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Recent experimental works on one-dimensional (1D) circular Kardar-Parisi-Zhang (KPZ) systems whose radii
decrease in time have reported controversial conclusions about the statistics of their interfaces. Motivated by
this, here we investigate several one-dimensional KPZ models on substrates whose size changes in time as
L(t) = L0 + ωt , focusing on the case ω < 0. From extensive numerical simulations, we show that for L0 � 1
there exists a transient regime in which the statistics is consistent with that of flat KPZ systems (the ω = 0 case),
for both ω < 0 and ω > 0. Actually, for a given model, L0 and |ω|, we observe that a difference between ingrowing
(ω < 0) and outgrowing (ω > 0) systems arises only at long times (t ∼ tc = L0/|ω|), when the expanding surfaces
cross over to the statistics of curved KPZ systems, whereas the shrinking ones become completely correlated. A
generalization of the Family-Vicsek scaling for the roughness of ingrowing interfaces is presented. Our results
demonstrate that a transient flat statistics is a general feature of systems starting with large initial sizes, regardless
of their curvature. This is consistent with their recent observation in ingrowing turbulent liquid crystal interfaces,
but it is in contrast with the apparent observation of curved statistics in colloidal deposition at the edge of
evaporating drops. A possible explanation for this last result, as a consequence of the very small number of
monolayers analyzed in this experiment, is given. This is illustrated in a competitive growth model presenting a
few-monolayer transient and an asymptotic behavior consistent, respectively, with the curved and flat statistics.
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Some universality classes for nonequilibrium interface
growth are known to split into subclasses depending on the
initial conditions (ICs) of the growth. More specifically, given
an evolving interface, the height h(�x,t) at a given position
�x and time t is expected to fluctuate according to universal
height distributions (HDs). While the variance of the HDs—the
squared interface width w2—and the correlation length parallel
to the substrate ξ increase in time, respectively, as w2 ∼ t2β

and ξ ∼ t1/z, with the universal growth (β) and dynamic (z)
exponents defining the universality class in a given dimen-
sion, the HDs’ probability density functions are dependent
on the ICs. This interesting feature, first demonstrated by
Prähofer and Sphon [1] in the solution of the one-dimensional
(1D) polynuclear growth (PNG) model, which belongs to the
Kardar-Parisi-Zhang (KPZ) class [2], has been numerically
observed also in the two-dimensional (2D) KPZ class [3], as
well as in another class relevant for thin-film deposition by
molecular beam epitaxy (MBE) [4].

In the solution of the 1D PNG model [1], beyond the
natural stationary (Brownian) IC, there are two other relevant
ICs, both of which lead to HDs given by Tracy-Widom (TW)
[5] distributions from random matrix theory. For flat ICs, the
growth starts on an initially flat substrate of large size L0, which
does not change in time, and the HD is given by the Gaussian
orthogonal ensemble (GOE) TW distribution. In the droplet IC,
the substrate is initially small (L0 → 0), but expands linearly in
time [L(t) = ωt]. In this case, the Gaussian unitary ensemble
(GUE) TW distribution sets the asymptotic KPZ HD. Since
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the macroscopic shape of the PNG interfaces is curved for the
droplet IC, it was conjectured that the splitting of the KPZ class
is related with the surface geometry. Indeed, the universality of
GOE and GUE HDs has been widely confirmed theoretically
[6], experimentally [7], and numerically [8–10] in 1D KPZ
systems with flat and curved macroscopic shapes, respectively.
For additional information, see the recent reviews [11].

Beyond the (one-point) HDs, (two-point) spatial and tem-
poral covariances are also universal and dependent on the ICs
(or geometry). For instance, for the 1D KPZ class the spatial
covariances are associated with the so-called Airy1 and Airy2
processes for flat and curved geometries, respectively [12].
Geometry-dependent covariances have also been numerically
found in the 2D KPZ class [13], as well as for the nonlinear
MBE class [14] in both 1D and 2D [4].

In a recent work, Fukai and Takeuchi (FT) [15] reported
experimental and numerical results demonstrating that the
statistics of circular KPZ interfaces with inward growth, i.e.,
whose average radii decrease in time, is given by GOE HDs and
Airy1 covariance, rather than the GUE and Airy2 expected for
curved interfaces. This finding is in contrast with the apparent
observation of GUE fluctuations by Yunker et al. [16] in the
inward growth of interfaces formed by anisotropic colloidal
particles deposited at the edge of evaporating drops. In this
Rapid Communication, we demonstrate through extensive
simulations of several KPZ models on 1D size-changing
substrates that ingrowing interfaces indeed present a transient
flat statistics, in agreement with FT [15], whenever their
initial size L0 is very large. More important, our results let
clear that this transient is not a consequence of the inward
growth, as Ref. [15] suggests, and exists even for outgrowing
interfaces. A possible explanation for the apparent curved
statistics reported in Ref. [16] is also presented.
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We start investigating three discrete models belonging to
the KPZ class in 1D: the etching model by Mello et al.
[17], the restricted solid-on-solid (RSOS) model by Kim and
Kosterlitz [18], and the single step (SS) model [19]. In all cases,
periodic boundary conditions are considered and particles are
sequentially deposited on a flat substrate, whose average size
changes in time as 〈L(t)〉 = L0 + ωt , at randomly chosen
positions (say, i). In the etching model, hi → hi + 1 and the
heights of the nearest-neighbor (NN) sites are individually
updated to hi − 1 if they are smaller than this value. In the
SS model, depositions are accepted wherever hi is a local
minimum and, then, hi → hi + 2. Finally, in the RSOS model,
the deposition of a particle is accepted (hi → hi + 1) only if
it does not yield a step |hi − hi±1| > 1 in the interface. The
growth starts with hi = 0 ∀ i ∈ [1,L0] for the etching and
RSOS models, while in the SS model one makes hi = 1 if i is
odd and hi = 0 otherwise. Following the method introduced by
us in Ref. [13], the enlargement of the active growing zone (the
case ω > 0) is implemented by simply duplicating columns
at rate ω. Two probabilities are defined so that in one time
unity the average number of duplications is equal to ω, and the
average number of depositions is equal to 〈L〉 in that interval.
Namely, at each time step �t = 1/(L + ω), one particle is
deposited with probability Pd = L/(L + ω) or a column is
duplicated with complementary probability Pω = ω/(L + ω).
The duplications are implemented by randomly choosing a
column i and then creating a copy of it in the new position i + 1.
Since the height differences in the SS model are restricted to
|hi − hi−1| = 1, we have to duplicate a pair of NN columns
and then, ω/2 is used in the definition of the probabilities.
To investigate systems with inward growth (i.e., the case
ω < 0, which leads to decreasing substrate sizes) instead of
duplicating columns, one removes (randomly chosen) columns
at rate |ω|. Once again, in the SS model a pair of columns has
to be removed. Moreover, only pairs of columns that, after
the remotion, keep the height differences |hi − hi−1| = 1 are
chosen. Similarly, in the RSOS model, only removings that do
not yield steps larger than one are made.

For each model and set of parameters (L0 and ω), we have
calculated the HDs [P (h,t)] and analyzed their nth cumulant
[〈hn〉c] up to n = 4, as well as adimensional ratios of them:
R =

√
〈h2〉c/〈h〉 (the variation coefficient), S = 〈h3〉c/〈h2〉2/3

c

(the skewness), and K = 〈h4〉c/〈h2〉2
c (the kurtosis). In the

growth regime, when ξ 
 L(t), the height at a given point
of a fluctuating interface is expected to evolve as [1,20]

h = v∞t + sλ(�t)βχ + · · · , (1)

where v∞, sλ(= ±1), and � are model-dependent parameters,
whose values for the three models analyzed here can be found,
e.g., in Ref. [13]. χ is a random variable given by GOE
(GUE) TW distribution for flat (curved) 1D KPZ interfaces.
Therefore, the cumulants of order n ≥ 2 should scale as
〈hn〉c 
 sn

λ (�t)nβ〈χn〉c at not so long times. This behavior,
which is well known for static and expanding substrates,
is confirmed in Figs. 1(a)–1(d) for n = 2, 3, and 4 for the
ingrowing case.

At a crossover time t∗, however, all cumulants start decreas-
ing in time, when ω < 0, with the variance 〈h2〉c decreasing
faster than the higher order cumulants, giving rise to a fast
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FIG. 1. (a) Squared interface width w2 = 〈h2〉c versus time for
the RSOS model, with ω = −10, −20, and −40 and L0 = 4×, 8×,
16×, and 40 × 104, and 105. Rescaled HDs’ cumulants 〈hn〉c/(�tc)nβ

against rescaled time t/tc for (b) n = 2, (c) n = 3, and (d) n = 4, for
the RSOS (circles), etching (triangles), and SS (squares) models, and
several values of ω < 0 and L0. The dashed lines have the indicated
slopes, with β = 1/3. The inset in (a) shows w2 versus L, when t →
tc, for the etching and RSOS models, with ω = −2 and L0 = 8 ×
104. In (b), the same data from the main panel are depicted in the
inset in linear scale, highlighting the crossover region. The temporal
evolutions of the skewness S and kurtosis K of the HDs are shown in
(e) and (f) for the indicated models, with |ω| = 20 and L0 = 6 × 105.
The arrows in (e) and (f) indicate the times when the covariances
shown in Figs. 2(a) and 2(b) were measured.

increase in the ratios S and K , as observed in Figs. 1(e) and
1(f), and also in Ref. [15]. We notice that our ingrowing systems
disappear [〈L(t)〉 = 0] at a characteristic time tc = L0/|ω|,
which thus turns out to be the natural temporal scale here. In
fact, rescaling the time by tc and the nth cumulant by (�tc)nβ ,
a striking data collapse is found for all models and parameters,
as observed Figs. 1(b)–1(d), showing that the crossover time t∗
depends only on the parameters L0 and ω, being independent
of the model. Moreover, the positions of the maxima in the
rescaled cumulants’ curves present only mild variations for the
wide range of parameters analyzed [see the inset in Fig. 1(b)].
This indicates that finite-size corrections are negligible in such
crossover scaling, and allowed us to estimate the crossover
time t∗ ≈ 0.83tc for the second cumulant.

For fixed-size substrates, in the saturation regime
the squared interface width scale as w2 ≡ 〈h2〉c ∼ L2α ,
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with α = 1/2 being the roughness exponent for the 1D KPZ
class [19]. Thereby, since 〈L(t)〉 = L0[1 − t/tc] for ingrowing
systems, one could expect that w2 ∼ [1 − t/tc] for t � t∗
and, then, the famous Family-Vicsek scaling [21] should be
modified to

w2 = Bt2β
c f (t/tc), (2)

where, according to Eq. (1), B = �2β〈χ2〉c and the scaling
function should read

f (x) 

{

x2β, for x 
 0.83,

b(1 − x), for 0 < (1 − x) 
 0.17,
(3)

with b being a universal constant. Note that the last regime
is hard to observe, due to the stringent condition [0 <

(1 − t/tc) 
 0.17]. Moreover, as t → tc, the system sizes
become so small that finite-size effects can hamper the scaling
w2 ∼ 〈L〉. Indeed, only for the etching model was reasonable
evidence of this scaling behavior found [see the insert in
Fig. 1(a)]. Another possible explanation for the deviation in the
scaling for the RSOS and SS models is the fact that, to respect
the height difference restrictions in their interfaces, only some
columns can be removed, making the remotions less random
then in the etching model. This becomes particularly relevant
for small L and may cause strong deviations in such regime.

Figure 1(e) presents the temporal variation of the skewness
S and kurtosis K for the three models on ingrowing substrates
(ω < 0). [Results (not shown) for the ratio R display similar
behaviors.] Clear plateaus are observed at the GOE values
for t 
 t∗, which give place to a fast increasing behavior at
long times (t � t∗), similarly to those reported by FT [15].
Our main finding here, notwithstanding, is that R, S, and
K , for a given model and L0, have negligible differences up
to t ≈ t∗ for both ω > 0 and ω < 0 (as well as ω = 0), as
shown by Fig. 1(e) for the RSOS model. (Similar results are
found for the other models.) This demonstrates that it does
not matter if the size of the active growing zone of a 1D KPZ
system is expanding or shrinking (or fixed); a transient GOE
behavior will appear whenever the initial substrate size is large
enough. As seen in Fig. 1(f) and clearly shown in Ref. [13],
S and K for expanding systems (ω > 0) start decreasing at
t ≈ tc, because they converge to the GUE values when t → ∞.
Namely, by starting the regular outward growth (ω > 0) of a
circular KPZ interface with L0 � 1, a GOE-GUE crossover
is observed [13]. In the same way, for circular interfaces with
inward growth (ω < 0) a transient GOE regime is expected
if L0 � 1. However, in this case, a GOE-GUE crossover
cannot be observed, because the interfaces become completely
correlated before its (possible) onset.

To confirm that the full flat statistics arises at the
transient GOE regime, we calculate also the (two-point)
spatial covariance CS(r,t) = 〈h(x,t)h(x + r,t)〉 − 〈h〉2 

(�t)2β
[Ar2α/(�t)2β], which are displayed in Figs. 2(a) and
2(b), for the models in Figs. 1(e) and 1(f), respectively, for
the growth times indicated by the arrows in these figures.
Whenever CS is measured for times at the GOE plateaus, a
nice collapse with the Airy1 covariance is found, even for
outgrowing systems (ω > 0). In this case, one can see the
curves moving toward the Airy2 covariance for long times
(t � tc). On the other hand, for ingrowing systems (ω < 0)
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FIG. 2. Rescaled spatial [(a),(b)] and temporal [(c),(d)] covari-
ances. Data in (a) and (b) are for the same models and parameters
in Figs. 1(e) and 1(f), respectively, for the times indicated by the
arrows in those figures. Panel (c) shows temporal covariances for
the RSOS (circles; for ω = −20 and L0 = 60 × 104), SS (triangles;
for ω = −40 and L0 = 16 × 104), and etching (star; for ω = −40
and L0 = 8 × 104) models, for t0 ∈ [100,1000]. The data in (d)
is for the RSOS model with ω = 20 and L0 = 16 × 104, for t0 =
100,500,1000,10 000. Effective exponents λ̄eff, calculated as the
successive slopes of the curves in (d), are depicted in the inset.

and t � t∗, there is also a deviation from Airy1, but in the
opposite direction, as also found in [15].

We analyze also the (two-point) temporal covariance
CT (t,t0) = 〈h(x,t0)h(x,t)〉 − 〈h〉2 
 (�2t0t)β�(t/t0), whose
scaling function �(z) is expected to decay asymptotically as
�(z) ∼ z−λ̄, with λ̄ = β + 1/z for flat and λ̄ = β for curved
1D interfaces [22,23]. In Figs. 2(c) and 2(d) examples of
rescaled covariances for ingrowing and outgrowing systems
are respectively shown, for large L0. In both cases, at inter-
mediate times the behavior is consistent with that expected for
flat interfaces, namely, λ̄ ≈ 1. For long times, however, the
exponent approaches the value for curved 1D KPZ interfaces
λ̄ = 1/3 for ω > 0, as shown by the effective exponents λ̄eff

displayed in the inset of Fig. 2(d). Actually, this flat-curved
crossover manifests in two ways: (i) For small t0, a regime
with λ̄ ≈ 1 is observed, which is followed by a decreasing in
λ̄eff toward λ̄ = 1/3 as t increases. (ii) By increasing t0 the
initial regime λ̄ ≈ 1 is lost and the larger t0 is the closer λ̄eff

is from 1/3 at small ratios t/t0. For ω < 0 a similar behavior
is observed; however, rather than a crossover to the curved
behavior, a fast decrease is found in the rescaled covariance
for large t/t0.

Altogether, the results above and those in Refs. [13,15]
demonstrate that a full flat statistics shall appear in KPZ
interfaces whenever L0 � 1, regardless if they are growing
inward or outward. In the last case, a crossover to the curved
statistics occurs at t ≈ tc, which cannot be observed in the
former case because the system correlates at t∗ < tc. Therefore,
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FIG. 3. Short-time behavior of the HDs’ cumulant ratios
(a) skewness and (b) kurtosis as functions of the surface mean height
〈h〉, for several KPZ models, with L0 = 1600, and ω = 10 [0] for the
BD, etching, and RSOS [Eden and BD-Eden] models. The horizontal
solid lines indicate the values of these ratios for the GOE and GUE
TW distributions.

we are led to inquire how Yunker et al. [16] have found HDs
consistent with GUE in the deposition of slight anisotropic
colloidal particles at the edges of evaporating drops, once their
system exhibits an inward growth. To understand this, we start
by remarking that, as stressed by some of us in Ref. [24], all
results in Ref. [16] were obtained for the deposition of very few
monolayers (MLs) of particles and, thus, they are probably far
from any asymptotic regime (where GOE and GUE HDs live).
Indeed, the apparent GUE behavior was observed for systems
with average height 〈h〉 � 20 μm in the deposition of particles
with diameters D ≈ 1 μm. Namely, the deposits investigated
in [16] have less than 20 MLs and, in such regime, the HDs are
expected to present only short-time transients and crossovers.

To demonstrate this, we have performed simulations of three
other KPZ models, focusing on their short-time HDs. In the
ballistic deposition (BD) model, a particle is deposited at a
(randomly chosen) site i with hi → max(hi−1,hi + 1,hi+1). In
the Eden model [25], a deposit is created by adding particles
at empty sites in its neighborhood. More specifically, we study
here the so-called version B of the Eden model on the square
lattice, starting from a line of particles at its bottom. The system
evolves by randomly sorting occupied sites in the deposit
which have empty NN sites and then placing a new particle
in one of these empty sites at random. We investigate also
a competitive BD-Eden model, where particles are deposited
according to the BD rule with probability p or according to the
Eden rule with probability (1 − p), so that for p = 1 (p = 0)
the simple BD (Eden) model is recovered. Figures 3(a) and 3(b)
present, respectively, the skewness and kurtosis of the HDs for

the BD, Eden, etching, RSOS, and BD-Eden (with p = 0.35)
models, for deposition of very few MLs, comparable to those
in the colloidal deposits. As expected, each model displays a
different behavior and no trace of universality is found in this
regime, indicating that we cannot draw reliable conclusions
on the asymptotic HDs based on systems with ∼20 MLs.
Since each system has a different variation of S and K for
small 〈h〉, there can exist even some that by chance agree
with GUE during a short-time interval. This is the case, for
instance, in the BD-Eden model with probability p = 0.35 (see
Fig. 3), and the same thing can be happening in the colloidal
deposition experiment. Investigation of this system for a larger
number of MLs might confirm, or rule this out. We remark
that, despite the approximated agreement with the experiments,
we do not think that the BD-Eden model captures all key
aggregation mechanisms from the colloidal system. Indeed,
in the Supplemental Material video provided in [16], one can
see a much more complex aggregation behavior taking place
there, with, e.g., the deposition of large clusters of particles,
which can be also a relevant KPZ mechanism [26,27].

In summary, we have demonstrated that the flat statistics
found by FT [15] in inward growth of liquid-crystal experi-
ments and Eden model simulations is a rather general crossover
effect induced by the large initial system size L0, which appears
even in outward growth. Therefore, it is not a consequence
of the inward growth or any effect of the sign of the initial
curvature, as Ref. [15] may suggest. We remark that recent
works on vapor deposition of CdTe films (which is known
to be a 2D KPZ system [28]) have reported crossovers from
random to KPZ [29] and from a pseudo-steady-state to KPZ
(flat) statistics [30]. Moreover, the crossover in the HDs from
Edwards-Wilkinson [31] to KPZ class has been numerically
investigated in some competitive growth models [32]. Thereby,
the GOE-GUE crossover discussed here (for ω > 0) is only one
example in a list of possible transient effects in KPZ systems.
The GOE-correlated crossover observed here and by FT for
ω < 0 is an expected result, for which a scaling relation for the
interface width was introduced. Finally, a possible explanation
for the apparent GUE HDs observed in the deposition of slight
anisotropic colloidal particles was given, which possibly solves
the controversy with the experimental results by FT, and points
out that we have to be cautious when extracting information
on asymptotic regimes from experimental interfaces.

We thank S. C. Ferreira for calling our attention for the
inward growth problem, and the support from CNPq, Capes,
and FAPEMIG (Brazilian agencies).
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