
hard spheres in the maximally random jammed state. The main
difference is the broader shape of the peaks in the distributions
of Ref. [19], which we interpret as a finite-size broadening
since the maximum number of spheres considered in [19] is
54 000 instead of the 106 used here.

For the aggregate with the smallest density, many singu-
larities appear, in the same way as δ peaks appear on its
pair distribution function. On the PDF, these δ peaks are
characteristic of the presence of regular polytetrahedra in the
disordered structure (see [9]). The addition of another sphere
on top of three contacting ones does not introduce a new bond
angle. The addition of a fifth sphere then forms a trigonal
bipyramid, with α ≈ 1.9106 rad. This angle should correlate
with the δ peak at r = d

√
8/3 observed on the pair distribution

function of low-density aggregates (see [9]). It shows the same
smooth dependence with the irregularity index of building
tetrahedra [see Fig. 11(b)] as P (r = d

√
8/3).

2. Partial bond angle distributions

Bond angle distributions for specific contact coordination
numbers are shown in Fig. 12. Their global behavior is similar
to global bond angle distributions, but peculiarities can be seen,
in the function of packing fraction and/or contact coordination
number.

It turns out that for aggregates with high packing fraction,
the angular environment depends strongly on the CCN. Low-
CCN spheres have a stronger asymmetry between α = π/3
and α = 2π/3 than spheres with high CCN. For high-packing-
fraction aggregates, the distribution of low-CCN spheres shows
a depletion of lower bond angles and an excess of high
angles and the distribution becomes more even when the
CCN increases. When the packing fraction decreases, low-
and high-CCN spheres tend to have more similar angular
environments.

The appearance of regular polytetrahedra, associated with δ

peaks, like in the case of the global bond angle distribution, is
logically correlated with a decrease of the continuum compo-
nent of the distribution. This continuum disappears completely
for the RRPA [Fig. 12(d)].

C. Partial pair distribution functions

The structure of random sphere packings is usually charac-
terized by the probability per unit volume of finding a sphere
center at a distance r from another sphere center P (r) × N/V ,
where N is the number of spheres in the aggregate of volume
V and the PDF P (r) is normalized to 1 when r → ∞.

Distinguishing spheres by their contact coordination num-
ber allows a much more detailed structural description by
partial pair distribution functions (PPDFs), which are defined
as the probability Pij (r) of finding a sphere with contact
coordination number j at a distance r from another sphere
with contact coordination number i, normalized to 1 at large r .

1. Principle for partial PDFs Pi i (r), Pi j (r), and Pi (r)

In practice, coordination numbers range from 3 to 12, the
maximum CCN in three-dimensional space. For a spherical

012101-10



STRUCTURE OF STICKY-HARD-SPHERE RANDOM … PHYSICAL REVIEW E 98, 012101 (2018)

FIG. 12. Partial bond angle distributions for various MAX-1 aggregates with (a) γ = 0.586, (b) γ = 0.500, and (c) γ = 0.370, and (d) one
RRPA with γ = 0.456. Values for α = π/3 fall out of the range of the figure.

aggregate with radius R, Pij (r) is written

Pij (r) = V 2

NiNj

	Nij

(2 − δij )S(r)	r
, (7)

where Ni and Nj are the numbers of spheres with CCNs
i and j , respectively, in the volume V = 4πR3/3 of the
aggregate; 	Nij is the number of sphere pairs of CCNs i and
j , respectively, lying in the interval [r,r + 	r]; δij is the usual
Kronecker symbol; and S(r) is the spherical shape factor of
the aggregate [20]

S(r) = π2

6
r2(2R − r)2(4R + r). (8)

The Pii(r) PPDFs describe the arrangement of i coordinated
spheres, while the Pij (r) PPDFs with i 
= j describe the mutual
arrangement or chemical order between i and j coordinated
spheres. In the case of sticky hard spheres with diameter d, the
peak of contacting neighbors in Pij (r) is represented by [21]

Pij (d) = η̄ij

V

4πNjd2
δ(r − d), (9)

i.e., numerically, η̄ij = 3Nj

R2 d
22σP (d), where η̄ij is the average

number of j coordinated spheres contacting an i coordinated
sphere and σ = 0.01 is the length step used in P (r) calcula-

tions. Numerical values of Pij (d) fall out of range of the Pij (r)
figures presented below.

One can then define the probability Pi(r) to find a sphere
with any coordination number at a distance r from a sphere
with coordination number i. It is written

Pi(r) =
12∑

j=3

CjPij (r), (10)

where Cj = Nj/N is the concentration of j coordinated
spheres (N = ∑12

j=3 Nj ). These Pi(r) characterize the global
arrangement of spheres around a sphere with coordination
number i. Finally, the global PDF is written

P (r) =
12∑
i=3

CiPi(r). (11)

a. Random regular polytetrahedral aggregates. Figure 13
presents Pii(r) curves (with i = 4, 6, and 8) of a RRPA with
γ = 0.418, as well as its global PDF (see [9] for the calculation
procedure of the latter). Concerning the global PDF, a striking
difference from what was observed for the RIPA (see [9]) is the
disappearance of the topological discontinuities at r = √

3d

and r = 2d. The continuous structure of the PDF observed in
RIPAs almost disappears and is replaced by a set of polyhedral
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FIG. 13. Global and partial pair distribution functions [P (r) and
Pii(r) for i = 4, 6, and 8] for a random regular polytetrahedral
aggregate.

δ peaks ([11,21]), which are due to a large (virtually infinite)
regular polytetrahedron. The positions of these peaks, which
are due to precise configurations of spheres with well defined
distances, are identical to those studied by Medvedev and
Pilyugina [11]. The continuous structure grows almost linearly
as a function of r and goes to 1 for r ≈ 3.5d = 7.

The partial PDFs Pii(r) show a systematic tendency, as their
continuous regime in the region of the quasifirst neighbors
(QFNs) starts from 0 for spheres with coordination number
i equal or superior to 8 and increases like the global P (r).
The lower coordination numbers (i < 8) lead to Pii(r) starting
from higher values in the QFN area. This can be qualitatively
understood: The more contacting first neighbors a sphere has,
the fewer quasifirst neighbors it can accept.

b. Random irregular polytetrahedral aggregates. The
global PDF of RIPAs was studied in [9], with the exception of
RMIN aggregates. However, the latter introduce no qualitative
differences to these results.

The PPDFs Pii(r) together with the corresponding PDF
are presented in Figs. 14(a) and 14(b) for MAX-1 aggregates
with the two most extreme packing fractions γ = 0.586 and
γ = 0.370. First and foremost, for a given packing fraction,
the number of quasifirst neighbors (corresponding to values

of r close to d) decreases when the coordination number
(i) increases, like in the case of RRPAs and for the same
reasons: The more contacting neighbors a sphere has, the fewer
quasifirst neighbors it can accept.

On the other hand, the comparison between Figs. 14(a) and
14(b) shows that the number of quasifirst neighbors decreases
with packing fraction. At low packing fractions, they form
plateaus whose level increases when the coordination number
decreases, whereas they have a very distinct behavior for high
packing fractions: Low coordination number spheres possess
many quasifirst neighbors, while high coordination number
spheres have a very limited number of QFNs. Both topological
discontinuities (at r = √

3d and r = 2d) increase when the
coordination number increases and when packing fraction
increases.

Finally (see the Appendix for figures), isopacking-fraction
and iso-κ̄D aggregates obtained by different building algo-
rithms show significant differences in their global and partial
PDFs, confirming that parameter γ and κ̄D are insufficient for
a full structural description of random aggregates. Aggregates
sharing similar values of these two parameters (γ and κ̄D) still
present significant differences in structural properties. Hence,
even when used together, γ and κ̄D are not satisfying predictors
of structural properties of disordered systems. Besides, it has
been impossible to find aggregates with similar L̄max and γ

to compare them in a similar fashion, leaving the question
open for a possible combination of these two parameters as a
good predictor of the global structure of random aggregates.
Conversely, it turns out that PPDFs allow a more sensitive
distinction between aggregates built by different algorithms
than the corresponding global PDF and are thus interesting
structural descriptors.

A sampling of Pij (r) (with i 
= j ) curves is shown in the
Appendix. They show that QFNs are favored by higher packing
fractions and lower coordination numbers i and j . The implicit
chemical ordering in these curves will be studied in more detail
hereafter.

The Pi(r) (for i = 4, 6, and 9) obtained for aggregates
built by the MAX-1 algorithm with packing fractions 0.370
and 0.586 are displayed in Fig. 15. These PPDFs appear
to depend strongly on i and the packing fraction. On the
one hand, for each packing fraction (a) quasifirst neighbors

FIG. 14. Samples P (r) and Pii(r) obtained for aggregates generated by the algorithms (a) MAX-1 (γ = 0.586) and (b) MAX-1 (γ = 0.370).
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FIG. 15. The Pi(r) for two packing fractions generated by the algorithm MAX-1.

increase when the coordination number decreases and (b)
topological peaks at r = d

√
3 and 2d are more intense for high

coordination numbers. On the other hand, the main differences
between low- and high-packing-fraction aggregates are that
(i) polytetrahedral δ peaks are noticeable on aggregates with
low packing fractions, (ii) the transition from the high to the
low packing fraction is mostly due to a decrease of quasifirst
neighbors around low coordination spheres, and (iii) in the
case of the densest aggregate, Pi oscillations are increasingly
shifted toward smaller-r values as the coordination number i

increases, while such a shift is not observed for the lowest-
packing-fraction aggregate.

D. Radial evolution of local packing fraction
from pair distribution functions

1. Principle

Knowing pair distribution functions, it becomes possible
to study the variation of the local packing fraction around an
average sphere as a function of r . Using the relation (3), the
packing fraction of a sphereS with arbitrary diameter RSC > d

situated within the aggregate is written

γ (RSC) = 4πr3
s /3 + ρ

∫ RSC+rs

0 P (r)4πr2Vs(r,RSC)dr

4πR3
SC/3

,

(12)

with ρ = N/V the number of spheres per unit volume in the
aggregate. The 4πr3

s /3 term corresponds to the sphere in r = 0,
Vs(r) is defined by Eq. (3), and P (r) can be a total or partial
pair distribution function. In addition, γ (r � rs) = 1.

It is also possible to remove the contribution of the central
sphere and its contact first neighbors to the packing fraction,
which is written

γCN(RSC) = 4πr3
s /3 + iVs(r = d,RSC)

4πR3
SC/3

, (13)

where i is the number of contacting neighbors of the central
sphere. We then have

γWCN(RSC) = γ (RSC) − γCN(RSC), (14)

where γWCN is the contribution to the packing fraction of the
quasifirst and further neighbors around an average sphere.

2. Local packing fraction around an average sphere

Using the global PDF, the formalism just introduced gives
access to the variation of the local packing fraction as a
function of r around an average sphere. Figure 16(a) represents
γ (RSC) and Fig. 16(b) represents γ (RSC)/γ , which goes to 1 as
RSC goes to ∞. All aggregates behave differently depending
on their packing fraction. For the densest ones, the packing
fraction falls below the average value, before converging more
rapidly at large r than the least dense ones. On the other
hand, in the case of the least dense ones, the packing fraction
remains above the average value and converges more slowly.
Oscillations of local packing fractions are damped at about
r = 5d for the lowest packing fraction and around r = 3d for
the highest packing fraction.

3. Local packing fraction around i coordinated spheres

Using Pi(r), it is possible to determine the local packing
fraction as a function of r for an average sphere with coor-
dination number i, γi . Figures 16(c) and 16(d) present the
sets of corresponding curves for the two MAX-1 aggregates
with the lowest and highest packing fractions. The short-range
local density grows with the coordination number and the
packing fraction of the aggregate. Significant oscillations are
observed for the aggregate with the highest packing fraction.
Their amplitude is damped for the aggregate with the lowest
packing fraction. Figures 16(e) and 16(f) show the evolution
of the packing fraction without the contribution of contact
neighbors (γWCN) and the central sphere, hence only that of the
quasifirst and further neighbors. As it could be expected, the
lower number of QFNs around spheres with high coordination
numbers leads to a significantly lower packing fraction due to
QFNs than in the case of spheres with low contact coordination
number.

In the case of the aggregate with the highest packing fraction
[Fig. 16(e)], the various curves converge for RSC ≈ 3.5d

and the highest difference is observed between i = 10 and
i = 3 for RSC ≈ 2.53, γWCN,3 − γWCN,10 ≈ 0.28 = 0.48γag.
Between i = 10 and i = 6, the maximum is found at RSC ≈
2.57, with γWCN,6 − γWCN,10 ≈ 0.16 = 0.27γag.

There is a much lower difference in contribution of the QFN
between spheres with different contact coordination number
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FIG. 16. (a) Local packing fraction and (b) local packing fraction divided by the average packing fraction for various MAX-1 aggregates.
The radial evolution of the packing fraction around i coordinated spheres is shown for MAX-1 aggregates with (c) γ = 0.586 and (d) γ = 0.370.
Also shown is the radial evolution of the packing fraction around i coordinated spheres without contact neighbors [the relation (14)] for MAX-1
aggregates with (e) γ = 0.586 [the bottom lines represent the difference between the highest and lowest bound, i.e., γWCN,3(RSC) − γWCN,10(RSC),
and intermediate, i.e., γWCN,6(RSC) − γWCN,10(RSC)] and (f) γ = 0.370.

in the case of the aggregate with the lowest packing fraction
(in terms of absolute as well as relative value). However,
the maximum of the difference between γWCN,3 and γWCN,10

is obtained for approximately the same value RSC ≈ 2.55
and γWCN,3 − γWCN,10 ≈ 0.06 = 0.16γag. Between i = 10 and
i = 6, the maximum is found at RSC ≈ 2.51, with γWCN,6 −
γWCN,10 ≈ 0.06 = 0.16γag, which is remarkably similar to
the former. In this case, Fig. 16(e) shows that γWCN(RSC)
for coordination numbers below 7 behave very similarly,

suggesting that these types of spheres have more or less the
same environment in terms of number of QFNs, irrespective
of their contact coordination number.

E. Global and partial structure factors

The previous structural description achieved by the PPDF
analysis of random packings leads naturally to the study of
the corresponding global and partial structure factors which
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FIG. 17. (a) Structure factor of two RRPAs and experimental results obtained on amorphous Ge (a-Ge) (data obtained in [23]) at small Q

and (b) large-Q behavior of the structure factor of the RRPAs and one (high-packing-fraction) RA.

can be compared with the results of diffraction experiments on
disordered materials.

1. Global and Ashcroft-Langreth partial structure factors

Let us first introduce the global structure factor

S(Q) = 1 + N

V

∫ ∞

0
[P (r) − 1]

sin(Qr)

Qr
4πr2dr (15)

and the partial Ashcroft-Langreth (AL) structure factors, de-
fined by

Sij (Q) = δij +
√

NiNj

V

∫ ∞

0
[Pij (r) − 1]

sin(Qr)

Qr
4πr2dr,

(16)
where δij is the Kronecker symbol. The diagonal terms Sii

represent the structure factors of the partial aggregates formed
by spheres with contact coordination number i and will be
studied first. The nondiagonal terms Sij with i 
= j describe the
mutual or chemical arrangement between i and j coordinated
spheres and will be studied later by the more suited Bhatia-
Thornton formalism.

The S(Q) and Sij (Q) values for Q � 1/R cannot be
calculated from the relations (15) and (16) owing to the finite
radius R of the aggregates [9]. However, S(Q = 0) values are
determined by the statistical density fluctuations according to
the relation [22]

Sij (0) = NiNj − Ni Nj√
Ni Nj

, (17)

where overbars represent averages.
Fluctuations were directly derived from the positions of the

sphere centers. To that purpose, a large cube with edge 50d

centered on the aggregates origin was subdivided into 1000
subcubes with edge 5d, each of them containing Ni and Nj

sphere centers with respective coordination numbers i and
j . Average values of Ni , Nj , and NiNj were taken over the
1000 subcubes to get the statistical fluctuations involved in the
relation (17).

a. Random regular polytetrahedral packing–global struc-
ture factor. Figure 17 introduces the global structure factor

of two RRPAs: small Q [Fig. 17(a)] and large Q or the
asymptotic regime [Fig. 17(b)]. It turns out that the structure
factors of the RRPA exhibit a prepeak, whose position depends
on the algorithm or packing fraction used. The position and
intensity of this prepeak corresponds to the folding of the
polytetrahedra which controls the space correlation of density
fluctuations. It accounts for interferences between high-density
and low-density zones of the single polytetrahedron. At highQ,
S(Q) appears aperiodic due to the infinite series of δ(rp) peaks
in P (r) corresponding to the distances between vertices in the
infinite RRPA and is only weakly affected by small changes in
packing fraction (depending on the algorithm used).

Comparison with the structure of tetravalent elements.
The polytetrahedral structure factor can be usefully compared
with the experimentally measured structure factors of pure
tetravalent elements (C [24], Ge [23], and Si [25]) or with the
tetrahedral structure of oxygen atoms in glassy water [26,27].
As a matter of fact, the structure of these elements is based
on body-centered regular tetrahedra (BCT) connected by their
vertices [28], while RRPAs are made from simple regular
tetrahedra connected by their faces. As a consequence, a pseu-
dosuperstructure peak for such hard-sphere-based centered
tetrahedra should correspond to Qs/Q1 = d1/ds = √

6/4 =
0.612, where d1 is the distance between contacting atoms
and ds is the edge length of the regular centered tetrahedron.
Experimentally, Etherington found Qs/Q1 = 0.572 [23] for
the structure factor of amorphous Ge, Laaziri et al. found 0.583
for the same ratio in amorphous silicon [25], and Gaskell et al.
found 0.540 for amorphous carbon [24]. The discrepancy from
0.612 for these three values could be due to the error introduced
by the hard-sphere approximation of the tetrahedral bond angle
between first neighbors of softer potentials, which does not
allow reproducing perfectly the behavior of covalent materials.

However, this superstructure peak is lacking from the
structure factor of RRPAs, but another small-angle peak at
significantly lower value is found around Qs/Q1 ≈ 0.25,
varying with the packing fraction. The latter can be attributed to
the pseudoperiodic correlation of density fluctuations present
in the RRPA model. These correlations happen over larger
distances than those of the BCT, hence the smaller-Q val-
ues of the corresponding prepeak. It corresponds roughly
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FIG. 18. Ashcroft-Langreth partial structure factor for (a) highest-packing-fraction RIPAs and (b) RRPAs.

to the end of significant oscillations of pair distribution
functions.

The reason why this longer correlation-distance prepeak
does not appear for tetravalent elements probably has to do with
the fact that tetrahedra forming their structures are connected
by vertices, allowing for many more degrees of freedom and
preventing longer distances correlations than in the case of
RRPAs where tetrahedra are connected by their faces, which
is geometrically more constraining. On the other hand, the
second peak of the structure factor of the RRPA splits into two
subpeaks in a manner completely analogous to what is found
in amorphous tetravalent elements.

Finally, for RRPAs, characteristic distances are strictly
defined, giving rise to δ peaks on the PDF resulting in
aperiodic large-Q behavior, also absent from the structure
factor of tetravalent elements. In contrast, the lack of such
well defined distances, because of higher degrees of freedom
in the orientations of tetrahedra relative to one another in the
case of tetravalent element, results in a single δ peak on their
PDF, which accounts for their periodic behavior in the large-Q
regime [21].

b. Random irregular polytetrahedral aggregates. The AL
partial structure factors of random irregular polytetrahedral
aggregates are presented in Figs. 18(a)–18(c), along with
the partial structure factors of the RRPA [Fig. 18(d)]. These
structure factors all have in common that the global amplitude
of their oscillations increases from i = 3 up to i = 6 and then
decreases as i increases beyond 6. Moreover, the position of
the first peak of Sii goes to small Q when the packing fraction
increases (whatever i and γ ). At large Q, there is no phase
shift, whatever i and γ , and Sii oscillates like sin(Qd)/Qd

(not shown here).
Some peculiarities are also observed. A shoulder appears

on the left of the first peak of S44 (around Q = 3.8). For
S88 and S44 an intense prepeak around Q = 0.8 is noted,
whose intensity increases with the packing fraction for S44 and
decreases when the packing fraction increases for S88. This
prepeak is due to correlated density fluctuations between low-
or high-density regions separated by an average distance of
2π/0.8rs ≈ 8rs lying beyond the main Pii oscillations; they
are observed whatever the packing fraction, even if there is no
noticeable prepeak on the global structure factor. In the case of

S66, S66(0) decreases when γ increases and barely any prepeak
may be observed at all. The first peak remains symmetrical; its
position depends little on the packing fraction. The first peak
of S88 becomes strongly asymmetrical for the highest packing
fraction.

Finally, a splitting of the second peak is observed on the
AL structure factors with high coordination numbers and low
packing fraction. This splitting was noticed above for the
RRPA and it is consistent with the existence of a RP structure
embedded in a continuum random structure (respectively RP
and FR structural components), as was already concluded in
[9] for these aggregates.

2. Bhatia-Thornton partial structure factor

The partial structure factors introduced by Bhatia and
Thornton [29] are associated with density and concentration
correlations in binary alloys. They have been extended to alloys
consisting of more than two components [30] and can then be
used by considering random aggregates as alloys of spheres
with various coordination numbers.

a. Formalism. The partial structure factor corresponding to
the density-density correlation function SNN is written

SNN (Q) = 1 + ρ

∫ ∞

0
[P (r) − 1]

sin(Qr)

Qr
4πr2dr, (18)

to the concentration-concentration correlation function SCiCj

is written

SCiCj
(Q) = 1 + ρ

∫ ∞

0
[−P (r) + Pi(r) + Pj (r) − Pij (r)]

× sin(Qr)

Qr
4πr2dr, (19)

and to the density concentration SNCi
is written [10,21]

SNCi
(Q) = ρ

∫ ∞

0
[Pi(r) − P (r)]

sin(Qr)

Qr
4πr2dr. (20)

For the sake of simplicity, we only consider hereafter sphere
mixtures made of two components, namely, i and j coordinated
spheres. The corresponding relations are provided in the
Appendix.
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FIG. 19. (a) Amplitude of the SCC
4–8 minimum (Q ∈ [1.7–1.9]). (b) Amplitude of the small-Q maxima in Bhatia-Thornton SCC

4–8 structure
factors (Q < 1).

b. Results. Between 15 (for high packing fraction) and 45
sets of Bhatia-Thornton (BT) structure factors corresponding
to different coordination pairs i-j were calculated for 500
aggregates. In the case of high-packing-fraction aggregates
where extreme coordination numbers (i.e., i = 3 and i > 9)
are scarce, BT sets could only be calculated for coordination
numbers lying between 4 and 8, hence the lower number of BT
structure factors calculated for them.

A sample of Bhatia-Thornton partial structure factors
is provided in the Appendix for three MAX-1 aggregates,
with maximum, minimum, and intermediate packing fractions
along with those of one RRPA. Their main characteristics are
the following.

(i) The SNiNj
structure factor is related to the overall

structure of the two coordination numbers i and j considered.
It looks like the average AL structure factor for small coordi-
nation differences (i − j = 1 or 2 at most), while it resembles
more the global structure factor of the aggregate for “large”
differences in coordination numbers (i − j � 4)

(ii) The SNCi
structure factors exhibit significant oscillations

whose intensity increases with the coordination difference
i − j . Furthermore, for low coordination number differences
these oscillations decrease when the coordination numbers
increase. All these oscillations come from the fact that the
average environment of spheres i and j characterized by Pi

and Pj differ from the average global environments P (r)
[see the relation (20)]. This behavior differs completely from
the case of binary substitution alloys (with equal atomic
diameters) for which SNC does not oscillate at all because
Pi(r) ≈ P (r), independently of the chemical order of the two
alloy components (which only affects SCC [21]).

(iii) Most interesting is the study of SCiCj
, which character-

izes the chemical order between i and j coordinated spheres
through its dependence on Pii − Pij [see Eq. (19)]. For small
coordination differences (at most 2) and all packing fractions,
SCiCj

oscillates weakly around 1 and there is no chemical order
effect between i and j coordinated spheres.

For large coordination differences (i − j � 4) a predepth is
observed on SCC around Q ≈ 0.5Q1. This predepth indicates
a segregation effect [31], between spheres with large CCN
differences. It varies nonuniformly with packing fraction [see

Fig. 19(a)] and its maximum amplitude lies in the packing
fraction interval γ ∈ [0.5,0.55]. This segregation effect occurs
over distances larger than contact neighbors, as it was sug-
gested by the radial dependence of 〈CCN〉 seen in Sec. V A 3.
As a matter of fact, the maximum segregation measured by this
predepth occurs in a range of packing fraction where there is
virtually no contact segregation in the case of RMIN-MAX-1
aggregates [by comparing Figs. 9(b) and 9(a)], suggesting that
there can exist contact and longer-range segregation effects
between spheres of various coordination numbers and that
these two types of segregation are not necessarily concomitant.

Furthermore, for these high coordination differences a new
SCC prepeak appears at very-small-Q values, around 0.2Q1,
which seems to vanish in the aggregates with the highest
packing fraction [Fig. 19(b)], with the notable exception of
MAX-4. Accordingly, this SCC prepeak is also observed in
the RRPA. This peak should be associated with the existence
of segregation effects extending to the larger-r range, i.e.,
to the formation of isocoordinated aggregates in an average
matrix. This suggests the existence of regions of low or high
coordination in the aggregate matrix.

VI. DISCUSSION AND CONCLUSION

The so-called random packings of adhesive hard spheres
cover a wide range of packing fractions, from a lower limit of
0.15 at the three-dimensional percolation threshold [32] with
contact coordination number 2 [21] up to a maximum value
of about 0.636 in the random close packing with coordination
number approximately 8.1, as determined experimentally by
Scott [33]. In this paper we focused on the detailed structural
characterization of such packings, using a wide variety of static
aggregate-building algorithms.

The randomness or isotropy of the 104 aggregates (con-
taining 106 spheres each one) was checked first by studying
the angular distribution of pairs of spheres separated by a
given distance. The eigenvalues of the corresponding nematic
order tensor were shown to be always less than 2 × 10−2 and
confirmed that aggregates are fully isotropic.

Accurate methods for the determination of the aggregate
packing fraction were then introduced. It was thus shown that
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FIG. 20. Pair angle distributions with respect to x, y, and z for the (a) most and (b) least dense aggregates produced by the MAX-1 algorithm.
(c) Polar angle distribution relative to the favorable direction in the uniaxial anisotropy case for different values of the nematic order parameter
λ defined as the largest eigenvalue of the tensor Q̄ [Eq. (A1)].

seed effects at the origin of the aggregates do not extend
beyond the fifth-neighbor range, i.e., are limited to the first
8000 spheres, if the seed consists of sphere arrangements that
are rare in the aggregate. This seed effect can be totally removed
by using as the seed a sample with a structure similar to the
built aggregate.

On the other hand, it has been shown that the effect of the
imperfect spherical surface of the aggregates depends on the
building algorithm and packing fraction and is limited to a
thickness of approximately 6rs in the worst case. Finally, the
accuracy of the (average) packing fraction increases with the
sphere number of the aggregate, which must reach 106 in order
to get a 10−3 accuracy.

The detailed structural analysis of random packings could
then be undertaken. As the first step, these structures were
tackled via the Delaunay tessellation of tetrahedra connecting
sphere centers. The distributions of these tetrahedra were
characterized by two distortion parameters Lmax and κD .
Their distributions show a bimodal character that varies
with packing fraction and appear related; they both include
discontinuities whose origin remains unclear. Their average
values decrease with increasing packing fraction. However,
they provide complementary characterization of the aggregates
produced by the various algorithms studied, suggesting that

beyond their similarities, these distributions also present subtle
differences.

Special attention was paid to the populations of regu-
lar tetrahedra (formed by four mutually contacting spheres,
Lmax = 2) and quasiregular Delaunay tetrahedra (Lmax < 2.3)
which were shown to behave quite differently. As a mat-
ter of fact, the volume fraction of regular tetrahedra has
been shown to decrease with increasing packing fraction and
reaches a maximum value of 0.165 for RPPAs (only built
with regular construction tetrahedra). This raises a funda-
mental question: Is there a maximum geometrically defined
(i.e., irrespective of their building mechanism) proportion
of regular tetrahedra in random aggregates? Conversely, the
proportion of quasiregular Delaunay tetrahedra goes to a
minimum around γ = 0.56 and then increases with increasing
packing fraction. Structural characterization methods could
then be introduced by taking advantage of the unequivocal
definition of sphere contacts and hence contact coordination
numbers.

First, partial characterization was carried for short dis-
tances, i.e., contacting neighbors. The distributions of pairs of
spheres with respective CCNs i and j (ηij ) were first studied.
Their FWHM increases when packing fraction decreases and
their average values 〈ηij 〉 show distinct behaviors with respect
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FIG. 21. Samples P (r) and Pii(r) obtained for aggregates generated by the algorithms (a) MAX-1 (γ = 0.483), (b) RAN-1 (γ = 0.482),
(c) MAX-9 (κ̄D = 1.771), (d) RAN-1 (κ̄D = 1.771), (e) RAN-4, and (f) RMIN-MAX-1.

to γ for low and high values of i, respectively: A nonuniform
decrease with γ is obtained only in the case of low-i values. The
evolution of these distributions shows that contact segregation
can exist between spheres of various CCNs, whereas the
evolution of 〈CCN〉 for spheres of various coordination shows
that another segregation may exist, on the basis of CCNs,
over a larger range. Partial distributions of bond angles for
spheres with different CCNs were also studied. It was shown
that high-CCN spheres tend to have a smoother distribution,
whereas low-CCN spheres present a depletion of low angle
bonds and have a higher proportion of high angle bonds. These

differences are particularly distinct in high-packing-fraction
aggregates.

This structural description was then extended to all dis-
tances by introducing the partial pair distribution functions
Pij (r), i.e., the probability of finding a sphere with CCN i at
a distance r from another sphere with CCN j (normalized to
1 for large r) and local packing fractions around i coordinated
spheres. The different shapes and discontinuities of the Pij (r)
curves were given and this detailed analysis allowed a clear-cut
distinction between different random packing structures which
cannot be distinguished by their packing fraction and/or κD
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FIG. 22. Sample of Pij (r) for various packing fractions generated by the algorithm MAX-1: (a) P4,5(r), (b) P4,8(r), (c) P6,8(r), and
(d) P8,9(r).

parameters. The question remains of whether these aggregates
could be characterized by characterizing them through the
combination of packing fraction γ and distortion parameter
Lmax.

Distinguishing (with Refs. [34,35]) contacting from qua-
sicontacting spheres, it was shown that high-CCN spheres
have few quasicontacting neighbors (QCNs) while low-CCN
spheres have a higher number of QCNs (as could be expected)
and that this local effect extends to larger distances. Moreover,
this behavior is amplified when the packing fraction increases.

Finally, the two sets of partial structure factors respec-
tively introduced by Ashcroft-Langreth [Sij (Q)] and Bhatia-
Thornton (SNN , SNC , and SCC) were analyzed. They are differ-
ent Fourier transforms of linear combinations of the Pij (r) and
can be directly compared with the results of diffraction experi-
ments on liquid or disordered materials. In particular, the diag-
onalSii(Q) give the partial structure factors of the partial aggre-
gates made from i coordinated spheres and the variable shapes
of these Sii , especially their prepeak and first and second Q

oscillations, were described. Furthermore, the concentration-
concentration partial structure factor of Bhatia and Thornton
gave the mutual or chemical order between spheres with
different coordinations i and j and put forward heteroattrac-
tions or segregation of spheres within the different aggregates,
confirming that several kind of segregation may indeed exist.

From all these results we could conclude that the random ir-
regular polytetrahedral aggregates studied here are made from
two basic components, namely, a fully random component

(without regular tetrahedra) and a regular polytetrahedral com-
ponent (only built with regular tetrahedra), whose proportion
decreases with increasing packing fraction. This composite
nature of the aggregates produces prepeaks (at very small
Q) in the aggregate structure factors and the main features
differentiating the RP component from the counterpart FR
component are the following: a high proportion of regular
Delaunay tetrahedra (as expected); an increase in δ peaks
noticeable in distributions of Delaunay tetrahedra distortion
indices, angular bond distributions, and global or partial pair
distribution functions; an increase of the second mode in
the distributions of Delaunay tetrahedra distortion parameters
κD and Lmax; a spreading of contact coordination numbers
distributions ηij ; strong variations in the radial dependence
of the average contact coordination number of spheres; a
collapse of the continuum of partial bond angle distributions;
a more similar quasifirst-neighbor part of partial pair distribu-
tion functions of low- and high-contact-coordination-number
spheres; a more similar radial dependence of packing fraction
for spheres of any contact coordination number; a reduction
of topological discontinuities in pair distribution function at
r = 2

√
3 and 4; and a splitting of the structure factor’s second

peak (Q ≈ 7), similar to what is experimentally found in
amorphous tetrahedral materials.

The present results on statically built sticky-hard-sphere
aggregates cover the packing fraction interval 0.370–0.593.
It could be interesting to extend this study first to the low-
packing-fraction range from 0.15 (condensation or percolation
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FIG. 23. Sample Ashcroft-Langreth structure factors for MAX-1 aggregates: (a) S44, (b) S66, and (c) S88.

limit) to 0.370, which involves a contact coordination number
lower than 3 and cannot be reached by the building algorithms
used here, and second to the high-packing-fraction range
0.593–0.64, which needs a reduction of the fluctuations of
the local packing fraction at all length scales and cannot be
reached by our algorithms, which only minimize the fluctua-
tions of the local packing fraction up to the second-neighbor
distances. In particular, it would be of great interest to study
dynamically built aggregates, such as the ones produced by the
Lubachevsky-Stillinger algorithm, the Jodrey-Tory algorithm,
or molecular dynamics. The first problem to be resolved would
then be to define the distance corresponding to contacting
spheres, as, for these aggregates, the first-neighbor peaks are
spread over a finite length interval. Nonetheless, valuable struc-
tural information might be accessible through the techniques
studied in the present work, which might shed light on various
long-standing questions concerning random aggregates as well
as allowing comparisons between statically and dynamically
built random aggregates.

ACKNOWLEDGMENTS

P. Cénédèse is acknowledged for his help in openMP
parallelization of some codes. Anonymous referees are thanked
for their observations and suggestions that helped to improve
the quality of this paper.

APPENDIX

Isotropic disordered aggregates are characterized by an
isotropic distribution of r̂ij bonds, where r̂ij are the unit
vectors joining the (i,j ) sphere centers. This requirement
provides a convenient check for the building method and/or
the minimum aggregate size beyond which the isotropy is
reached. Such a distribution is characterized by a uniform
random distribution of azimuthal angles ϕ and a polar angles θ

distribution following a probability density Pb(θ ) = sin(θ )/2.
It is worth mentioning that a latticelike distribution of spheres
is characterized by a θ distribution presenting distinguishable
peaks; thus the features of the θ distribution appear to be a
convenient tool to control both the aggregates randomness and
isotropy.

In order to go beyond a simple qualitative characterization,
we can quantify the deviation from isotropy by looking if a
favored direction emerges throughout the {r̂ij } distribution.
For this, we follow the usual method of the framework of the
nematic liquid statistics [36], according to which, from the
diagonalization of the rank-2 tensor,

Q̄ = 1

N

∑
ij

1

2
(3r̂ij r̂ij − Ī ), (A1)

where Ī is the identity tensor and a nematic order parameter,
say, S1, is obtained as the largest eigenvalue λmax of Q̄. In
Eq. (A1), the sum running over all the {i,j} pairs can be limited
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FIG. 24. Bhatia-Thornton partial structure factors for (a) 4-5, (b) 7-8, and (c) 4-8 for MAX-1 aggregates and (d) the RRPA. The SCC

oscillates around 1 but has been shifted to 1.5 for clarity.

to the sum over the bonds r̂ij , which can be replaced by a sum
over the unit vectors carried by the �ri , with respect to a fixed
reference �ro, which avoids the surface effects when both i and
j are located at the aggregate surface.

The results for the polar angle distributions relative to the
axes x̂, ŷ, and ẑ for the most and least dense aggregates
obtained by the MAX-1 algorithm are presented, respectively,
in Figs. 20(a) and 20(b). For the aggregates studied in this work,
the deviation from isotropy as measured by the value of λmax

is found to decrease when the packing fraction increases. A
reliable determination of the dependence of λmax with respect
to γ is beyond the scope of this paper, all the more that the range
of λmax values is quite small. The largest eigenvalue of Q̄ is
smaller than 3 × 10−2. Such a value is very small, leading us to
conclude that these building methods lead indeed to isotropic
aggregates. To illustrate quantitatively this point, Fig. 20(c) dis-
plays the result of the θ distribution in terms of λ for the model

Pb(θ ) = sin(θ )

2
[e(−θ2/2σ 2) + e[−(π−θ2)/2σ 2]], (A2)

where the polar axis is a favored direction according to the
variance σ . Clearly, the θ distributions characterized by λ

values lower than a few 10−2 can be considered isotropic.

Figure 21 shows sample P (r) and Pii(r) obtained for RIPA.
Figure 22 shows a sample of Pij (r) for various packing frac-
tions. Figure 23 shows sample AL structure factors. Figure 24
shows BT partial structure factors. General BT relations then
reduce to

SNiNj
(Q) = 1 + ρ ′

∫ (
C ′

i

2
Pii + C ′

j

2
Pjj + 2C ′

iC
′
jPij − 1

)

× sin(Qr)

Qr
4πr2dr, (A3)

where ρ ′ = (Ni + Nj )/V and C ′
i = Ni/(Ni + Nj ),

SC ′
iC

′
j
(Q) = 1 + ρ ′C ′

iC
′
j

∫
{[Pii(r) − Pij (r)]

+ [Pjj (r) − Pij (r)]} sin(Qr)

Qr
4πr2dr, (A4)

SNC ′
i
(Q) = ρ ′C ′

j

∫
[C ′

iPii(r) − C ′
jPjj (r) + (C ′

j − C ′
i)Pij (r)]

× sin(Qr)

Qr
4πr2dr. (A5)
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