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This Rapid Communication reports on the discovery of a route to bursting, called a pulse-shaped explosion
(PSE), for a paradigmatic class of nonlinear oscillators. We find that both an equilibrium and a limit cycle can
exhibit pulse-shaped sharp quantitative changes in relation to the variation of system parameters, which are
interesting explosive behaviors, the PSE. It leads to large-amplitude oscillations in the rest phase (i.e., small-
amplitude oscillations) of bursting, giving rise to additional active phases alternating with the rest phase, and
finally determines compound bursting structures. This way, the route to complex bursting dynamics by PSE is
explained and its robustness is shown. PSE opens different ways for the control dynamics of complex systems.
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As a representative of complex, multiple-timescale
dynamics, bursting has received much attention in the past
several decades. Typically, bursting contains small-amplitude
oscillations (i.e., the rest phase of bursting) which alternate
with large-amplitude oscillations (i.e., the active phase of
bursting) [1]. Such a complex oscillation mode is frequently
observed in neuronal systems [2–4], biological signal
transduction [5,6], calcium dynamics [7,8], and other fields
[9–11]. Regarding the dynamical mechanisms of bursting, it
has been demonstrated that bursting is often linked to sharp
transitions of dynamical systems. For example, based on the
fast-slow analysis [12], it has been found that a system’s
activity can alternate between different phases via canard
phenomena [13,14], the blue-sky catastrophe [15,16], delayed
bifurcations [17,18] and other fast transitions related to hard
bifurcations [1,11,19], and hence bursting.

Recently, another sharp transition behavior, called the speed
escape of attractors [20], was uncovered based on nonlinear
oscillators of Rayleigh’s type [21–23]. This transition leads
attractors to infinity in a narrow parameter interval near the crit-
ical escape (CE) line. Because the narrow parameter interval
witnesses a sharp transition of attractors, it forms an active area
of bursting, which has been identified as playing decisive roles
in the generation of bursting. The resultant bursting patterns,
however, often show simple dynamical characteristics. In the
present Rapid Communication, in order to describe compound
bursting dynamics in nonlinear oscillators of Rayleigh’s type,
we propose a sharp transition behavior, called a pulse-shaped
explosion (PSE), which is characterized by pulse-shaped sharp
quantitative changes appearing in the branches of the equilib-
rium point and limit cycle. We explain the generation of PSE
based on fold bifurcations of the CE transitions. In particular,
we show that it is the PSE that complicates bursting dynamics
and finally determines compound bursting structures (Fig. 1).

To describe our results, we extend the paradigmatic exter-
nally and parametrically excited Rayleigh oscillator with 1 : 2
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frequency ratios [22] to the one with 1 : n frequency ratios.
Then, the following extended Rayleigh oscillator is obtained,

ẍ + f (ẋ) + [1 − μ cos(nωt)](x + γ x3) = q cos(ωt), (1)

wheref (ẋ) = −αẋ + βẋ3 is the Rayleigh’s nonlinear function
and μ cos(nωt) and q cos(ωt) are two excitations. In order to
facilitate the analysis, throughout this Rapid Communication,
the parameters β, γ , and q are fixed at the same values as in
Ref. [20] (see Fig. 1), while α is a control parameter, related
to the transition between an equilibrium and a limit cycle. For
this case, the natural frequency of the system can be an O(1)
quantity. Furthermore, we assume that ω (ω � 1) is small
enough so that the two excitations vary slowly and that there
is a gap between the natural frequency of the system and the
frequencies of the excitations. Then, system (1) becomes a
fast-slow system with two slow variables (i.e., the two slow
excitations), and the transformed fast-slow analysis given in
Ref. [24] allows us to investigate the bursting dynamics of the
system.

Compared to the same system with n = 2 in which a rela-
tively simple bursting dynamics is observed (Fig. 2), system
(1) with n � 3 exhibits a large amount of complex bursting
patterns showing compound structures (Fig. 1), characterized
by multiple clusters that can be observed in each cycle of the
bursting. These compound bursting structures can be divided
into two classes according to the PSE related to different types
of attractors, which will be explored later.

According to our method given in Ref. [24], system (1)
can be transformed into a fast-slow form with one single
slow variable. The slow variable is y(t) = cos(ωt) and the fast
subsystem is given by

ẍ + f (ẋ) + [1 − μgn(δ)](x + γ x3) = qδ, (2)

where δ = y is the control parameter and gn(x) is
the corresponding trigonometric polynomial for cos(nωt),
i.e., gn(x) = C0

nx
n − C2

nx
n−2(1 − x2) + C4

nx
n−4(1 − x2)2 −

· · · + imCm
n xn−m(1 − x2)

m
2 , where i is the imaginary unit and

m is the maximum even number not larger than n.
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FIG. 1. Typical examples of PSE-induced compound bursting
structures in system (1). (a) n = 3 and α = −0.05; (b) n = 5 and
α = −0.05; (c) n = 7 and α = −0.05; (d) n = 3 and α = 0.02; (e)
n = 5 and α = 0.02; (f) n = 7 and α = 0.02. The other parameters
are fixed at β = 0.05, μ = 0.99, ω = 0.01, γ = 0.1, and q = 0.05.
The red numbers 3, 5, and 7 indicate the number of clusters in each
period of bursting.

If 1 − μgn(δ) �= 0, the fast subsystem has one single equi-
librium, written in the form (x,0), where x is decided by the
real root of [μgn(δ) − 1](x + γ x3) + qδ = 0. The equilibrium
will approach infinity as μ and δ approach the CE transition
condition 1 − μgn(δ) = 0, i.e., μ = 1

gn(δ) , at which no equilib-
rium exists.

Based on this transition condition, we next explore the
PSE related to the equilibrium. In order to provide a clear
understanding of this phenomenon, we first discuss a simple
PSE showing one single peak. This is related to the case n = 3.
Figure 3(a) shows a bifurcation behavior of the fast subsystem
for fixed α = −0.05. We find that the number of CE curves
varies with μ. In particular, two CE lines, CEf and CE3, are
observed at the critical value μf = 1 [Fig. 3(b)], where a fold
bifurcation related to CE transitions takes place, i.e., a small
perturbation of μ leads CEf to disappear or to split into CE1
and CE2.
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FIG. 2. Typical bursting patterns in system (1) with n = 2. (a)
α = −0.05; (b) α = 0.02. The other parameters are the same as in
Fig. 1.
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FIG. 3. Disappearance of CE transitions by a fold bifurcation (a),
(b) leads to PSE of the equilibrium, the peak of which is sharply
decreased as μ decreases (c). (a) CE curves in the parameter plane
(δ,μ), where a fold point CEf is observed at (δf ,μf ) = (−0.5,1).
(b) Critical bifurcation behavior for μ = μf = 1. (c) An evolution of
PSE. The above are simulations related to the fast subsystem (2) for
fixed α = −0.05 and n = 3.

Here, we focus on the sharp transitions near the critical line
CEf . As shown in Fig. 3(b), on each side of the CEf line there
is a stable equilibrium branch, which becomes extremely steep
when sticking closely to CEf and approaches infinity as δ →
δf (δf = −0.5). When CEf disappears, the two originally
disunited steep branches now inosculate as a whole. As a
result, a complete stable equilibrium branch, which inherits
the “steep” properties from the originally disunited branches,
is created. Such “steep” properties form pulse-shaped sharp
quantitative changes in relation to the variation of δ near δf

[see Fig. 3(c)]. We call this observed sharp transition a PSE.
An evolution of the PSE is shown in Fig. 3(c). It is seen

that the peak is sharply decreased as μ decreases, and finally
disappears when μ decreases to some value. From another
point of view, a spike will appear in the flat equilibrium curve
as μ increases and approaches μf , and finally is split into
two extremely steep branches stretching into infinity when μ

increases to μf .
Complex PSEs showing two or multiple peaks can be

observed in the fast subsystem for n > 3. For n = 5, Fig. 4(a)
shows two fold points of CE curves for fixed α = −0.05. Note
that a fold point indicates a peak in the equilibrium curve.
Therefore, in this case, two peaks are created [Fig. 4(b)]. For
n = 7, three fold points are observed for fixed α = −0.05,
which thus lead to three peaks in the equilibrium curve
[Figs. 4(c) and 4(d)].

Now we turn to a consideration of PSE related to a limit
cycle. We focus on the critical bifurcation behavior in Fig. 3(b)
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FIG. 4. Fold points in the parameter plane (δ,μ) (a), (c) and the
resultant PSEs showing peaks whose numbers are the same as those
of the fold points (b), (d). In (a), (c), the μ coordinate of fold points
are μf = 1. In (b), (d), μ = 0.99. (a), (b) are simulations related to
the fast subsystem (2) for fixed α = −0.05 and n = 5, while (c), (d)
for fixed α = −0.05 and n = 7.

and let the control parameter α increase from −0.05. It is easy
to check that, when α increases through αH = 0, the stable
equilibrium branches lose their stabilities by a supercritical
Hopf bifurcation, and meanwhile a branch of a limit cycle
attractor is created on both sides of CEf [see Fig. 5(a)]. For
this case, the line CEf now indicates CE transitions related to
unstable equilibrium. Note that the limit cycle attractor, which
can be identified typically in terms of its period and maximum
of some variable if δ is a fixed parameter, surrounds the unstable
equilibrium all the time, and thus undergoes a sharp transition
along with it. That is, as the disappearance of CEf , the PSE
related to a limit cycle attractor will appear [see Fig. 5(b)].

A similar rapid recession of the peak is observed for the
PSE related to a limit cycle attractor [see Fig. 5(b)]. Besides,
complex PSEs related to a limit cycle attractor can also be
observed as long as α is increased such that the equilibrium
branch showing two or multiple peaks loses its stability by a
supercritical Hopf bifurcation (see Fig. 6).
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FIG. 5. PSE of a stable limit cycle comes into being with the PSE
of unstable equilibrium. (a) Critical bifurcation behavior, in which
α = 0.02 and the other parameters are the same as in Fig. 3(b). (b)
An evolution of the PSE of stable limit cycle, where α = 0.02 and
the other parameters are the same as in Fig. 3(c).
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FIG. 6. Complex PSEs related to a limit cycle attractor, showing
two (a) and multiple (b) peaks. Here, α is fixed at α = 0.02, and the
other parameters in (a) and (b) are the same as in Figs. 4(b) and 4(d),
respectively.

Based on the PSEs revealed above, in what follows
we explore the generation of compound bursting dynamics.
Figure 7 shows rest areas and active areas for bursting based on
the stable equilibrium curve μ = 0.99 in Fig. 3(c). Obviously,
without PSE, the curve can be divided into two parts: a steep
part which indicates an active area for bursting and a flat
part which means a rest area for bursting. Note that the PSE
essentially means sharp transitions. Therefore, an additional
active area Ap, induced by the PSE, exists near δf . When the
slow variable cos(ωt) is “switched on,” a bursting trajectory
periodically passes through Ap, leading to two additional
sharp transitions in each period of bursting. As a result, two
additional clusters related to the PSE appear in bursting,
which thus complicates the bursting dynamics and creates a
compound bursting structure [see Fig. 8(a)]. In particular, more
peaks in the stable equilibrium branch indicate more active
areas for bursting, which is the reason for the generation of
more complex compound bursting structures [see Figs. 8(b)
and 8(c)].

Similarly, one may conclude that the above results are also
true for the case when the PSE is related to a limit cycle attractor
[e.g., see Fig. 8(d)]. This is exactly the reason for the generation
of compound bursting structures as shown in Figs. 1(d)–1(f).

In summary, we have reported the existence of PSE, a
kind of sharp transition related to an equilibrium and a limit
cycle. Typically, extremely steep solution branches can be
observed near CE transition lines. Our study shows that the
two steep solution branches can inosculate as a whole by a
fold bifurcation of CE transitions. In particular, the resulting
whole solution branch remains the steep characteristics near
the critical CE lines related to fold points of CE transitions.
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FIG. 7. Schematic diagram: Various areas formed by different
dynamical characteristics of the equilibrium curve with μ = 0.99 in
Fig. 3(c). Ar1 and Ar2 are rest areas, Ap is the active area induced by
PSE, and ACE3 denotes the active area related to the CE3 transition.
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This thus leads to pulse-shaped sharp quantitative changes in
the solution branch and therein lies the generation of PSE.
PSE creates additional active areas for bursting and increases
the number of clusters in bursting. Based on this, an interesting
route to complex bursting dynamics is presented.

Here, our analysis focuses on typical examples of burst-
ing patterns related to odd values of n. The PSE and the
compound bursting structures can also be observed if n is
even. In particular, larger n often means more PSEs, which
thus lead to a cluster adding effect. Note that such an effect
is related to a fixed bursting period (Figs. 1 and 8), and
thus it is quite different compared to the period adding cas-
cade phenomenon [19,25,26], a typical dynamical mechanism
complicating bursting dynamics. Further analysis shows that
interesting behaviors related to the period of the limit cycle
and the complex eigenvalues for the equilibrium are observed
near PSE, e.g., all of these related quantities reach an extreme
value near PSE (e.g., see Fig. 9). How this relates to the PSE
is an interesting problem and needs further investigation.

Besides, our analysis is based on a specific Rayleigh
oscillator. However, because the Rayleigh oscillator in its var-
ious forms can be used to approximately describe many phys-
ical phenomena and processes in mechanical and electrical
engineering [21–23,27], and because there are significant
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attractor in Fig. 8(d).
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parameters are the same as in Fig. 8(a).

numbers of hybrid systems related to nonlinear oscillators of
Rayleigh’s type, e.g., Rayleigh-Duffing oscillators [28] and
Rayleigh–van der Pol oscillators [29], the proposed PSE and
the resultant compound bursting structures should be observed
in various related dynamical systems as well as in experiments.

The PSE itself exhibits interesting dynamical character-
istics. We have shown that, after the disappearance of CE
transitions by fold bifurcations, the peak of PSE will decrease
and finally goes almost to zero. Surely, there is a critical peak
for complex bursting dynamics, and only when the peak is
larger than such a critical value, we observe sharp transitions
that compound bursting structures rely on (Fig. 10). However,
how large the critical peak is remains hazy and needs to be
further explored.

Below the critical peak, the attractor previously showing a
PSE will turn into a common one. That is, PSE is in a transition
phase from the disappearance of sharp CE transitions to the
appearance of mild dynamical behavior. Note that PSE is a
typical kind of sharp transition behavior. Therefore, such a
transition phase in fact extends the parameter range showing
sharp transitions near the fold point, and this may bring
about new problems for the study of stability and control of
dynamical systems.

Finally, we would like to point out that PSE has shown the
existence of an amplitude-modulated limit cycle attractor, i.e.,
a periodic attractor whose amplitude shows to-and-fro varyings
as the system parameters vary (see Fig. 6). On the other hand, as
noted earlier, if the peaks that the amplitude-modulated limit
cycle attractor exhibits are smaller than some critical peak,
the solution trajectory will follow the attractor closely without
sharp transitions, i.e., amplitude-modulated oscillations will
appear. Therefore, amplitude-modulated bursting [8], a class
of bursting reported recently, may be generated if an amplitude-
modulated limit cycle attractor with small peaks becomes the
active state of bursting. That is, an amplitude-modulated limit
cycle attractor with small peaks forms a possible mechanism
underlying the appearance of amplitude-modulated bursting.
Based on this, we conclude that the proposed PSE can help
to explore the diversity of dynamical mechanisms of specific
bursting patterns.
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