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Improved multipoint statistics method for reconstructing three-dimensional porous media
from a two-dimensional image via porosity matching
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Reconstructing a three-dimensional (3D) structure from a single two-dimensional training image (TI) is a
challenging issue. Multiple-point statistics (MPS) is an effective method to solve this problem. However, in the
traditional MPS method, errors occur while statistical features of reconstruction, such as porosity, connectivity,
and structural properties, deviate from those of TI. Due to the MPS reconstruction mechanism that the voxel being
reconstructed is dependent on the reconstructed voxel, it may cause error accumulation during simulations, which
can easily lead to a significant difference between the real 3D structure and the reconstructed result. To reduce
error accumulation and improve morphological similarity, an improved MPS method based on porosity matching
is proposed. In the reconstruction, we search the matching pattern in the TI directly. Meanwhile, a multigrid
approach is also applied to capture the large-scale structures of the TI. To demonstrate its superiority over the
traditional MPS method, our method is tested on different sandstone samples from many aspects, including
accuracy, stability, generalization, and flow characteristics. Experimental results show that the reconstruction
results by the improved MPS method effectively match the CT sandstone samples in correlation functions, local
porosity distribution, morphological parameters, and permeability.
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I. INTRODUCTION

Three-dimensional (3D) microstructures have significant
effects on the properties of porous media in reservoir modeling.
In general, the 3D microstructure of porous media is required
to simulate its flow and transport properties, which is mainly
related to the morphological features of the pore—the shapes
and sizes of the pores—and the connectivity—the way the
pores are connected and the frequency of their interconnection
[1,2]. There are two methods to reproduce 3D microstructures
of porous media. The first method is based on instruments such
as serial sectioning, x-ray computed microtomography (CT),
focused ion beam (FIB), laser-scanning confocal microscopy,
and scanning electron microscopy (SEM). In this approach,
the 3D microstructures of porous media can be directly and
accurately obtained. However, on the one hand, the high cost
and unavailability of instruments limit the application of such
methods. On the other hand, in contrast to 3D images, high-
resolution two-dimensional (2D) sections of porous media can
be obtained with relative ease. Hence the reconstruction of the
microstructure of 3D heterogeneous materials from a 2D image
is of great value in such cases. In the last few decades, several
main reconstruction methods, i.e., process-based reconstruc-
tion [3], simulated annealing (SA) [4–7], texture synthesis
[8–10], Gaussian random field [11], and multipoint statistics
(MPS) [12–17] methods, have recorded considerable improve-
ments.

Process-based reconstruction numerically emulates the
growth of a porous medium on a computer. To obtain the
porous medium structure by this method, adequate understand-
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ing of the physical or chemical mechanism that forms the
microstructure is essential. However, this understanding is
difficult to attain for some porous rocks, such as carbonates.
Practical simulations have determined that the method is
limited to simulating porous samples in a small size and with
a short-range connectivity.

The Gaussian random field method proposed by Roberts
et al. [11] aims at reconstructing statistically homogeneous and
isotropic random media from the associated two-point corre-
lation functions. However, although a variety of microstruc-
tures can be generated using this method, the morphological
information in the reconstruction can be determined by the
two-point correlation functions.

SA is an optimization technique based on the principle of
metal annealing and inspired by the Monte Carlo methods in
statistical mechanics. The SA algorithm enables the flexibility
of combining multiple statistical descriptors to more effec-
tively describe the spatial characteristics of random porous
structures. A combination of different microstructural descrip-
tors [18] has been successfully used to reconstruct several
porous media, including sandstone and chalk. Furthermore,
a global optimal solution in the process can be obtained
such that the reconstruction result has the same statistical
characteristics as the training image (TI). However, this ap-
proach is time consuming for the convergence of the objective
function. Several methods have been presented to improve the
performance of this method. Alexander et al. [19] proposed a
hierarchical simulated annealing (HSA) method to reduce the
computational cost such that more complex synthesis problems
can be attempted on large images with multiple scales using
this approach. Jiao et al. [20–22] introduced a lattice-point
algorithm for efficiently reconstructing homogeneous and
isotropic media and described an algorithm modification using
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surface optimization to speed up the reconstruction process
[23]. Gerke and Karsanina [24] introduced a way to weight
correlation function input into the energy function, which
improved both accuracy and convergence rate.

The texture synthesis method [8–10] has witnessed rapid
development in recent years. It is an optimization method that
considers the microstructure as a stationary Markov random
field. The method mainly uses a global energy function to
quantitatively measure the difference between the TI and the
reconstructed 3D structure, and then minimize the energy func-
tion to obtain a synthesized high-quality texture. Nevertheless,
the synthesized result mainly accounts for visual similarity
with the TI, while seldom considering the consistency of
statistical distributions.

The methods described above still cannot preserve mor-
phological features and reproduce the flow characteristics of
the complex porous media well. The MPS method, originally
proposed by Guardiano and Srivastava [12], uses a template
to capture connectivity and local morphological information.
However, it is time consuming to scan the TI to obtain each
new data event, thereby rendering this method impracticable.
To address this problem, Strebelle et al. [25] proposed a
single normal equation simulation (SNESIM) method in which
all pattern types are stored by a search tree after the TI is
scanned once. Therefore, it is feasible to apply SNESIM to 3D
reservoirs. However, the SNESIM method suffers from large
memory requirements of the large 3D reservoirs.

More recently, the direct sampling (DS) approach proposed
by Mariethoz et al. [26,27] was shown to identify the pattern
resembling the targeted data event most in the TI. The pattern
can be directly pasted into the grid. However, it is diffi-
cult to adjust some parameters with this method. Tahmasebi
et al. [28–32] proposed the cross-correlation–based simulation
(CCSIM) method, in which the matching block is judged
by a cross-correlation function together with a grid-splitting
methodology. In this method, the computational speed and
the accuracy of the simulated result can be greatly improved.
A three-step sampling method presented by Gao et al. [33]
generates the 3D structure by stacking a series of 2D images.
In this method, it is crucial to control the continuity of the
adjacent layers as well as the variability. The main advantage
of the method is that connectivity can be preserved effectively.

However, in the traditional MPS method, one seldom
considers the error accumulation, which may cause a great
morphological difference between the TI and the reconstructed
3D structure, such as average volume of pore, average shape
factor of pore, and average coordination number for sandstone
materials. Moreover, due to the deficiency of the global statistic
in the traditional MPS method, connectivity cannot always be
captured dramatically.

To improve morphological similarity and strengthen
stability in the reconstruction, an improved MPS method based
on porosity matching is proposed to reduce error accumulation.
For each reconstruction, we search the matching pattern in
the TI directly, which is inspired by the texture synthesis
[8–10] and the DS method [26,27]. The porosity matching
scheme determines whether to correct the reconstructed
voxel according to porosity deviation between the TI and the
reconstructed 3D structure. A multigrid system is also used to
capture the large-scale structures of the TI. Tests conducted

FIG. 1. Template and pattern: (a) template, (b) 15 × 15 TI, and
(c) pattern.

on different sandstone samples demonstrate the accuracy,
efficiency, stability, and generalization of the proposed method.

The remainder of this paper is organized as follows. In
Sec. II, we describe the traditional MPS algorithm, while
the improved MPS method is presented in Sec. III. In
Sec. IV, the performance of the proposed method is demon-
strated. Conclusions are presented in Sec. V.

II. MULTIPOINT GEOLOGY STATISTICS METHOD

The SNESIM multipoint statistics method described in this
section was proposed by Strebelle [19] in 2002. In this method,
pattern information extracted from 2D TI is used to reconstruct
the 3D structure. Since all patterns come from the TI, the TI
must satisfy the stationary and Eigen assumption. Two main
steps are used to generate a 3D model using a single TI: pattern
set establishment and reconstruction.

To obtain the pattern, a searching template is used for
scanning the TI. The searching template τn is composed of
n locations hα and a central location u:

τn = {hα,α = 1,...,n}. (1)

Here hα denotes the vectorized locations. Thus, the different
positions can be defined as

uα = u + hα α = 1,...,n. (2)

As shown in Fig. 1(a), the template size is 7 × 7 and the
template includes 48 vectors. The TI shown in Fig. 1(b) is
scanned using this template to obtain the pattern shown in
Fig. 1(c). Therefore, by scanning the TI by the searching
template, the pattern at each location u is obtained. The pattern
is defined as

T (u) = {i(u); i(u + hα),α = 1,...,n}, (3)

where i(u) denotes the pixel value of location u for a searching
template. The pattern is determined by the pixel value of each
location. Then a set is defined to store all patterns in the TI,
which can be written as

Vset = {T (ui)} i = 1,...,m. (4)

Here m denotes the number of voxels in the TI. Assuming
that location u has K possible statuses {Sk,k = 1,2,...,K}, we
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can obtain the simulated voxel by calculating the probability
of occurrence of patterns uα . The probability, also called the
conditioning probability distribution function, is written as

P (i(u) = sk|Tn) = P {i(u) = sk,i(uα) = sα}
P {i(uα) = sα} ,

α = 1,...,n, (5)

where Tn denotes a specific pattern i(uα) = sα . For a specific
status sk k = 1,...,K , the probability of location u can be
calculated by the condition i(uα) = sα . The equation can also
be defined as

P (i(u) = sk|Tn) = N{i(u) = sk,i(uα) = sα}
N{i(uα) = sα}

α = 1,...,n. (6)

Here N is the number of a specific pattern. For the same
conditioning data, the pixel value of location uα is calculated
as follows:

sk = sq |max[N{i(u)=sk,i(uα)=sα}] k,q = 1,...,K. (7)

III. PROPOSED METHOD

A. Pattern matching

Similar to DS [26,27] and texture synthesis [8–10], we
adopted a pattern-matching method that calculates the Eu-
clidean distance between the searching pattern in the recon-
structed 3D structure and the matching pattern in the TI. To
preserve the local structure of the TI to the greatest extent, the
errors for nearby pixels should be greater than those for distant
pixels [8]. Thus, the Gaussian weighting function is used in
the distance calculation. To this end, taking the x direction as
an example, the function is defined as

ev,x = arg min
ev,x

∑
u∈Ni (v)

Gv,u||sv,x − ev,x ||2. (8)

Here e and s denote the TI and the reconstructed 3D
structure, respectively, v and sv indicate the voxel being
reconstructed and the value of voxel v, respectively, and sv,x

is the vectorized searching pattern of v in the slice orthogonal
to the x axis. The pattern closest to sv,i is denoted by ev,i in
the TI, as shown in Fig. 2; this is called the matching pattern.

FIG. 2. Pattern matching: (a) TI and (b) simulated 3D structure.

In addition, Ni(v) represents each location of the voxel in the
searching pattern and matching pattern.

After directly searching the three matching patterns in the
TI, we consider only the center pixels of the three matching
patterns. If any two pixels belong to the same phase, we regard
this phase as the reconstructed value.

The pattern-matching method based on Gaussian weighting
Euclidean distance enables the corresponding pixels closer to
the central voxel more similarity between the searching pattern
and the matching pattern, such that the local similarity between
the TI and the reconstructed 3D structure can be strengthened
as much as possible. Moreover, this method can capture the
connectivity of pore space, causing our reconstruction to be
consistent with the CT sample in global connectivity.

B. Multiple-grid approach

In the MPS method, a multiple-grid simulation approach is
used to capture the large-scale structures of the TI, in which
a number of increasingly finer grids are simulated [25,34].
Moreover, Liu et al. [35] pointed out that a three-grid system
is most suitable to obtain the best reconstruction performance
after considering efficiency and accuracy. Thus, we herein
adopt the three-grid system as shown in Fig. 3.

In a multigrid system, reconstruction is first performed on
the third grid. Then, the reconstructed pixels are allocated to
the corresponding grid nodes on the second grid, and these grid
nodes are regarded as the conditioning data in the second grid
reconstruction. The reconstruction in the third grid is the same
as in the second grid.

FIG. 3. Three-grid system: (a) the third grid, (b) the second grid, and (c) the first grid.
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TABLE I. Procedure of the improved MPS method.

(1) Initiate simulated structure S, set the multiple-grid system, Scoarsest,Sfiner,Sfinest;
(2) For (S == Scoarsest ; S! = Sfinest; S + +);
(3) If (S == Scoarsest);
(4) Select voxel v and calculate the searching patterns, sv,i ;
(5) Search the matching patterns ev,i corresponding to sv,i in the TI;
(6) Calculate the reconstructed voxel v;
(7) Or else
(8) Select voxel v and set a threshold, Num;
(9) Count the conditioning data and reconstructed voxel Nv,i for sv,i ;
(10) Count the number l with Nv,i > Num,i ∈ {x,y,z};
(11) If (l == 3),
(12) Search ev,i for each sv,i and then reconstruct v;
(13) Or if (l == 2),
(14) Search ev,i corresponding to sv,i with Nv,i > Num;
(15) Calculate the shortest distance for sv,i and obtain the reconstructed voxel;
(16) Or else
(17) Repeat 8–17;
(18) Porosity matching is immediately performed after the voxel is reconstructed each time.

It is notable that to fully leverage the conditioning data,
we adopt different reconstruction methods to obtain accurate
results. It can be classified into three different situations
according to the amount of conditioning data and reconstructed
voxel in each searching pattern. We set a threshold for the
amount. If the conditioning data and reconstructed voxel in the
three searching patterns respectively transcend the threshold,
the grid node can be reconstructed by Eq. (8). If only two
searching patterns meet the demand, we calculate the distances
of the two matching patterns corresponding to the searching
patterns. Then, the center pixel of the matching patterns of the
shortest distance is used as the grid node. In the other case, the
voxel being simulated is temporarily set aside. We loop until
all grid nodes are simulated.

C. Porosity matching

The traditional MPS method mainly considers the local
similarity without considering any global statistics between the
reconstructed 3D structure and the TI in the reconstruction. The
error accumulation in the process may cause significant differ-
ences in the global morphologies between the reconstructed
3D structure and the CT sample, such as porosity, connectivity,
structural properties, and permeability.

To address this challenge, we present a porosity matching
scheme that effectively reduces error accumulation and thereby
strengthens global morphological similarity between our re-
construction and the CT sample. Porosity is a fundamental
parameter to describe the reconstructed 3D structure. The
proposed porosity matching scheme is a simple but effective
method designed to make the porosity of the reconstructed 3D
structure close to the TI. Specifically, we adjust the value of
the reconstructed voxel according to Eq. (9) to ensure that the
porosity of the constructed 3D structure matches the TI:

V =
⎧⎨
⎩

1−V V =1, ϕrec � (1 + σ ) × ϕori, R<0.5

1−V V =0, ϕrec � (1−σ ) × ϕori, R�0.5
V else

, (9)

where V and V respectively denote the value of the recon-
structed voxel and the modified value of the reconstructed
voxel; 0 and 1 represent the respective grain and pore phases;
and Pori Prec respectively denote the porosity of the TI and the
reconstructed 3D structure. In addition, σ is a threshold that
represents a small difference in porosity between the recon-
structed 3D structure and the TI. R represents the percentage
of the pore phase in the cube neighborhood centered on the
voxel being simulated.

The above formula reads as follows. We maintain the
porosity of the 3D structure to update as the reconstruction
progresses. If the current porosity Prec of the 3D structure
surpasses Pori by an unacceptable value and the current value
of the reconstructed voxel is pore phase, then we consider the
cube neighborhood of the voxel being simulated. That is, if
the percentage of the pore phase R is less than 0.5, we modify
the reconstructed voxel from the pore phase (value 1) to the
grain phase (value 0); otherwise the reconstructed voxel is
unchanged. If the current Prec is significantly lower than Pori

and the reconstructed voxel is the grain phase, and R is more
than 0.5, we turn the grain phase to the pore phase according to
Eq. (9) correspondingly. In the other case, porosity matching
is not applied.

Porosity matching enables the global statistics of the 3D
structure to match the TI, while pattern matching strength-
ens the local similarity. The integrated method automatically
adapts to the current situation: if the porosity of the recon-
structed 3D structure is far from the TI, we carry out porosity
matching for the reconstructed voxel; otherwise the reconstruc-
tion switches to pattern matching only. The procedures of the
improved MPS method are presented in Table I.

IV. RESULTS AND DISCUSSION

In this section, our method is tested on sandstone samples
from several aspects, including correlation functions, local
porosity distribution, morphological parameters, stability, gen-
eralization, and permeability.
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FIG. 4. Microstructures obtained from the CT sample of sandstone, the traditional MPS method, and the improved MPS method: (a) TI;
(b) CT sample; (c) reconstructed result by the improved MPS method; (d) reconstructed result by the traditional MPS method; (e) 3D slice
of the CT sample; (f) 3D slice of the reconstructed result by the improved MPS method; and (g) 3D slice of the reconstructed result by the
traditional MPS method.

A. Results and correlation functions analysis

The 2D slice of a CT sandstone sample of 128 × 128 pixel
size is handled as the TI, as shown in Fig. 4(a). It has a
resolution of 10 μm. Black pixels correspond to grain and
white pixels correspond to pore. The porosity of TI is close to
that of the CT sample with 0.2001 and 0.1937, respectively.
The perspective images of the CT sample, the reconstructed
results by the improved MPS method, and the traditional MPS
method proposed by Gao [33] are shown in Figs. 4(b)–4(d),
respectively, and the 3D slices are shown in Figs. 4(e)–4(g).
In the traditional MPS method and the improved method,
the three-grid system is employed, and the template size
used is 9 × 9 in our reconstruction. In the porosity matching
scheme, the size of the cube neighborhood is 5 × 5 × 5 and
the threshold σ is 0.05.

At the visual level, our reconstruction reproduces the
structure and connectivity of the CT sample. However, it is not

sufficient to determine the efficiency and accuracy of the pro-
posed method. Thus, several approaches were used to present a
more quantitative comparison between our reconstruction and
the CT sample, and we also compared its performance with
that of the traditional MPS method.

The autocorrelation function [1,36] is a fundamental de-
scriptor and mainly indicates two-point distribution in random
heterogeneous materials. The autocorrelation function of the
pore phase in porous media is defined as

R(u) = 〈[I (r) − φ][I (r + u) − φ]〉
φ − φ2

. (10)

Here r represents different locations within the porous
media. In addition, I (r) is a descriptor such that I (r) = 1 if
r belongs to the pore space and I (r) = 0 in the other case. The
porosity of the media is written as φ = 〈I (r)〉.
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FIG. 5. Comparison of autocorrelation functions for the CT sample, reconstructed results of the traditional MPS method, and the improved
MPS method in x, y, and z directions corresponding to (a)–(c), and the lineal path functions corresponding to (d)–(f). The numbers in parentheses
indicate the L2 norm errors.

The lineal path function, employed by Torquato and Lu
[37,38], contains some topological connected information
along a lineal path, thus partly reflecting connectedness in-
formation of a material system. The lineal path function
measures the structural connectivity within a porous medium.
The descriptor is concerned with the probability of selecting
a vector ⇀r with each voxel located in one phase within the
image. The lineal path function—the multipoint connectivity
probability—is written as

L(⇀u,⇀u + ⇀r) =
{

1 ⇀r ∈ V0

0 else . (11)

The advantage of the lineal path function is that we can
account for the curvilinearity of the system by considering a
tolerance core around a given direction, which improves both
characterization and, potentially, the reconstruction’s accuracy
[39,40].

We compared the autocorrelation functions and the lineal
path functions of the CT sample, and the reconstructed results
by the improved MPS method and the traditional MPS method
in the three orthogonal directions. The curves of the compar-
isons are shown in Fig. 5. It is evident that the autocorrelation
functions and the lineal path functions of the reconstructed
results by the improved MPS method and the traditional MPS
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method are in agreement with the CT sample in the three
orthogonal directions.

B. Local porosity property

In this section, we compare the local porosity distribution
[41,42] of the CT sample, the reconstructed results of the pro-
posed method, and the traditional method. The local porosity
is defined as

φ(⇀r,L) = N (P ∩ K(⇀r,L))

N (K(⇀r,L))
, (12)

where unit K(�r,L) is a cube centered at ⇀r with length L in a 3D
image, P denotes one phase in the 3D image, and N(K(⇀r,L))
represents the volume of unit K(�r,L).

The local porosity distribution μ(φ,L) is defined as

μ(φ,L) = 1

m

∑
⇀
r

δ(φ − φ(
⇀

r,L)), (13)

where m is the number of placements of the measurement cell
K(�r,L).

One unit with length L is set to scan the 3D sample to obtain
the probability of different local porosities. The special length
scale L is defined as

L = min{L : μ(0,L) = μ(1,L) = 0}, (14)

at which the δ distributions at φ = 0 and 1 both vanish for the
first time. In this place, L = 21.

The value of the local porosity and the probability of
occurrence of the local porosity are represented by the x axis
and y axis, respectively, as shown in Fig. 6.

Comparison of the local porosity distributions of the CT
sample, the reconstructed results of the traditional MPS
method, and the improved MPS method, are also presented
in Fig. 6. In general, the local porosity distributions indicate
some similarities in the changing trends for each sample. Peaks
appear at the porosity between 0.19 and 0.21, which is similar
to the porosity of the CT sample. In Fig. 6, the local porosity
distribution of the reconstruction generated by the improved
MPS method is much closer to that of the traditional CT
sample.

FIG. 6. Comparison of the local porosity distributions for the CT
sample, reconstructed results of the traditional MPS method, and the
improved MPS method.

C. Morphological parameters comparison

To verify the efficiency and accuracy of the proposed
method in preserving the morphological features of the CT
sample, we compared some important morphological param-
eters of the CT sample, the reconstructed results by the
traditional MPS method, and the improved MPS, as presented
in Table II.

It can be seen that the parameters of the morphological
features generated by the improved MPS method are closer
to the CT sample than those produced by the traditional MPS
method. The error formula to calculate the deviation between
the measured value and real value is

δ = |L1 − L0|
L0

× 100%. (15)

Here L0 and L1 represent real value and the measured value,
respectively.

Table II presents a series of errors corresponding to different
parameters. The average error of the improved MPS is 5.96%,
which is significantly lower than the average error of 26.22%
for the traditional MPS. This is because the porosity matching
scheme promotes the generation of cluster structure and further
strengthens the connectivity of the reconstructed result as the

TABLE II. Comparison of morphological parameters of the CT sample, reconstructed results of the traditional MPS method, and improved
MPS method.

Error of Error of
Traditional Improved traditional improved

Micro-CT MPS MPS MPS MPS

Porosity 0.1937 0.1947 0.1993 0.52% 2.89%
Average diameter of pore equivalent sphere (μm) 41.3 30.1 45.6 27.12% 10.41%
Average volume of pore (μm3) 2.46 × 105 1.15 × 105 2.29 × 105 53.44% 6.90%
Average diameter of the smallest ball of pore (μm) 78.6 51.5 88.7 34.48% 12.85%
Average surface area of pore (μm2) 2.37 × 104 1.38 × 104 2.49 × 104 42.03% 5.06%
Average shape factor of pore 0.66 0.73 0.60 10.61% 9.09%
Average pore-throat ratio 1.01 0.69 1.08 31.68% 6.93%
Average longest diameter of throat section (μm) 56.4 49.1 56.7 12.94% 0.53%
Average coordination number 2.24 1.51 2.30 32.59% 2.68%
Average cross-sectional area of throat (μm2) 1925 1602 1882 16.78% 2.23%
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FIG. 7. Comparison of the average volume of pore in (a) the average shape factor in (b) and the average coordination number in (c) among
ten sets of microstructures from the same TI, ten sets of microstructures from ten different slices, and the CT sample.

reconstruction progresses. Due to error accumulation in the
process, the traditional MPS method yields huge morphologi-
cal differences between our reconstruction and the CT sample.
The sets of errors indicate that our method is efficient and
accurate in maintaining the connectivity and morphological
features of the CT sample, thereby demonstrating immense
superiority over the traditional MPS method.

D. Stability and generalization

Thanks to the porosity matching scheme, the stability of
our algorithm in reproducing the morphology can be ensured.
To demonstrate this, we reconstructed ten microstructures of
3D sandstone from the same TI. In addition, to verify the
generalization of the proposed method, ten different slices are
randomly chosen as TI and are respectively used to reconstruct
the corresponding 3D microstructures. A comparison of three
important morphological parameters (average volume of pore,
average shape factor of pore, and average coordination num-
ber) is shown in Fig. 7.

It can be clearly seen that three morphological parameters
of the proposed method slightly fluctuate around those of
the CT sample in Fig. 7. Therefore, slight changes of those
morphological parameters indicate the accuracy, stability, and
generalization of the proposed method. It is known that
the average pore volume and average pore shape factor are
relevant to the sizes and shapes of the pores, and the average
coordination number is related to connectivity. Moreover, flow

and transport properties of porous media are mainly dependent
on the distribution of pore sizes, pore shapes, and the 3D
spatial connectivity of a porous medium. According to those
parameters, we can infer roughly that our reconstruction has
similar flow and transport properties to the CT sample. To prove
that, flow characteristics simulation is carried out in the next
section.

E. Flow characteristics

To verify the effectiveness of our algorithm in reproducing
the flow and transport characteristics of porous media, the
permeabilities for single-phase flow and two-phase flow of the
reconstructed results are tested in this section.

We first utilized the free software Finite-Difference Method
Stokes Solver (FDMSS), which was proposed by Gerke [43], to
obtain the absolute permeability. FDMSS provided a computa-
tionally efficient and accurate basis for single-phase pore-scale
flow simulations and it solved the Stokes equation using a
finite-difference method (FDM) directly on voxelized 3D pore
geometries. The absolute permeabilities of the CT sample,
the traditional MPS method, and our reconstruction were
1156 mD, 841 mD, and 1095 mD, respectively, according to
this method. It can be seen that the absolute permeability of
our reconstruction is in accordance with that of CT sample.

To further obtain the relative permeability, we adopted
the method introduced by Dong and Blunt [44], who used
the maximal ball algorithm to extract the sizes of the pores
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FIG. 8. Pore-throat network model: (a) the pore-throat network model of the CT sample; (b) the pore-throat network model of a reconstructed
result by the traditional MPS method; and (c) the pore-throat network model of the improved MPS method.

and throats from images of a porous medium. This algorithm
was developed to extract topologically disordered networks
of pores and throats with parametrized geometry and inter-
connectivity. Herein we mainly used Valvatne’s code [45] for
simulations, and the pore-throat network model as shown in
Fig. 8.

The two-phase flow simulation was divided into two pro-
cedures: the primary drainage displacement of a nonwetting
phase (oil) by the wetting phase (water) and the reverse
imbibition process. The oil and water densities were assumed
to be 900 and 1000 kg/m3, respectively, and the water-oil
surface tension was assumed to be 3 × 10−2 N/m; the oil
and water viscosities were assumed to be 1.05 × 10−3 and
1.0 × 10−3 kg/ms, respectively. In the first step, the pore-throat
network is supposed to be wetted by the wetting phase, with
a receding contact angle of 0° and an advancing contact angle
of 0°. In the following step, the receding contact angle was set
to 50° and the advancing contact angle was set to 60°.

The trends of oil and water relative permeability in drainage
and imbibition processes are shown in Figs. 9(a) and 9(b),
respectively. It can be seen that relative permeabilities of our
reconstruction and the traditional MPS method match those
of the CT sample well. In summary, the proposed method can
reproduce the flow and transport characteristics of CT sample
well, thus demonstrating that our reconstruction has statistical
equivalent properties to that of CT sample and can be used for
simulating the flow properties in reservoir modeling.

V. CONCLUSION

In this paper, we presented an improved MPS method
using a 2D slice to reconstruct 3D porous media. A Gaussian
weighting pattern-matching method was applied to the pro-
posed method to strengthen the spatial structure similarity of
the reconstructed result. A global porosity matching scheme
was additionally proposed to reduce error accumulation and
thereby ensure the accuracy and stability of our method.

Several approaches were used to verify the effectiveness
of the improved MPS method. We compared its performance
with that of the traditional MPS method. Visual comparison
showed that it was feasible for our method to capture the
connectivity of the CT sample. With respect to correlation
functions, such as the autocorrelation function and lineal path
function, the reconstructed result was consistent with the CT
sample. Measurement of the local porosity distribution showed
that our method reproduced the characteristic structure of
the pore space. Comparisons of morphological parameters
demonstrated that our method precisely captured the mor-
phological features of the CT sample, thereby demonstrating
its immense superiority over the traditional MPS method.
Furthermore, our algorithm maintained a solid stability and
good generalization. Analysis of permeability showed that
our algorithm can reproduce flow and transport properties
successfully and thereby can be applied to simulating the flow
characteristics in reservoir modeling.

FIG. 9. Comparison of relative permeability among the CT sample, the traditional MPS method, and the improved MPS method: (a) drainage
and (b) imbibition.
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Several experiments verified the performance of our
method. Considering its accuracy and stability, we aspire for
its application to be widespread. However, because of direct
searching of the matching pattern in the TI for each simulation,
our method is more time consuming than the traditional MPS
method. Therefore, further research should be conducted to
reduce the time consumption of this method. In addition,

other global statistics can be investigated to reduce error
accumulation.
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