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We provide a theoretical and experimental protocol that dynamically controls the effective temperature of a
thermal bath, through a well-designed noise engineering. We use this powerful technique to shortcut the relaxation
of an overdamped Brownian particle in a quadratic potential by a joint time engineering of the confinement
strength and of the noise. For an optically trapped colloid, we report an equilibrium recovery time reduced by
about two orders of magnitude compared to the natural relaxation time. Our scheme paves the way towards
reservoir engineering in nanosystems.
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Accelerating the relaxation dynamics of a system driven
from an equilibrium state to a new one is an expedient
goal and a widely studied problem, for its useful potential
applications in quantum [1–12] or classical systems [13–16]
and for photonics circuit design [17–20]. Acceleration is
achieved by engineering protocols which shape the dynamics
of several control parameters to equilibrate a system much
faster than its characteristic relaxation time. Such an approach,
known in the engineering community as input shaping [21,22],
has been recently extended to microscopic systems where
quantum and thermal fluctuations cannot be neglected [23].
For isolated quantum and classical systems, several techniques
known as shortcut to adiabaticity (STA) have been developed
and successfully applied to experiments [4–16]. In a recent
article, we extended STA to systems coupled to a heat bath
by introducing the so-called engineered swift equilibration
(ESE) processes, achieving an equilibrium recovery about
two orders of magnitude quicker than relaxation for both
a micromechanical oscillator [15] and a Brownian particle
trapped in a quadratic potential [14]. This extension is a
key step for a number of applications in nano-oscillators
[24], in the design of nanothermal engines [25–27], or in
monitoring mesoscopic chemical or biological processes [28],
for which thermal fluctuations are of paramount importance
and an accelerated equilibration desirable for improved power.
We emphasize that for a particle coupled to a thermal bath,
the notion of equilibrium refers to its probability density
function and not to the motion of the particle itself. Thus,
in the following, a particle is considered at equilibrium if its
probability density function, measured in a way to be specified,
is given by the Boltzmann law.

Independently, a new technique has been devised to emulate
an effective temperature through a white noise random forcing
applied to a particle [29], and used in different contexts,
from thermal engines [25,30,31] to more fundamental works
[32,33]. In this Rapid Communication, we take advantage
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of this technique and prove that the STA field can benefit
from this new control parameter to carry out transformations
that have been inaccessible so far. In particular, we propose
and test an original protocol based on a random forcing that
allows us to overcome an important experimental limitation
for ESE decompression protocols, where the trapping volume
is expanded. For sufficiently fast transformations, both STA
and ESE protocols generate solutions in which the external
confinement becomes transiently repulsive, i.e., with a negative
spring constant [3,13]. Indeed, the reverse curvature yields an
exponential acceleration of the transformation.

However, the experimental implementation of such a pro-
tocol is not always feasible or may be so cumbersome to
implement that it is in practice unrealistic, for example, for
mechanical oscillators and colloidal Brownian particles. We
show both theoretically and experimentally that a protocol
based on a thermal bath engineering combined with a proper
control of the strength of the confinement outperforms STA
and ESE protocols, bypassing the requirement for a transient
repulsive potential. The key ingredient to allow for thermal
bath time control is to monitor the amplitude of a white noise
random forcing that creates the effective temperature. This
driving is independent of the particle dynamics, then differing
from feedback protocols [34,35]. The corresponding original
thermally engineered swift equilibration (TESE) protocol il-
lustrates how a well-designed effective temperature engineer-
ing can unlock conceptual problems and can be generalized
to a wealth of other applications where a fast expansion is
needed.

We consider an overdamped system described by a first-
order Langevin equation for the coordinate x of a Brownian
particle trapped in a quadratic potential of stiffness k(t )
centered in xo,

νẋ = −k(t )(x − xo) +
√

2 kBTeff (t )ν ξ (t ), (1)

where kB is the Boltzmann constant, Teff (t ) the time-dependent
effective temperature (that can be different from the bath
temperature T , kept constant here), ν the viscous coefficient,
and ξ a delta correlated noise such that 〈ξ (0)ξ (t )〉 = δ(t ). In
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equilibrium when Teff = T and k is constant, the characteristic
relaxation time is τ = ν/k, and the probability density function
P (x) of the position fluctuations is Gaussian with a standard
deviation σ = √

kBT /k.
We imagine a process where k is changed from an initial

constant value ki to a final value kf . This process can be
done by a STEP protocol in which k is suddenly changed
from ki to kf and the system relaxes to the new equilibrium
state in several τ , which is the time taken by σ to reach
the final value σf . More interestingly, the ESE protocol, in
which Teff = T , allows us to arbitrarily reduce the relaxation
regime using an appropriate time evolution for k. For the
sake of completeness, let us briefly recall how this protocol
is constructed. The one-dimensional additive-noise Langevin
equation (1) is equivalent to the following Fokker-Planck
equation, that rules the dynamics of P (x, t ),

∂tP = k(t )

ν
∂x (xP ) + kBT

ν
∂2
x P . (2)

As during the time evolution P (x, t ) remains Gaussian, we
write P (x, t ) = [α(t )/π ]1/2 exp [−α(t )x2], where α is related
to the variance of x through α(t ) = 1/[2σ (t )2]. Thus Eq. (2)
becomes

α̇

α
= 2k(t )

ν
− 4kBT α

ν
, (3)

where the dot denotes the temporal derivative, and the bound-
ary conditions at initial time t = 0 and final time t = tf are
α(0) = ki/2kBT , α(tf ) = kf /2kBT , and α̇(0) = α̇(tf ) = 0.
The conditions on the derivatives are important because they
ensure equilibrium for t � tf . The problem can be solved, us-
ing dimensionless quantities α̃ = α/αi , k̃ = k/ki , χ = kf /ki ,
and s = t/tf , by choosing a specific time evolution for α̃. We
subsequently determine the time dependence of k̃ which allows
the system to equilibrate in an arbitrary time tf ,

k̃(t ) =
(

1 + χτf ∂sα̃

2tf α̃2

)
α̃, (4)

where τf = ν/kf . A reasonable choice for α̃, which fulfills the
boundary conditions, is, for example,

α̃(s) = 1 for s < 0,

α̃(s) = 1 + (χ − 1)(3s2 − 2s3) for 0 � s � 1,

α̃(s) = χ for s > 1, (5)

which can be applied in a compression χ > 1 and in an
expansion χ < 1. In Ref. [14], we have shown that in the
compressive case, k̃ following from Eqs. (4) and (5) can be
successfully used in an experiment with a tf two orders of
magnitude smaller than the natural equilibrium recovery time
of several τf . Yet, it is straightforward to see that for a quick
expansion (tf � τf ), the stiffness may take negative values;
it necessarily does so when tf is small enough, irrespective
of the specific form chosen in Eq. (5). Thus, the potential
has to be transiently repulsive in order to reach equilibrium
within an arbitrary small tf [13]. This constitutes a substantial
experimental shortcoming since it is in general arduous if not
impossible to turn a trapping (attracting) potential into a repul-
sive one, following the complex dynamical rule embedded in
Eq. (4).

However, this problem can be resolved by adding an
extra control parameter, through a dynamically controlled
effective temperature. In our one-particle setup, this effective
temperature can be created by carefully engineering the trap
center position xo(t ), which was fixed in the previous analysis,
through a time-dependent random noise. In this case, the
Langevin equation can be written

νẋ = −k(t )[x − xo(t )] +
√

2kBT ν ξ (t ). (6)

Note that this protocol is appropriate to mimic a temperature for
a unique particle. If several particles, even noninteracting ones,
are trapped together, additional experimental control [36,37]
is needed to avoid undesired position correlations between the
particles. We choose for xo(t ) an externally generated random
noise with correlation time τc � τi , i.e., the noise can be
considered delta correlated for all practical purposes with a
time-dependent amplitude σo(t )2 = 〈x2

o 〉. The correlation is
chosen as 〈xo(t )xo(t ′)〉 = σo(t )2τr δ(t − t ′), where τr defines
the noise spectral density. This noise consequently behaves as
another heat bath for the Brownian particle, with an effective
temperature Teff (t ) = T (t ) + k(t )2σo(t )2τr/(2νkB ), so that

∂tP = k(t )

ν
∂x (xP ) +

(
kBT

ν
+ k(t )2σo(t )2τr

2ν2

)
∂2
xP, (7)

and the equation for α̃ becomes

χτf ∂sα̃

tf α̃
= 2̃k(t ) − 2α̃ − k̃(s)2σo(s)2α̃(s)τr

σ 2
i τi

. (8)

We keep for α̃ the same time evolution as in Eq. (5) but for the
sake of convenience we fix k̃(s) as

k̃(s) = 1 for s < 0,

k̃(s) = k̃max for 0 � s � 1,

k̃(s) = χ for s > 1, (9)

where k̃max > 1 is a chosen fixed value. It is interesting to note
that in bypassing ESE that requires negative k values to reach
kf < ki , we make transient use of k > ki . We take advantage
of this feature (see below). Having specified the dynamics of
α̃ and k̃, we can solve Eq. (8) for the dynamics of σo(s),

σo(s)2 =
[

1

α̃k̃
−

(
1 + χτf ∂sα̃

2tf α̃2

)
1

k̃2

]
2σ 2

i τi

τr

. (10)

In doing so, we have two experimentally controlled parameters
(σo and k, see Fig. 1), which allow us to follow the proper
dynamics for α and to reach equilibrium exactly at tf .

From Eq. (10), we notice that the value of k̃max determines
the maximum amplitude of the noise, which decreases when
k̃max increases. Of course, one can make other functional
choices for k(t ) and α(t ). One may, for instance, wish to
minimize the work performed during the transformation, but
for experimental reasons and limitations, the chosen simple
scheme seems the most appropriate.

Here, we bypass the limitation of the original ESE idea
by taking advantage of an additional degree of freedom to
supplement trap stiffness, with the effective temperature. It
would also be possible to act on the position of the trap center,
not to emulate a temperature, but as an alternative degree
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FIG. 1. The two signals k̃(t ) and σo(t ) used to drive fast expan-
sion. The time is set to zero when the decompression is triggered.
The inset exhibits the full dynamics used in the experiment, cycled
4 × 104 times. The system is initialized at t = −50 ms with an ESE
compression from k̃f to k̃i [noiseless TESE with Eqs. (4) and (5)],
then left unperturbed, before the decompressing TESE is applied at
t = 0. The system is subsequently left unperturbed up to t = 50 ms
before the cycle repeats. The TESE sector (0 � t � tf = 1 ms) is
ruled by Eqs. (5), (9), and (10). Here, τf = 11 ms, τi/τr = 100,
χ ≡ kf /ki = 0.44, and k̃max = 6.

of freedom. This yields a distinct reverse protocol for which
details are provided in Ref. [38].

We have implemented the TESE expansion protocol on
a Brownian particle trapped by an optical tweezer [39].
Our experimental system consists of a silica microsphere of
radius R = 1 μm (±5%) immersed in water. The particle is
trapped by an optical quadratic potential U (x, t ) = k(t )[x −
xo(t )]2/2, where x is the particle position and xo(t ) is the focal
position of the beam. The stiffness k(t ) of the potential can
be controlled by the power of the trapping laser. The fluid
chamber is specifically designed in order to have only one
bead in the measuring region, which allows us to perform very
long measurements without any perturbation induced by the
other particles. The trap is realized using a near infrared laser
beam (λ = 1060 nm with maximum power 500 mW) expanded
and inserted through an oil-immersed objective [Leica, 63×
numerical aperture (NA) 1.40] into the fluid chamber. The
trapping laser power is modulated by an external voltage Vk

via a laser diode controller with a rising time of about 40 μs.
Vk is generated by a National Instrument card (NI PXIe-6663)
managed by a custom made LABVIEW program. The detection
of the particle position is achieved using an additional laser
beam (at λ = 635 nm power 0.5 mW), which is expanded
and collimated by a telescope and passed through the trapping
objective. The forward-scattered detection beam is collected
by a condenser (Leica, NA 0.53), and its back focal-plane field
distribution projected onto a custom position sensitive detector
(bandpass of 1 MHz) whose signal is acquired at a sampling
rate of 50 kHz with a NI PXIe-4492 acquisition board. The
trapping beam goes through an acousto-optic deflector (AOD)
that allows us to control the central position xo(t ) of the trap
rapidly (up to 25 kHz). In order to move the trap randomly, a
Gaussian white noise voltage is generated by the analog output
of a NI PXIe-6366 card and sent to the AOD. The conversion
factor for the displacement due to the AOD is A = 5 μm/V. If

the amplitude of the displacement of the trap is sufficiently
small to stay in the linear regime [σo(t ) < R], it creates a
random force on the particle that does not affect the stiffness
of the trap. When the random force is switched on, the bead
quickly reaches a stationary state with an effective temperature
[32,40].

The stochastic command of the AOD is created with a
LABVIEW program that generates at a rate of fn = 20 kHz
a white noise xd (t ) of variance σ 2

d (t ) and power spectral
density σ 2

d (t )/fn. It is then numerically low-pass filtered at
frequency flp to produce xo(t ), whose correlation time is τlp =
1/(2πflp ) � tf < τi . The TESE protocol is not influenced by
this filter provided that flp � kmax/(2πν). In this regime, xo

can be approximated as a white noise,

〈xo(t )xo(t ′)〉 	 (Aσd (t ))2

2fnτlp
e
− |t−t ′ |

τlp 	 [Aσd (t )]2

fn

δ(t − t ′),

(11)

and choosing τr = 1/fn, one gets σd (t ) = σo(t )/A. This equa-
tion, together with Eq. (10), allows us to compute the amplitude
σd (t ) of the driving of the noise needed to carry out a fast
expansion. We emphasize that the choice of a constant k(s) in
Eq. (9) with a large kmax is useful to easily fulfill the condition
σo < R, so as to remain in the quadratic approximation of the
confinement.

The system is calibrated in equilibrium using standard
methods. The trap stiffness is measured by calculating the
variance of the x displacement of the bead, σ 2. The other
parameters are determined using the power spectrum of the
x displacement which is a Lorentzian since the particle motion
is overdamped, Sk (f ) = 4νkBT /k2

1+f 2/f 2
c

. One can fit it to find the

cutoff frequency fc that verifies fc = k
2πν

, where ν = 6πRη

and η is the dynamic viscosity of water. The two methods
give compatible results for the stiffness as the viscosity of
water and corrections due to the finite distance between the
particle and the bottom of the cell are known. This compar-
ison allows us to check the calibration of the bead position
measurement.

The probability density function (PDF) of the bead position
is shown in Fig. 2(a) at the initial and final time of the protocol,
displaying the expected decompression from σi = 30 nm to
σf = 45 nm. Adding noise on the center of the trap broadens
drastically the distribution, even if the stiffness is increased
simultaneously, as shown by the stationary PDF displaying
a σstat = 60 nm at k = 4ki . The power spectra of the bead
displacement in the x direction without noise and with noise
are shown in Fig. 2(b), measured in equilibrium at k = ki . The
displacement in the y direction is not modified by the added
noise. Thus the noise behaves correctly and the amplitude is
the one computed from Eq. (10) with ˙̃α = 0 and Eq. (11).

In order to put the TESE protocol to the test, we prepare
the system in an initial state with ki = 3.3 pN/μm having
τi = 4.7 ms and we commute to a final state kf = 1.4 pN/μm
having τf = 11 ms. After 50 ms the system is commuted
back to the initial state. This protocol is repeated 2 × 104

times to measure statistical quantities, among which is the
time evolution of σ (t ). As a benchmark of an “uncontrolled”
process, we first perform the commutation using a STEP
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FIG. 2. (a) Density P (x, t ) measured in the initial compressed
state (orange crosses), and at the end of the protocol at t = tf (green
dots). The measured PDFs are in excellent agreement with the target
densities shown with lines, for a decompression factor χ = 0.44. We
also measure the stationary PDF when the random force is switched
on (blue circles, for a higher stiffness k = 4ki). (b) Power spectra
of x measured in equilibrium at k = ki without (light orange line)
and with noise (dark purple line). In this case, σi = 30 nm, fc = 41
Hz, and σo = 20 nm. We also show a power spectrum for k = 4ki

with noise (σo = 21 nm, medium blue line) corresponding to the blue
circles in (a). The Lorentzian fits allow us to calibrate the system and
the noise amplitude. Beyond the filtering frequency flp = 1 kHz, the
fits become meaningless and all curves eventually collapse.

protocol in which the standard deviation of the particle position
σ (t ) relaxes in a time that defines the natural recovery scale
for either the initial or the final state. Then, the commutation is
performed using the ESE/TESE protocols presented in Fig. 1.
Specifically, the TESE protocol is applied to expand the trap
from ki to kf < ki whereas the standard ESE [Eqs. (4) and (5)
without noise] is used for the sake of cyclization, to compress
the trap from kf to ki and thereby prepare the system for a
new expansion. For the expansion, we chose tf = 1 ms, thus
significantly below the natural relaxation time τf . We took
kmax = 6ki , which gives a maximum amplitude of σo(t ) of
approximately 400 nm, while for compression, tf = 2 ms. The
results are plotted in Fig. 3 where the STEP and TESE protocols
are compared. We see that the STEP scheme requires 40–50
ms for equilibrium recovery, whereas equilibration is realized
in tf � 50 ms within ESE (for compression) and TESE (for
expansion). Hence we have demonstrated that TESE drives the
system to its new equilibrium about two orders of magnitude
faster than the standard relaxation. This is the main result of
this Rapid Communication. It is instructive here to comment
briefly on the features of the bare ESE method that could
in theory be used to achieve a similar decompression. As
emphasized above, it follows from Eqs. (4) and (5) that the
stiffness k should take negative values for more than 80% of
the time span [0, tf ], with a (negative) maximal peak amplitude
kpeak 	 −2ki . Devising a confinement system able to meet this
goal, and furthermore follow the target ESE dynamics, is a
delicate experimental challenge.

It is important to discriminate the TESE idea in general,
that relies on the emulation of an effective temperature, from
its experimental realization proposed here. The latter is oper-
ational for a single Brownian object, but not for a collection

-4 4
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-2 20

FIG. 3. Dynamics of the standard deviation σ (t ) of the Brow-
nian particle position, for two distinct cyclic schemes. The first
one alternates between ESE for compression phases and TESE for
decompression phases (red solid line), while the second one is only
constituted of STEP procedures (black dashed line). Time t = −50
ms corresponds to the beginning of the compression phase, where the
stiffness is changed from kf to ki , and time t = 0 is the beginning of
the expansion phase, where k is switched from ki to kf < ki (see also
Fig. 1). The experimental measures are shown, together with error
bars. To gather relevant statistics, the scheme is repeated as explained
in the main text and in Fig. 1.

of noninteracting particles. Indeed, our experimental “noise”
xo would be shared by the particles, which creates undesired
correlations between them. In the same vein, and with the
same deficiency, an alternative route (route 2) is proposed in
the Supplemental Material [38]. Both ideas take advantage
of an additional degree of control (effective temperature or
trap position) to shortcut the natural relaxation. Yet, we stress
an advantage of TESE, since there exist techniques such as
laser heating or speckle field which randomize the spatial
distribution of the noise, and that would lead to fully fledged
independent Langevin equations for all noninteracting objects
simultaneously confined. TESE is thus in principle viable
beyond the single particle case, in addition to requiring a single
trap (two are needed for route 2).

To conclude, noise engineering offers an extra easy-to-
manipulate control parameter, that creates powerful possi-
bilities for STA, as well as ionic, magnetic, and atomic
individual systems, and especially in the context of micro-
and nanoengines where thermodynamic transformations need
to be cycled. We have proposed a protocol, dubbed thermally
engineered swift equilibration, that relies on a carefully shaped
noisy signal, coupled to a quadratic time-dependent confin-
ing potential, to manipulate confined Brownian particles. It
allows us to quickly deconfine a trapped particle, without the
drawback of passing transiently through a repulsive potential.
Related strategies have proven efficient in a computational con-
text, such as simulated annealing [41] and, arguably, we pro-
vide here a transposition to an experimental context. Interesting
venues for future work deal with optimizing and extending the
scheme. For a given time tf , how can one minimize the energy
needed to perform the TESE protocol among the infinitely
many choices for coupled noise-confinement driving? This
question is of importance in energetics, and a subject of intense
current activity [42–48]. Besides, the TESE protocol can be
extended to nonquadratic cases, along the lines proposed in
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Ref. [14], as well as underdamped cases [49]. This original
protocol bears promises for applications whenever a controlled
fast expansion is needed, and the experimental constraints do
not allow the generation of an expulsive potential.
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