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Farzaneh Hajabdollahi* and Kannan N. Premnath†

Department of Mechanical Engineering, University of Colorado Denver, 1200 Larimer Street, Denver, Colorado 80124, USA

(Received 13 July 2017; revised manuscript received 5 January 2018; published 18 June 2018)

Operator split forcing schemes exploiting a symmetrization principle, i.e., Strang splitting, for cascaded lattice
Boltzmann (LB) methods in two- and three-dimensions for fluid flows with impressed local forces are presented.
Analogous scheme for the passive scalar transport represented by a convection-diffusion equation with a source
term in a novel cascaded LB formulation is also derived. They are based on symmetric applications of the split
solutions of the changes on the scalar field or fluid momentum due to the sources or forces over half time steps
before and after the collision step. The latter step is effectively represented in terms of the post-collision change
of moments at zeroth and first orders, respectively, to represent the effect of the sources on the scalar transport
and forces on the fluid flow. Such symmetrized operator split cascaded LB schemes are consistent with the
second-order Strang splitting and naturally avoid any discrete effects due to forces or sources by appropriately
projecting their effects for higher-order moments. All the force or source implementation steps are performed
only in the moment space and they do not require formulations as extra terms and their additional transformations
to the velocity space. These result in particularly simpler and efficient schemes to incorporate forces or sources in
the cascaded LB methods unlike those considered previously. Numerical study for various benchmark problems
in 2D and 3D for fluid flow problems with body forces and scalar transport with sources demonstrate the validity
and accuracy, as well as the second-order convergence rate of the symmetrized operator split forcing or source
schemes for the cascaded LB methods.
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I. INTRODUCTION

The lattice Boltzmann (LB) method is now a well-
established alternative numerical technique to computational
fluid dynamics (CFD) problems. It derives its basis from kinetic
formulations involving the streaming of particle populations
along their characteristic directions comprising the lattice, and
collisions at lattice nodes represented as a relaxation process,
as well as a procedure to represent the effect of impressed
forces. The emergent fluid flow behavior is the averaged effect
of such stream, collide, and forcing steps, and thus the LB
method may be classified as a mesoscopic approach. Some
important advantages of the LB method include its natural
framework to incorporate kinetic models for complex flows,
ease of implementation of boundary conditions, and intrinsic
adaptability to parallel computing due to its localized compu-
tational steps. As a result, the LB scheme has been successfully
applied to a broad range of complex fluid mechanics problems,
including multiphase and multicomponent flows, turbulence,
thermal convective flows, among various other problems [1–4].
More recent efforts have focused on further improving the
accuracy, stability and efficiency of the LB method to further
expand its scope for applications.

The collision step, which represents various physics associ-
ated with the fluid motion including the momentum diffusion
as a relaxation process, plays a main role in the numerical
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stability of the method. Among the earliest collision models
is the single relaxation time (SRT) model [5], which, while
being popular due to its simplicity, is susceptible to numerical
instability at relatively high Reynolds numbers. A significant
improvement is achieved by the multiple relaxation time model
(MRT) [6] in which different raw moments relax at different
rates. More recently, further enhancement in stability was
made possible by the introduction of a cascaded LB method,
which is a multiparametric scheme that is based on considering
relaxation in terms of central moments, which are formulated
by shifting the particle velocity by the local fluid velocity [7].
The significant advantages of such more advanced collision
models were numerically demonstrated more recently [8]. A
strategy to accelerate the convergence of the cascaded LB
method has also been devised and studied [9], which has been
further extended with improved Galilean invariance properties
[10].

Another aspect of the LB schemes, which is particularly
important in applications, is the implementation strategy to
represent the various impressed body forces, which can either
arise within the fluids or imposed externally. Some examples
include the local surface tension and phase segregation forces
in multiphase fluid systems, Lorentz forces in magnetohydro-
dynamics, gravity and Coriolis forces. In general, such body
forces can be spatially varying and/or time dependent. Due to
the kinetic nature of the LB method, special considerations are
necessary and various forcing schemes have been introduced
over the years [11–16]. In particular, the investigation by
Ref. [14] highlighted the discrete effects arising in prior
LB forcing schemes via the second-order moments in the
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momentum flux tensor and provided a consistent source term
that avoids such spurious effects when used with the SRT
collision model. This was further generalized to the MRT
model by including source terms in the moment space in both
two-dimensions (2D) and three-dimensions (3D) [4,17,18].

In the case of the cascaded LB method, the first consistent
forcing scheme based on the central moments was presented
by Ref. [19]. By taking the source term proposed by Ref. [20]
as the starting point, they devised a forcing formulation
without discrete effects, which was also shown to be a further
generalization of that presented by Ref. [14] to the cascaded LB
scheme under appropriate limits. Later, Ref. [21] constructed
another type of forcing scheme for the cascaded LB method
based on the exact difference method [16]. More recently,
Refs. [22–24] presented other variants of forcing schemes for
LB methods based on central moments. While all these forcing
schemes differ from one another due to the variations in the
kinetic models for the source term, a common element among
them is the presence of extra source terms or changes to the
equilibria, which are usually taken together with the collision
relaxation terms as part of the collision step. This generally
involves computing source moments at different orders and
transforming them back to the velocity space, which entails
additional computational effort.

Based on the consideration that the LB schemes are gen-
erally fluid flow, i.e., Navier-Stokes (NS), solvers, and by
avoiding the kinetic aspects for the implementation of the
impressed forces, simpler and more efficient strategies can be
constructed. The numerical framework for this is the operator
splitting approach widely used to efficiently solve ordinary
and partial differential equations arising in various applications
including CFD [25,26]. The basis idea is to split the problem
into a set of simpler subproblems and then devise a strategy that
alternates between solving such simpler problems in certain
sequence, which then approximate the solution to the full
problem to a certain order of accuracy. Such operator splitting
techniques are sometimes also referred to as the fractional
step or time-splitting methods. Of particular importance is the
Strang spliting [27], which achieves second-order accuracy by
a symmetrized application of the solution method for one (or
more) of the subproblems. The structure of the higher-order
splitting errors can be analyzed via the Taylor-Lie series
[25] or using the Baker-Compbell-Hausdorff formulas [28].
From such a perspective, Dellar [29] presented a derivation of
the lattice Boltzmann method based on Strang splitting with
second-order accuracy and interpreted both unsplit and time-
split forcing schemes based on this approach. In particular, a
uncoupled spin-step to implement body force in a SRT LB
model introduced earlier by Salmon [30] was shown to be
consistent with the Strang splitting. Furthermore, it was also
extended to the MRT-LB models [29,31].

In the present investigation, our goal is to construct efficient
body force implementation schemes based on the symmetrized
operator (Strang) splitting for the cascaded LB methods. The
lattice symmetry and the use of central moments naturally
impose Galilean invariance for the chosen set of independent
moments basis. The symmetric application of the separate
body force steps in two half time steps in the cascaded LB
formulation provides a second-order accuracy. Unlike the
unsplit forcing schemes presented earlier for the cascaded

LB method [19], our approach does not require either the
computation of various source moments at different orders or
an extra transformation step to convert them back to velocity
space. In essence, the operator-split forcing scheme involves
one half application of the force before collision and the other
half force step after collision. The latter step will be seen to
lead to unique expressions for the post-collision change of
first-order moments in the cascaded collision operator. The
precise structure of these expressions will be shown to depend
on choice of the first-order moment basis vectors associated
with the type of lattice considered. In fact, we will present
operator split forcing scheme for the cascaded LB method
both in 2D and 3D for the computation of the fluid motion. In
addition, to demonstrate the generality of our approach, we will
extend it to represent the convective-diffusion equation (CDE)
with a source term, such as those arising in the convective
thermal flows with internal heat generation. In this regard, a
novel cascaded LB formulation for the solution of the CDE
with source term using the Strang splitting will be constructed.
Finally, we will present a numerical validation study of the
symmetrized operator split forcing/source schemes for the
cascaded LB method for fluid flow (i.e., the NS equations)
and passive scalar transport (i.e., the CDE) and in different
dimensions.

This paper is organized as follows. In Sec. II, we briefly
review the various operator splitting approaches including the
Strang splitting. Section III presents the general ideas behind
the symmetrized operator splitting based forcing implemen-
tation in the LB method. Section IV discusses the derivation
and the algorithmic procedure of the symmetrized operator
split forcing scheme for the 2D cascaded LB method for
representing fluid flow subjected to local impressed forces. A
corresponding 3D formulation is outlined in the Appendix.
Section V presents a symmetrized operator split approach
source incorporation scheme for a 2D cascaded LB scheme
for representing the convection-diffusion based transport of a
passive scalar field with local sources. Numerical validation
results of various symmetrized operator split forcing/source
scheme are presented in Sec. VI. Finally, Sec. VII summarizes
our approach and presents the main conclusion arising from
this work.

II. OPERATOR SPLITTING METHODS

We will now briefly review the various typical operator
splitting methods, including the Strang splitting which will
then be exploited to construct efficient second-order accurate
forcing schemes in the cascaded LB method. For the purpose
of illustration, we will consider the numerical solutions of the
following evolution problem:

d y
dt

= P y + Q y, y(t) = y0 on [t,t + �t], (1)

where, for ease of presentation, P and Q are considered as
linear operators. Nonlinear operators can be dealt with using
Lie operator formalism [28]. Here, �t is the time step. For
reference, the unsplit solution yU of the full problem can be
represented as

yU = e�t(P+Q) y0. (2)
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Now, a first-order splitting scheme, which is sometimes known
as the Lie-Trotter (LT) splitting or as the Godunov splitting
scheme in the CFD literature, can be represented by means of
the following steps, which compute solution to each subprob-
lem involving P and Q separately:

Step P : Solve
d y∗

dt ′
= P y∗,

y∗(t ′ = t) = y0 on [t,t + �t], (3a)

Step Q : Solve
d y∗∗

dt ′
= Q y∗∗,

y∗∗(t ′ = t)= y∗(t+�t) on [t,t+�t], (3b)

Solution : yLT (t + �t) = y∗∗(t + �t). (3c)

This solution of the Lie-Trotter splitting or the P-Q splitting
scheme may be more compactly represented by means of the
exponential operators as

yLT (t + �t) = e�t Qe�t P y0. (4)

The local error (El) incurred over a small time step �t due to
splitting when compared to the unsplit solution [Eq. (2)] can
be estimated by means of a Lie-Taylor series (factored product
expansions) as [25]

El,LT = yLT − yU = 1
2 [P,Q] y0�t2 + O(�t3), (5)

where the symbol [·,·] represents the commutator, i.e., [X,Y] =
XY − YX for any two operators X and Y. Then, the global
error (Eg) over a time duration T or T/�t number of
steps is Eg,LT = (T/�t) · El,LT ∼ O(�t), which means that

the Lie-Trotter scheme is first-order accurate. This means that
even if a higher-order method is used to solve each subproblem
(Step P and Step Q), the above splitting scheme is still overall
first-order accurate due to the decomposition error arising
from the noncommuting operators, which is often the case in
practice.

One possibility to improve the order of accuracy is
to symmetrize the computation via taking the average of
the two sequences of calculations, i.e., Step P-Step Q and
Step Q-Step P results. Such an averaged scheme may be
represented as [32]

yA = 1
2 (e�t Pe�t Q + e�t Qe�t P) y0. (6)

This approach introduces a local error relative to the unsplit
solution [Eq. (2)], which can be written as [33]

El,A = yA − yU = R′
�t3 + O(�t4),

where

R′ = − 1
12 ([P,[P,Q]] + [Q,[Q,P]]) y0.

Hence, the global error becomes Eg,A = (T/�t)El,A ∼
O(�t2). While this is theoretically interesting to gain an
order of accuracy, it is computationally expensive as, for each
time step, double the effort is required when compared to the
previous scheme (P-Q splitting).

A more efficient strategy to achieve a global second-order
accuracy is to devise the Strang (S) splitting [27]. In this
scheme, one of the operators (say P) is applied twice for a
time step of length �t/2, before and after the solution of the
other subproblem (say, involving Step Q), which is solved for
full step length of �t . This may be represented as

Step P1/2 : Solve
d y∗

dt ′
= P y∗, y∗(t ′ = t) = y0 on [t,t + �t/2], (7a)

Step Q : Solve
d y∗∗

dt ′
= Q y∗∗, y∗∗(t ′ = t) = y∗(t + �/2) on [t,t + �t], (7b)

Step P1/2 : Solve
d y∗∗∗

dt ′
= P y∗∗∗, y∗∗∗(t ′ = t) = y∗∗(t + �t) on [t,t + �t/2], (7c)

Solution : yS(t + �t) = y∗∗∗(t + �t/2). (7d)

This symmetric application of the operators in the P1/2 − Q −
P1/2 scheme achieves second-order accuracy, which may be
deduced by first noting that the Strang splitting solution may
be more compactly written in the exponential form as

yS(t + �t) = e�t/2 P e�t Q e�t/2 P y0. (8)

Its local error when compared to the unsplit solution [Eq. (2)]
then follows via a Lie-Taylor series as [26]

El,S = yS − yU = R�t3 + O(�t4), (9)

where

R = 1
24 ([[P,Q],P] + 2[[P,Q],Q]) y0. (10)

Then, the global error (Eg) over a time period T follows
as Eg,S = (T/�t)El,S ∼ O(�t2) and hence this scheme is
second-order accurate. An equally valid possibility to achieve a
similar second-order accuracy is to consider the Q1/2-P-Q1/2

splitting, which is useful when Step P is more expensive to
compute than Step Q. It may be noted that a similar scheme
was independently devised by Ref. [34], who further analyzed
and elaborated on its variants (see also Ref. [35]), and hence it is
sometimes referred to as the Strang-Marchuk splitting scheme.

III. STRANG SPLITTING OF LATTICE BOLTZMANN
METHOD INCLUDING BODY FORCES

Lattice Boltzmann (LB) schemes are generally constructed
to represent the evolution of the dynamics of the fluid motion
represented by

∂tρ + ∇ · (ρu) = 0, (11a)

∂t (ρu) + ∇ · (ρuu) = −∇P + ∇ · �V + F, (11b)
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where ρ and u are the fluid density and velocity, respectively,
P is the pressure and �V is the viscous stress tensor. Here, F
represents the effect of the local impressed body forces, which
can vary spatially and may be time dependent, i.e., for example,
in 2D, F = (Fx,Fy), where Fx = Fx(x,t) and Fy = Fy(x,t).
An efficient approach to solve the above fluid flow equation
in the LB framework is to solve the Eqs. (11a) and (11b), but
without the body force F using the usual stream and collide
procedure (subproblem A) and then separately solve ∂t (ρu) =
F as a forcing step (subproblem B) and subsequently combined
appropriately in a certain sequence to yield a second-order
accurate scheme. This can be achieved via symmetrization
of the operator splitting of the one of the subproblems over
two half time steps. Dellar [29] performed a derivation and
analysis of the LB method via Strang splitting, which will be
used as formal starting point to construct efficient operator split
forcing schemes for the cascaded LB method in the subsequent
sections.

In the following, S, C, and F are used to denote the
operators used to perform the streaming step, collision step,
and the forcing step, respectively. For a lattice containing
α = 0,1,2, . . . b directions, the collision and streaming steps
can be represented as

Step C : f(x,t + �t) = Cf(x,t) = f(x,t) + K · ĝ,

(12a)

Step S : fα(x,t + �t) = Sfα(x,t) ≡ fα(x − eα�t,t).

(12b)

Here, f = (f0,f1,f2 . . . fb)† is a vector of size (b + 1) rep-
resenting the distribution functions, where † is the transpose
operator, ĝ = (ĝ0 ,̂g1 ,̂g2 . . . ĝb)† is the vector representing the
change of different moments under collision, and K is the
transformation matrix of the cascaded LB method that maps
changes in moments back to changes in the distribution
functions, which are specified later.

It may be noted that C and S operators represent the
split solution operators of the discrete analog of ∂tfα = �α

and ∂tfα + eα · ∇fα = 0, respectively, of the discrete velocity
Boltzmann equation ∂tfα + eα · ∇fα = �α , whose emergent
behavior represents the NS equations given in Eqs. (11a) and
(11b), but without F. Then, the forcing step separately solves
the following:

Step F :
∂

∂t
(ρu) = F. (13)

One possibility to combine the above split steps to effectively
achieve second-order accuracy is to perform a symmetric
application of the forcing steps over two half time steps, before
and after the collision step, which is akin to the spin steps for
the force presented by Salmon [30]:

fα(x,t + �t) = S F1/2 C F1/2
fα(x,t), (14)

where F1/2 represents performing the solution of Eq. (13)
over time step of length �t/2. Reference [29] showed
that this achieves second-order accuracy similar to the
Strang splitting extended to three operators: f

′
α(x,t + �t) =

C1/2F1/2 S F1/2C1/2
f

′
α(x,t), where the two are related by

f
′
α = C1/2F1/2

fα . Since the momentum is conserved during

collisions, a second-order scheme with Eq. (14) can be ob-
tained by ρu = ∑

α f
′
αeα = F1/2(

∑
α fαeα). We will adopt

the above strategy in our derivation of the symmetrized opera-
tor split forcing scheme for the cascaded LB method in the sub-
sequent sections. Similar approach was recently adopted for
the MRT LB models (see, e.g., Ref. [31]). In addition, Schiller
[36] proposed a variant of the Strang splitting of forcing steps
around streaming and collisions, where the half collision step
is valid for the regime involving the relaxation time being
much greater than the time step. Also, Dellar [37] showed
that the Crank-Nicolson solution of the moment equations for
combined collisions and time-independent forcing obtained by
Strang splitting is equivalent to Kupershtokh’s exact difference
method [16].

IV. BODY FORCE SCHEME FOR 2D CASCADED LB
METHOD FOR FLUID FLOW VIA STRANG SPLITTING

We will consider a 2D cascaded LB formulation for a two-
dimensional, nine-velocity (D2Q9) lattice. The components of
the particle velocities are then represented by the following
vectors using the standard Dirac’s bra-ket notation:

|ex〉 = (0,1,0,−1,0,1,−1,−1,1)†, (15a)

|ey〉 = (0,0,1,0,−1,1,1,−1,−1)†. (15b)

Their components for any particle velocity direction α (where
α = 0, . . . ,8) are referred to as eαx and eαy , respectively.
Furthermore, we need the following nine-dimensional vector:

|1〉 = (1,1,1,1,1,1,1,1,1)†. (16)

The zeroth moment is the Euclidean inner product of this vector
with the distribution function. We then consider the following
specific set of orthogonal basis vectors used in the collision
term of the cascaded LB method (see, e.g., Ref. [19]):

|K0〉 = |1〉, |K1〉 = |ex〉, |K2〉 = |ey〉,
|K3〉 = 3

∣∣e2
x + e2

y

〉 − 4|1〉,
|K4〉 = ∣∣e2

x − e2
y

〉
, |K5〉 = |exey〉,

|K6〉 = −3
∣∣e2

xey

〉 + 2|ey〉,
|K7〉 = −3

∣∣exe
2
y

〉 + 2|ex〉,
|K8〉 = 9

∣∣e2
xe

2
y

〉 − 6
∣∣e2

x + e2
y

〉 + 4|1〉. (17)

In the above, symbol such as |e2
xey〉 = |exexey〉 represents a

vector resulting from the elementwise vector multiplication
(Hadamard product) of the sequence of vectors |ex〉, |ex〉 and
|ey〉. By combining the above nine vectors, we then obtain the
following orthogonal matrix

K= [|K0〉,|K1〉,|K2〉,|K3〉,|K4〉,|K5〉,|K6〉,|K7〉,|K8〉]. (18)

Here, K maps changes of moments under collisions back
to changes in the distribution functions. To determine the
structure of the cascaded collision operator, we first define the
following set of central moments of the distribution functions

063303-4



SYMMETRIZED OPERATOR SPLIT SCHEMES FOR FORCE … PHYSICAL REVIEW E 97, 063303 (2018)

and its equilibria of order (m + n), respectively, as(
κ̂xmyn

κ̂
eq
xmyn

)
=

∑
α

(
fα

f
eq
α

)
(eαx − ux)m(eαy − uy)n. (19)

By equating the discrete central moments of the equilibrium
distribution function with the corresponding continuous central
moments based on the local Maxwellian [7,38], we get

κ̂
eq
0 = ρ, κ̂eq

x = 0, κ̂eq
y = 0, κ̂eq

xx = c2
s ρ, κ̂eq

yy = c2
s ρ,

κ̂eq
xy = 0, κ̂eq

xxy = 0, κ̂eq
xyy = 0, κ̂eq

xxyy = c4
s ρ, (20)

where c2
s = 1/3 with cs being the sound speed. This is set

by applying the usual lattice units, i.e., �x = �t = 1 or the
particle speed c = �x/�t = 1, and because c2

s = c2/3 for the
athermal LB scheme used in this work (see, e.g., Ref. [39]).
However, the actual computations in the cascaded formulations
are carried out in terms of raw moments, which are defined as

(designated here with the (′) symbol)(
κ̂

′
xmyn

κ̂
eq′
xmyn

)
=

∑
α

(
fα

f
eq
α

)
em
αxe

n
αy. (21)

The collide and stream steps (C and S) of the 2D cascaded LB
method can then be, respectively, written as [7]

Step C : f p
α = fα + (K · ĝ)α (22a)

Step S : fα(x,t) = f p
α (x − eα�t,t), (22b)

where f
p
α represents the post-collision distribution function

and ĝ = (ĝ0 ,̂g1 ,̂g2 . . . ĝ8)† is the change of different moments
under collisions, which is determined based on the relaxation
of various central moments to their corresponding equilibria
in a cascaded fashion [7]. Since the mass and momentum
are collision invariants, ĝ0 = ĝ1 = ĝ2 = 0. As a result, the
cascaded structure starts from the non-conserved second-order
moments, and the corresponding components of the change of
different moments under collisions are given by

ĝ3 = ω3

12

{
2

3
ρ + ρ

(
u2

x + u2
y

) − (̂κ
′
xx + κ̂

′
yy)

}
, ĝ4 = ω4

4

{
ρ
(
u2

x − u2
y

) − (̂κ
′
xx − κ̂

′
yy)

}
, ĝ5 = ω5

4
{ρuxuy − κ̂

′
xy},

ĝ6 = ω6

4

{
2ρu2

xuy + κ̂
′
xxy − 2uxκ̂

′
xy − uyκ̂

′
xx

} − 1

2
uy(3ĝ3 + ĝ4) − 2uxĝ5,

ĝ7 = ω7

4

{
2ρuxu

2
y + κ̂

′
xyy − 2uyκ̂

′
xy − uxκ̂

′
yy

} − 1

2
ux(3ĝ3 − ĝ4) − 2uyĝ5,

ĝ8 = ω8

4

{
1

9
ρ + 3ρu2

xu
2
y − [̂

κ
′
xxyy − 2uxκ̂

′
xyy − 2uyκ̂

′
xxy + u2

x κ̂
′
yy + u2

y κ̂
′
xx + 4uxuyκ̂

′
xy

]}

− 2ĝ3 − 1

2
u2

y(3ĝ3 + ĝ4) − 1

2
u2

x(3ĝ3 − ĝ4) − 4uxuyĝ5 − 2uyĝ6 − 2uxĝ7, (23)

where ω3,ω4, . . . ,ω8 are the relaxation parameters. These
relaxation steps lead to the following expressions for the bulk
and shear viscosities, respectively, as ζ = 1

3 ( 1
ω3

− 1
2 )�t and

ν = 1
3 ( 1

ωj
− 1

2 )�t , where j = 4,5, and the pressure field P is

obtained via an equation of state as P = 1
3ρ.

After the streaming step, i.e., Eq. (22b), we obtain the output
velocity field components (designated with a superscript “o′′)
as the first moment of fα:

ρuo
x =

8∑
α=0

fαeαx, ρuo
y =

8∑
α=0

fαeαy. (24)

We then introduce the effect of the body force F = (Fx,Fy) as
a solution of the subproblem in Eq. (13). This is accomplished
by performing two symmetric steps of half time steps of
length �t/2, one before and the other after the collision step.
Both these steps incorporate the effect of forces directly into
the moment space. Solving Eq. (13) for the first part of the
symmetric sequence of step yields ρux − ρuo

x = Fx
�t
2 and

ρuy − ρuo
y = Fy

�t
2 . Thus,

Pre-collision forcing step F1/2 : ux = 1

ρ

(
ρuo

x + Fx

2
�t

)
,

uy = 1

ρ

(
ρuo

y + Fy

2
�t

)
.

(25)

Then, we use this updated velocity field (ux,uy) in Eq. (23) to
perform the cascaded relaxation collision step to determine
the change of different moments under collisions, i.e., ĝβ ,
β = 3,4, . . . ,8. As a result of correctly projecting the effect
of the forces in the various higher-order moments, it naturally
eliminates the discrete effects identified earlier [14] (see the
discussion at the end of this section). Then, to implement
the other part of the symmetrized force step with half step
to solve Eq. (13) post collision, we set ρu

p
x − ux = Fx

�t
2 and

ρu
p
y − uy = Fy

�t
2 , where (up

x ,u
p
y ) is the result of the target
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velocity field due to the forcing step after collision. Thus,

Post-collision forcing step F1/2 : ρup
x = ρux + Fx

2
�t,

ρup
y = ρuy + Fy

2
�t.

(26)

Note that this can also be rewritten in terms of the output
velocity field uo = (uo

x,u
o
y) given in Eq. (24) by using Eq. (25)

as

ρup
x = ρuo

x + Fx�t, ρup
y = ρuo

y + Fy�t. (27)

A main issue here is how to effectively design the post-collision
distribution function f

p
α in the cascaded LB method so that

Eq. (27) is precisely satisfied. Now, using f
p
α = fα + (K · ĝ)α

and taking its first moments, we get

ρup
x = �αf p

α eαx = �αfαeαx + �β〈Kβ |ex〉ĝβ, (28a)

ρup
y = �αf p

α eαy = �αfαeαy + �β〈Kβ |ey〉ĝβ . (28b)

Based on the orthogonal basis vectors |Kβ〉 given in Eq. (17),
it follows that

�β〈Kβ |ex〉gβ = 6ĝ1, �β〈Kβ |ey〉gβ = 6ĝ2. (29)

Using Eqs. (24) and (29) in Eqs. (28a) and (28b), we get the
desired velocity field as

ρup
x = ρuo

x + 6ĝ1, ρup
y = ρuo

y + 6ĝ2. (30)

Comparing the result of the target velocity field following the
second half of the symmetrized forcing steps given in Eq. (27)
with the change of moments based expressions in Eq. (30), we
obtain

ĝ1 = Fx

6
�t, ĝ2 = Fy

6
�t. (31)

Equation (31) represents an algorithmic result that effectively
implements the effect of the post-collision forcing step over
a duration of half time step following collision. This is a
consequence of the momentum needing to change by F�t

over a time step, and the normalization is implied by our choice
of basis for the moments. Then, the above relation [Eq. (31)]
for the post-collision change of first moments due to the force
field (̂g1 and ĝ2) along with the change of different higher
moments under collisions ĝβ , where β = 3,4, . . . ,8, given in
Eq. (23) effectively provide the desired post-collision states of
the distribution function f

p
α . Expanding Eq. (22a), we get the

expressions for the post-collision distribution functions as

f
p

0 = f0 + [̂g0 − 4(ĝ3 − ĝ8)],

f
p

1 = f1 + [̂g0 + ĝ1 − ĝ3 + ĝ4 + 2(ĝ7 − ĝ8)],

f
p

2 = f2 + [̂g0 + ĝ2 − ĝ3 − ĝ4 + 2(ĝ6 − ĝ8)],

f
p

3 = f3 + [̂g0 − ĝ1 − ĝ3 + ĝ4 − 2(ĝ7 + ĝ8)],

f
p

4 = f4 + [̂g0 − ĝ2 − ĝ3 − ĝ4 − 2(ĝ6 + ĝ8)],

f
p

5 = f5 + [̂g0 + ĝ1 + ĝ2 + 2ĝ3 + ĝ5 − ĝ6 − ĝ7 + ĝ8],

f
p

6 = f6 + [̂g0 − ĝ1 + ĝ2 + 2ĝ3 − ĝ5 − ĝ6 + ĝ7 + ĝ8],

f
p

7 = f7 + [̂g0 − ĝ1 − ĝ2 + 2ĝ3 + ĝ5 + ĝ6 + ĝ7 + ĝ8],

f
p

8 = f8+ [̂g0+ĝ1−ĝ2+2ĝ3−ĝ5+ĝ6−ĝ7+ĝ8]. (32)

Then, the algorithmic procedure of our symmetrized op-
erator split forcing scheme for the 2D cascaded method can
be summarized in terms of the following sequence of steps to
evolve for a time duration [t,t + �t]:

(i) Obtain the updated the velocity u = (ux,uy) based on
the precollision forcing with half step using Eq. (25).

(ii) Compute the change of moments under collisions, ĝβ ,
β = 3,4, . . . ,8 using Eq. (23) based on the updated velocity
(ux,uy) obtained in Step (i).

(iii) Perform post-collision forcing with a half step effec-
tively via the calculation of change of first-order moments, i.e.,
ĝ1 and ĝ2 using Eq. (31).

(iv) Compute the post-collision distribution functions f
p
α ,

α = 0,1, . . . ,8 using Eq. (32).
(v) Perform the streaming step using Eq. (22b) to obtain

the updated distribution functions fα , α = 0,1, . . . ,8.
(vi) Finally, obtain the output velocity field uo = (uo

x,u
o
y)

via Eq. (24) and the density ρ using ρ = ∑8
α=0 fα .

Some of the main advantages of this symmetrized operator
split forcing scheme of the cascaded LB method are:

(a) Using symmetrization principle with half-time step
application of the body force before and after collision is
consistent with Strang splitting and the scheme is formally
second-order accurate in time.

(b) The approach correctly projects the effects of the body
force on the higher-order moments via step (ii) above and
hence naturally eliminates the discrete effects identified in prior
works [14] (see below for details).

(c) The procedure is simple and efficient by involving the
body force implementation directly only in the moment space
and does not require additional terms due to forcing in the
velocity space, which is usually obtained via cumbersome
transformation from the moment space as in prior forcing
schemes for the cascaded LB method. This aspect is especially
advantageous in 3D. The Appendix outlines the implemen-
tation of this approach for a 3D central moment based LB
scheme.

We will now present an analysis on how the spurious term
Fiuj + Fjui that can appear in the viscous stress is eliminated
in our present central moments-based cascaded LB formulation
using a split force implementation. This can be achieved by
a continuous time equation for the second central moment
whose evolution is independent of the body force. As a result,
it can introduce a canceling second moment of the body force
term at the leading order in the emergent PDE of the second
raw moment of the distribution functions recovering correct
flow physics. We will start with this latter aspect first and
identify this compensating second raw moment of the body
force by considering the discrete velocity Boltzmann equation
∂tfα + eα · ∇fα = �α + Sα , where�α andSα are the collision
operator and the source term due to the body force, respectively.
Taking its zeroth and first moments lead to

∂tρ + ∇ · (ρu) = 0, ∂t (ρu) + ∇ · � = F, (33)

and then taking its second moment, we obtain the following
evolution equation

∂t� + ∇ · � = − 1

τ
�(neq) + ϒ, (34)
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where � and � are the second and third moments of the
distribution functions, i.e.,

∑
α fαeαieαj and

∑
α fαeαieαj eαk ,

respectively, and ϒ is the required canceling second moment of
the body force term, i.e.,

∑
α Sαeαieαj , which should arise via a

condition on the second central moment given in the following.
In Eq. (34), �(neq) is the nonequilibrium part of the second raw
moment and τ = 1/ωj , where j = 4,5, is the corresponding
relaxation time, which are related to the viscous stress.

To determine the evolution equation for hydrodynamics
at the leading order, we now apply the Chapman-Enskog
(C-E) expansions of the distribution functions about its equi-
libria (local Maxwellian) and the time derivative, i.e., fα =
f (0)

α + εf (1)
α + ε2f (2)

α + · · · and ∂t = ∂t0 + ε∂t1 + ε2∂t2 + · · · ,
respectively, where ε is a small perturbation parameter. This
is equivalent to the following expansions on the higher, non-
conserved, raw moments

� = �(0) + ε�(1) + ε2�(2) + · · · ,

� = �(0) + ε�(1) + ε2�(2) + · · · , (35)

in the above moment system. To the leading order, the mass
and momentum equations in Eq. (33) become

∂t0ρ + ∇ · (ρu) = 0, ∂t0 (ρu) + ∇ · �(0) = F, (36)

where �(0) = c2
s ρI + ρuu is the equilibrium part of the second

raw moment. However, the leading-order second raw moment
equation, via Eq. (34), reads as

∂t0�
(0) + ∇ · �(0) = − 1

τ
�(1) + ϒ. (37)

To recover the physically correct viscous stress, the nonequi-
librium part of the second moment �(1) in Eq. (37) should only
be related to ∇ · �(0), which depends on the velocity gradients.
However, the presence of the time derivative term in Eq. (37),
i.e., ∂t0�

(0) = c2
s ∂t0ρI + ∂t0 (ρuu), in which the time derivatives

of the velocity ∂t0 (ρuu) via the leading momentum equation
[Eq. (36)] give rise to an additional term of the form Fu + uF.
This can be eliminated only if the corresponding moment of
the body force ϒ becomes equal to

ϒ = Fu + uF. (38)

This necessary condition for the second raw moment of the
body force

∑
α Sαeαieαj = Fiuj + Fjui , which is a classic

result of the acceleration term in the Boltzmann equation, was
given in Ref. [40]. This implies a vanishing second central mo-
ment of the body force, i.e.,

∑
α Sα(eαx − ux)m(eαy − uy)n =

0 for m + n = 2, which appears explicitly in Ref. [41] and
was considered in the previous unsplit forcing approach for
the cascaded LB scheme [19].

In view of the above, in our present operator-split forcing
based cascaded LB formulation, the PDE needed for the
solving the split force step given in Eq. (13) is a central moment
representation of the split kinetic equation ∂tfα = Sα . That is,
taking the central moments of this equation of order (m + n),
we get an evolution equation as follows:

Step F :
∂

∂t
κ̂xmyn = σ̂xmyn , (39)

where κ̂xmyn = ∑
α fα(eαx − ux)m(eαy − uy)n and σ̂xmyn =∑

α Sα(eαx − ux)m(eαy − uy)n are the central moments of the

distribution functions and the source term due to the body force,
respectively. It thus follows that, in particular, the continuous
time equations for the change in the second central moment
components for the split body force step are given as

Step F :
∂

∂t
κ̂xx = 0,

∂

∂t
κ̂yy = 0,

∂

∂t
κ̂xy = 0, (40)

which implies the necessary condition for introducing the
canceling second raw moment components of the body force,
i.e., 2Fxux , 2Fyuy and Fxuy + Fyux to eliminate the spurious
effects in the viscous stress and thereby correctly recover the
Navier-Stokes equations as mentioned above.

V. EXTENSION OF THE SYMMETRIZED OPERATOR
SPLIT IMPLEMENTATION FOR CASCADED LB
METHOD FOR PASSIVE SCALAR TRANSPORT

INCLUDING SOURCES

In many applications, the transport of a passive scalar
(e.g., temperature or species concentration) occurs, which is
generally represented by means of the following convection-
diffusion equation (CDE) with a source term

∂tφ + ∇ · (uφ) = ∇ · (Dφ∇φ) + Sφ. (41)

Here, φ is the passive scalar variable, Dφ is the diffusion
coefficient, and Sφ is the local source term (e.g., due to viscous
dissipation, internal heat generation or chemical reaction).
Various LB schemes have been investigated for modeling the
CDE during the last two decades (see, e.g., Refs. [11,31,42–
49]). A novel numerical approach considered in this study for
the solution of Eq. (41) is as follows. The velocity u in the
above equation can be obtained from the cascaded LB scheme
for the D2Q9 lattice presented in the previous section. Our
goal is to solve for the passive scalar field φ whose evolution
is represented by the above CDE, but without the source term
using a separate 2D cascaded scheme with collide and stream
steps involving another distribution function; then implement
the effect of the source term Sφ via additional source steps using
an operator split scheme based on a symmetrization principle.
To meet this objective, we consider a new cascaded LB scheme
for coupled fluid flow and scalar transport that we developed
recently in different dimensions [50] and further accelerated
by using multigrid [51]. Here, a two-dimensional, five-velocity
(D2Q5) lattice based cascaded LB method is introduced to
represent the evolution of the passive scalar field via the CDE,
which is adopted in this work for further extension using an
operator split source implementation.

The D2Q5 lattice is represented by means of the following
components of the particle velocity vectors |ex〉 and |ey〉:

|ex〉 = (0,1,0,−1,0)†, (42a)

|ey〉 = (0,0,1,0,−1)†. (42b)

In addition, we introduce the following |1〉 vector:

|1〉 = (1,1,1,1,1)†. (43)

The zeroth moment is the Euclidean inner product of this
vector with the distribution functions. The corresponding five
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orthogonal basis vectors are given by [51]

|L0〉 = |1〉, |L1〉 = |ex〉, |L2〉 = |ey〉,
(44)

|L3〉 = 5
∣∣e2

x + e2
y

〉 − 4|1〉, |L4〉 = |e2
x − e2

y〉,
which can be grouped together as the following transformation
matrix L for mapping changes in the moment space to those in
the velocity space

L = [|L0〉,|L1〉,|L2〉,|L3〉, |L4〉]. (45)

To represent the structure of the cascaded collision operator
for the passive scalar field, we define the following central
moments and raw moments, respectively, of the distribution
function gα and its equilibrium g

eq
α as(

κ̂
φ
xmyn

κ̂
eq,φ
xmyn

)
=

∑
α

(
gα

g
eq
α

)
(eαx − ux)m(eαy − uy)n, (46)

and (
κ̂

φ′
xmyn

κ̂
eq,φ′
xmyn

)
=

∑
α

(
gα

g
eq
α

)
em
αxe

n
αy. (47)

By equating the discrete central moments of the equilibrium
distribution function with the corresponding continuous central
moments based on the local Maxwellian (wherein the density
is replaced by φ), we get

κ̂
eq,φ

0 = φ, κ̂eq,φ
x = 0, κ̂eq,φ

y = 0,
(48)

κ̂eq,φ
xx = c2

sφφ, κ̂eq,φ
yy = c2

sφφ,

which will be used in the construction of the collision operator
later. In this work, wet set c2

sφ = 1/3. Then, the 2D cascaded
LB scheme for the passive scalar transport without the source
term can be represented by means of the following collision
and streaming steps:

gp
α = gα + (L · ĥ)α, (49a)

gα(x,t) = gp
α (x − eα�t,t). (49b)

The procedure to obtain the change of different moments
under cascaded collision, i.e. ĥ based on the central moment
equilibria Eq. (48) is analogous to that used in the previous
section for fluid flow, with the main difference being that in
the present case, there is only one collisional invariant, i.e., φ,
and hence ĥ0 = 0. Then, it follows that [51] (see also Ref. [50],
which elaborates such a formulation for a 3D cascaded LBM
for CDE)

ĥ1 = ω
φ

1

2

[
φux − κ̂φ′

x

]
, ĥ2 = ω

φ

2

2

[
φuy − κ̂φ′

y

]
,

ĥ3 = ω
φ

3

4

[
2c2

sφφ − (̂
κφ′

xx + κ̂φ′
yy

) + 2
(
uxκ̂

φ′
x + uyκ̂

φ′
y

)
+ (

u2
x + u2

y

)
φ
] + uxĥ1 + uyĥ2,

ĥ4 = ω
φ
4

4

[−(̂
κφ′

xx − κ̂
′φ
yy

) + 2
(
uxκ̂

φ′
x − uyκ̂

φ′
y

) + (
u2

x − u2
y

)
φ
]

+uxĥ1 − uyĥ2, (50)

where ω
φ

1 , ωφ

2 , ωφ

3 , and ω
φ

4 are the relaxation parameters. Notice
that the cascaded structure of the expressions for the change
of moments ĥ starts from the first-order moments for the
CDE, unlike those for the NSE given the previous section. The
relaxation parameters for the first-order moments in the above
determine the molecular diffusivity Dφ : Dφ = c2

sφ( 1
ω

φ

j

− 1
2 )�t ,

j = 1,2. After the streaming step in Eq. (49b), the output
passive scalar field φo is obtained as the zeroth moment of
gα as

φo =
4∑

α=0

gα. (51)

The effect of the source term Sφ can then be introduced as
the solution of the source subproblem split from Eq. (41):
∂tφ = Sφ . As before, this can be implemented by means of
two symmetrized sequence of steps before and after collision,
each using a time step �t/2 and such a source operator will
be denoted by R1/2. Thus, the extension of the Strang splitting
approach for the cascaded LBM to represent the source term
in the CDE can be formulated as

gα(x,t + �t) = S R1/2 C R1/2
gα(x,t). (52)

Solving the above subproblem representing the evolution of
the scalar field φ due to the source term Sφ yields the following
step before collision:

Pre-collision source step R1/2 : φ = φo + Sφ

2
�t. (53)

This updated φ is then used to perform the cascaded collision
relaxation step and determine the change of different moments
under collision ĥβ , where β = 1,2,3,4, given in Eq. (50).
Analogously, the other source half step following collision can
be represented as

Post-collision source step R1/2 : φp = φ + Sφ

2
�t

= φo + Sφ�t. (54)

To effectively implement this in the cascaded formulation, we
take the zeroth moment of the post-collision distribution g

p
α

given by g
p
α = gα + (L · ĥ)α , which yields

φp =
∑

α

gp
α =

∑
α

gα +
∑

β

〈Kβ |1〉̂hβ. (55)

Based on the orthogonal basis vectors given in Eq. (44), it
follows that

∑
β 〈Kβ |1〉̂hβ = 5ĥ0, which when substituted in

Eq. (55), and along with Eq. (51), we obtain

φp = φo + 5ĥ0. (56)

Comparing the target result Eq. (54) with the above constructed
field [Eq. (56)], we get the following result for the zeroth-order
moment change due to the source Sφ :

ĥ0 = Sφ

5
�t. (57)

This effectively implements the effect of the post-collision
source step over a step length of �t/2. Using this result
[Eq. (57)] along with Eq. (50) for the change of moments under
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collision in Eq. (49a) and expanding (K · ĥ)α , we obtain the
post-collision distribution functions, which read as

g
p

0 = g0 + [̂h0 − 4ĥ3],

g
p

1 = g1 + [̂h0 + ĥ1 + ĥ3 + ĥ4],

g
p

2 = g2 + [̂h0 + ĥ2 + ĥ3 − ĥ4],

g
p

3 = g3 + [̂h0 − ĥ1 + ĥ3 + ĥ4],

g
p

4 = g4 + [̂h0 − ĥ2 + ĥ3 − ĥ4]. (58)

The overall sequence of computational steps for the 2D
cascaded LB scheme for passive scalar transport with a source
implementation based on the Strang splitting is similar to that
for the fluid flow presented in the previous section. Moreover,
such a symmetrized operator splitting formulation can also
be used to represent forces/sources in the 3D central moment
based LBM for thermal convective flows developed recently
[50].

VI. RESULTS AND DISCUSSION

We will now present a numerical validation study of the
various symmetrized operator split schemes to incorporate
forces or sources in the cascaded LB method presented
earlier by comparison of their computed results against a
set of benchmark problems with analytical solutions. In the
following, all the numerical results will be generally reported
in the lattice units typical for LB simulations [39]. That is,
unless otherwise specified, we consider �x = �t = 1 and
hence the particle speed c = �x/�t is taken to be unity.
The fluid velocity will be scaled by the particle speed c,
and the reference scale for the density ρ0 is 1.0. For the
cascaded LB method for fluid flow presented in Sec. IV, the
considerations for the relaxation parameters are as follows:
ω4 and ω5 determine the shear kinematic viscosity (via ω4 =
ω5 = 1/τ and ν = 1

3 (τ − 1
2 )�t), which can be specified from

the problem statement. The parameter ω3 is related to the bulk
viscosity (see, e.g., Ref. [19]), while the remaining parameters
for the higher-order moments ω6, ω7, and ω8, along with
ω3 can be tuned to improve numerical stability. A detailed
study of the influence of such parameters in the cascaded
LB scheme was performed in Ref. [52]. For turbulent flow
computations, care needs to be exercised in choosing the
relaxation parameters for the higher-order moments to avoid
being over-dissipative. In this work, for the incompressible,
laminar flow benchmark flow problems considered in the
following, we use ω3 = ω6 = ω7 = ω8 = 1.0. However, for
the cascaded LB method for the solution of the passive scalar
transport presented in Sec. V, the parameters ω

φ

1 and ω
φ

2 , which
are related to the coefficient of diffusivity (i.e. ω

φ
1 = ω

φ
2 =

1/τφ and Dφ = 1
3 (τφ − 1

2 )�t), are assigned from the problem
statement based on the characteristic dimensionless group;
relaxation parameters ω

φ

j , where j = 3,4,5, which influence
the numerical stability, are set to unity in this work.

A. Poiseuille flow

In these sections, we validate our 2D operator split forc-
ing approach by considering various test problems involving
different types of body force fields. For the first problem,
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x
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FIG. 1. Comparison of the computed velocity profiles using the
2D symmetrized operator split cascaded LB forcing scheme with
the analytical solution for Poiseuille flow for body force magnitudes
of 10−7 and 10−8. The lines indicate the analytical results, and the
symbols are the solutions obtained by our present numerical scheme.

a two-dimensional Poiseuille flow in a channel discretized
with 3 × 100 lattice nodes is considered. In our computations,
at the top and bottom walls, a no-slip boundary condition,
and at the inlet and outlet, periodic boundary conditions are
applied. The no-slip boundary condition is implemented by
using the classical half-way bounce back scheme in this work
[39,53]. The analytical solution of the velocity profile flow for
this laminar flow problem can be written as follows: u(y) =
Umax[1 − ( y

L
)2], where Umax = FxL

2/(2ρν) is the maximum
velocity along the central line. Here, L, ρ, and ν are the channel
half-width, fluid density, and kinematic viscosity, respectively.
Fx is a constant body force acting in the x-direction which
drives the flow. Comparison of the simulation results of the
velocity profile against the analytical solution is shown in
Fig. 1, where the body forces for two cases with maximum
velocities of 0.02 and 0.08 are set to the values of 10−8 and
10−7, respectively. For the former case, the relaxation time
τ is chosen to be 0.5019, which for the latter it is 0.5047.
The corresponding Mach numbers Ma are 0.034 and 0.138,
respectively. It can be clearly seen that there is an excellent
agrement between the numerical simulation carried out using
the 2D symmetrized operator split cascaded LB forcing scheme
and the analytical solution for the both cases.

1. Grid convergence study

To determine the order of accuracy of our symmetrized
operator split forcing scheme, we perform a grid convergence
test by applying a diffusive scaling. According to this scaling,
Mach number Ma = U/cs reduces proportionally with the
increase in the grid resolution at a fixed viscosity or fixed
relaxation time τ = 1/ωj , j = 4,5, where ω4 and ω5 represent
the relaxation parameters for the second-order moments in the
2D cascaded LB scheme (see Sec. IV), so that the scheme
has asymptotic convergence to the incompressible flow limit.
For our simulation, we consider a Poiseuille flow with the
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FIG. 2. Grid convergence for 2D Poiseuille flow with a constant
Reynolds number Re = 100 and relaxation time τ = 0.55 computed
using the 2D symmetrized operator cascaded LB forcing scheme.

same set up as considered earlier. We consider a sequence
of 3 × 15,3 × 31, . . . ,3 × 121 lattice nodes to study grid
convergence under diffusive scaling when the relaxation time
and Reynolds number are set to τ = 0.55 and 100, respectively.
Next, to quantify the grid convergence, we consider the global
relative error (Eg,u) of the flow field under a discrete �2-norm
as follows:

‖Eg,u‖2 =
√

�(uc − ua)2

�(ua)2
, (59)

where uc and ua is the computed and analytical solutions,
respectively, and the summation is carried out for the flow
domain. The relative error between the computed results
and the analytical solution against different grid resolutions
is illustrated in Fig. 2. The relative errors have a slope of
2.00, which indicates that our new approach based on the
symmetrized operator split forcing scheme for the cascaded
LB method is spatially second-order accurate.

B. Hartmann flow

As the next benchmark case study, a numerical comparison
of the results with our 2D operator split forcing approach is
made for a specific type of magnetohydrodynamic (MHD)
flow, i.e., the flow between two unbounded plates subjected to
a transverse magnetic field known as the Hartmann flow. This
type of flow arises in a variety of engineering devices including
MHD pumps, fusion devices, generators and microfluidic
devices. Furthermore, an inherent spatially varying body force
makes this benchmark a particularly suitable test problem for
the present study. The fluid is driven by a constant body forceFb

and retarded by a local variable force (i.e., Lorentz force) aris-
ing by an interaction between a uniform steady magnetic field
By = B0, acting perpendicular to the channel walls and the
fluid motion. By choosing the x axis for the flow direction and
the y axis to be codirectional with the external magnetic field
By = B0, the induced magnetic field resulting from such an

interaction can be represented as Bx(y) = FbL

B0
[

sinh(Ha y

L
)

sinh(Ha) − y

L
].

Here, the Hartmann number, Ha is the square root of the ratio
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=0.0077

FIG. 3. Comparison of the computed velocity profiles using the
2D symmetrized operator split cascaded LB forcing scheme with the
analytical solution for Hartmann flow for Hartmann numbers Ha of 3
and 10. The lines indicate the analytical results, and the symbols are
the solutions obtained by our present numerical scheme.

of the electromagnetic force to the viscous force and L and
Fb are the channel half-width and the uniform driving force,
respectively. Consequently, the effectively spatially varying
body force which act on the flow is Fx = Fb + Fmx . This
is a combination of the Lorentz force Fmx = B0

dBx

dy
, and the

uniform driving force Fb. The analytical solution for such a

problem is ux(y) = FbL

B0

√
η

ν
coth(Ha)[1 − cosh(Ha y

L
)

cosh(Ha) ]. Here, ν

is the kinematic viscosity and η is the magnetic resistivity,
which can be represented by η = B0

2L2/Ha2ν. We consider
the same set up as considered for the Poiseuille flow simulation
for the boundary conditions but now with spatially varying
body forces. For two different values of Ha, 3 and 10, corre-
sponding to Mach numbers of 0.013 and 0.004, respectively,
the computed velocity profiles against the analytical solution
are illustrated in Fig. 3. It can be observed that the present
simulation is able to reproduce the analytical solution very
well. In particular, the significant flattening of the velocity
profile at higher Ha is well reproduced by our forcing scheme.

C. Womersley flow

We now turn to study the Womersley flow, which is a flow
between two infinite parallel plates driven by a temporally
oscillatory external force. This benchmark problem is used to
assess the ability of our symmetrized operator split forcing
scheme for representing time-dependent body forces. The
external force Fmcos(ωt) oscillates with an amplitude Fm and
with an angular frequency ω = 2π/T , where T is the time
period. Supposing that the flow is laminar and incompressible,
the analytical solution for the velocity field is given as

u(y,t) = Re

{
i
Fm

ω

[
1 − cos(γy/L)

cosγ

]
e(iωt)

}
, (60)
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FIG. 4. Comparison of computed and analytical velocity profiles at different instants within a time period of pulsatile flow at two different
Womersley numbers of Wo = 4 Wo = 10.7. Here, lines represent the analytical solution and symbols refer to the numerical results obtained
using the 2D symmetrized operator split cascaded LB forcing scheme.

where γ =
√

iWo2, Wo = L
√

(ω/ν) being the Womersley
number, which is a non-dimensional parameter representing
the ratio of the channel half width L to the diffusion length
over an oscillation period (i.e., the Stokes layer thickness).
Re{·} represents taking the real part of the expression within
the brackets. The simulation parameters are set as follows. The
computational domain is resolved by a 3 × 100 mesh, the time
period T = 10 000 and the maximum force amplitude is set
to Fm = 1 × 10−5. The boundary condition at the inlet and
the outlet is periodic and the half-way bounce-back scheme to
represent the no-slip condition is used at the walls. The body
force for this case is implemented as a solution of Eq. (13) to
update the velocity field. Since the explicit form of the time-
dependent force is known here, it can be either analytically
integrated to perform the velocity update in the force step
or solved numerically by representing the body force Fx via
the trapezoidal rule as 1

2Fm[cos(ωt) + cos(ωt + �t/2)]. The
latter approach is used in the present study. In general cases,
if the body force F depends on u, then Eq. (13) needs to be
numerically integrated and used as an implicit equation to solve
for u. Simulations are carried out to obtain the velocity profiles
across the channel at different time instants with the time period
T . Figure 4 shows a comparison for the velocity profiles for
two values of the Womersley number, i.e. 4 and 10.7 at different
time instants. It can be clearly seen that the numerical results
agree well with the analytical solution represented by Eq. (60).
Thus, the symmetrized operator split forcing scheme is able to
represent flow profiles driven by time varying body forces with
excellent accuracy.

D. Flow through a square duct

To validate our 3D symmetrized operator split forcing
scheme for a multidimensional flow subjected to a body
force, we consider flow through a square duct driven by a
constant body force Fx . In our computations, we apply periodic
boundary conditions at the inlet and outlet and a no-slip
boundary condition at the four wall surfaces. For a channel
with width 2a, this test problem has an analytical solution

based on a Fourier series for the velocity field, which reads as

u(y,z) = 16 a2
Fx

ρν π3

∞∑
n=1

(−1)(n−1)

[
1 − cosh

( (2n−1)πz

2a

)
cosh

( (2n−1)π
2

) ]

× cos
( (2n−1)πy

2a

)
(2n − 1)3 , (61)

where ρ and ν are the fluid density and kinematic viscosity,
respectively and x is the direction of the flow, and −a < y < a,
−a < z < a is the cross section of the duct. We chose a
grid resolution of 3 × 45 × 45, with a relaxation parameter
τ equal to 0.76, and a body force magnitude of Fx = 1 × 10−7

is applied. Figure 5 illustrates the velocity profiles u(y,z)
computed using our 3D symmetrized operator split scheme
to incorporate forcing terms in the 3D cascaded LB method
for different values of y. In this figure, a comparison with
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FIG. 5. Comparison of the computed velocity profiles using the
3D symmetrized operator split cascaded LB forcing scheme and the
analytical solution, for flow through a square duct in presence of a
body force magnitude of Fx = 10−7 for different values of y. Here,
lines represent the analytical solution and symbols refer to the results
obtained using the present numerical scheme.
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FIG. 6. Comparison of the computed and analytical vertical ve-
locity profiles uy(x) at y = π for the four-rolls mill flow problem
at u0 = 0.01, ν = 0.0011, and N = 96. Here, line represents the
analytical solution and the symbol refers to the numerical results
obtained using the 2D symmetrized operator split cascaded LB forcing
scheme.

the analytical solution given above is also made. It is evident
that there is a very good agreement between our computed
results and the analytical solution for this body force driven
multidimensional flow problem.

E. Four-rolls mill flow problem

Let us now consider a problem involving two-dimensional
(2D), steady, fluid motion consisting of an array of counter-
rotating vortices in a square domain of side 2π that is periodic
in both x and y directions, driven by a spatially varying
body force, i.e., Fx = Fx(x,y) and Fy = Fy(x,y). It is a
modified form of the classical Taylor-Green vortex flow and
has been used as a benchmark problem to test body force
implementations in prior LBM studies (see, e.g., Refs. [22,54]).
The four-rolls fluid motion is established by imposing the
following local body force components:

Fx(x,y) = 2ρ0νu0 sin x sin y, Fy(x,y)=2ρ0νu0 cos x cos y,

where 0 � x,y � 2π , ρ0 is the reference density, ν is the kine-
matic viscosity, and u0 is the velocity scale. A simplification
of the Navier-Stokes equations with the above local body force
leads to the following analytical solution for the velocity field:

ux(x,y) = u0 sin x sin y, uy(x,y) = u0 cos x cos y.

First, to validate the Strang splitting-based forcing scheme
for the cascaded LBM, we consider u0 = 0.01, ρ0 = 1.0 and
ν = 0.0011, and the square domain of side 2π is resolved
by N × N mesh grids, where N = 24,48,96,192. The mesh
spacing �x then is given by �x = 2π/N . Considering the
convective scaling �x/�t = c = 1, the kinematic viscosity
may be written as ν = 1

3 (τ − 1
2 )�x, where τ = 1/ω4 = 1/ω5.

Figure 6 shows the velocity field uy(x,y = π ) computed
using N = 96 along the horizontal centerline of the domain
and compared against the analytical solution given above.
Excellent agreement is seen. Furthermore, Fig. 7 presents
the 2D computed and analytical results for the streamlines,
which are in very good agreement with each other. Evidently,
counter-rotating pairs of vortices are well reproduced by the
present forcing scheme for the cascaded LBM based on Strang
splitting.

1. Grid convergence study

To verify the higher-order accuracy provided by the Strang
splitting, i.e., O(�x2) ∼ O(�t2), we use the convective or
acoustic scaling to study the convergence rate of the present
operator-split forcing formulation for different grid resolu-
tions, rather than the diffusive scaling considered earlier. Thus,
we again use u0 = 0.01, ν = 0.0011, and N = 24,48,96, and
192. By maintaining �x/�t = c = 1, for any pair of grid res-
olutions, Ni × Ni and Nj × Nj , the corresponding relaxation
parameters τi and τj , respectively, under the convective scaling
are related by τj = 1

2 + (τi − 1
2 )Nj

Ni
. Figure 8 illustrates rate of

convergence using the relative error between the computed and
analytical solution for the x-component of the velocity field
summed for the entire domain under the discrete �2 norm [see
Eq. (59)] for the above four different grid resolutions. It can
be seen that the relative error varies with the grid resolution

FIG. 7. Streamlines (a) computed using the 2D symmetrized operator split cascaded LB forcing scheme and (b) obtained using the analytical
solution for the four-rolls mill flow problem at u0 = 0.01, ν = 0.0011, and N = 96.
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FIG. 8. Grid convergence for the four-rolls mill flow problem at
u0 = 0.01, ν = 0.0011 computed using the 2D symmetrized operator
split cascaded LB forcing scheme under the convective scaling.

in the log-log scale with a slope of −2.0. Hence, the present
forcing scheme based on the Strang splitting for the cascaded
LBM is second-order accurate under the convective scaling. In
other words, this test demonstrates second-order accuracy in
time, while the earlier test for Poiseuille flow under diffusive
scaling in Fig. 2 is not.

F. Thermal Couette flow with viscous heat dissipation

For the purpose of validating the symmetrized operator split
cascaded source scheme for the solution of a scalar passive
field represented by the CDE with a source term in Sec. V,
we perform the simulation of a thermal Couette flow with
viscous heat dissipation. Here, the passive scalar field φ is the
temperature T , which is evolved under a thermal diffusivity
D, and modified by a source term Sr due to viscous dissipation
arising from the shear flow. For such a one-dimensional
Couette flow, the top wall moves with a constant velocity
U0 in a horizontal direction, which is maintained at a higher
temperature TH and the bottom wall is at a lower temperature
TL and remains stationary. The scalar source term Sr resulting
from the viscous heat dissipation is given by

Sr = 2ν

Cv

(S : S), (62)

where S = [∇u + ∇uT ]/2 is the strain rate tensor and Cv

is specific heat at constant volume. The source term due to
the viscous heating Sr in Eq. (62) is obtained in simulations
from the cascaded LB solution for the flow field presented in
Sec. III. In particular, the strain rate tensor S in the cascaded
LB formulation can be readily related to the second-order
non-equilibrium moment components (see, e.g., Refs. [19,52]).
For example, Sxy = 1

2 (∂xuy + ∂yux) = − 3ω5
2ρ0

(
∑

α fαeαxeαy −
ρuxuy). This problem has the following analytical solution for
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FIG. 9. Comparison between numerical results of the temperature
profile computed using the 2D symmetrized operator split cascaded
LB source scheme for a passive scalar transport and the analytical
solution for the thermal Couette flow for various values of the Eckert
number Ec. Here, lines represent the analytical solution and symbols
refer to the results obtained using the present numerical scheme.

the temperature profile [55]

T − TL

TH − TL

= y

H
+ PrEc

2

y

H

(
1 − y

H

)
, (63)

where Pr = ν/D is the Prandtl number and Ec =
U 2

0 /[Cv(TH − TL)] is the Eckert number. In Fig. 9, the Pr is
fixed at 0.71 while the Ec varies from 10 to 100 and the domain
is discretized with 3 × 64 lattice nodes. The velocity of the top
wall U0 is taken as 0.05, the boundary temperature TL and TH

are specified as 0.0 and 1.0, respectively, and the relaxation
parameters τ and τφ are chosen as 0.70 and 0.782, respectively.
Computed results obtained using the symmetrized operator
split cascaded source scheme are compared with the analytical
solution given in Eq. (63). It is found that the numerical
results are in excellent agreement with the analytical solution
for various values of Ec, representing the source strength
for this problem. In addition, the relative error between the
computed results obtained using the Strang splitting-based
source scheme and the analytical solution measured under the

TABLE I. Relative error between the numer-
ical results obtained using the 2D symmetrized
operator split cascaded LB source scheme for a
passive scalar transport and the analytical solution
for the simulation of the thermal Couette flow at
various Eckert numbers Ec.

Eckert number Ec Relative error

10 2.840 × 10−5

20 3.695 × 10−5

40 4.317 × 10−5

60 4.561 × 10−5

80 4.691 × 10−5

100 4.778 × 10−5
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discrete �2-norm [Eq. (59)] for the simulation of the thermal
Couette flow are reported in Table I.

VII. SUMMARY AND CONCLUSIONS

Symmetrized operator split forcing schemes for flow sim-
ulations in 2D and 3D and a method for incorporating sources
in a convection-diffusion transport of a scalar field using
the cascaded lattice Boltzmann formulations are developed.
They involve force or source implementation steps before and
following the collision step each taking a half time step, and are
consistent with the Strang splitting, which has second-order
rate of convergence by construction. The post-collision half
source or forcing step is effectively implemented in terms of
the change of moments at the zeroth or first order that is a
function of the source or body force and the time step, and a
normalization factor arising from the choice of the basis for
moments for the lattice set considered. The implementation of
the precollision half source or forcing step properly projects
the effects of the force or source to the higher-order moments
that undergo relaxation by collision and naturally eliminates
the discrete effects. In contrast to the prior forcing schemes
for the cascaded LB method that required using extra terms
at different orders in the moment space and cumbersome

lattice-dependent transformations to map them to the velocity
space, the present symmetrized operator split forcing/source
schemes result in a simpler formulation, with all the force-
or source-related computations performed only in the moment
space, which facilitates implementation. However, it may be
noted that for efficient implementations of the LB algorithms,
their performance on current hardware is limited entirely by
memory bandwidth rather than by floating point operations,
and the complexity of the aggregate collision operator (includ-
ing forcing) does not affect performance. Comparisons of the
numerical solutions obtained using the Strang splitting based
forcing or source implementation methods for cascaded LB
schemes against various benchmark solutions validate them
for flow computations in both 2D and 3D as well as for the
passive scalar transport with a local source. Furthermore, the
numerical results demonstrate the second-order accuracy for
the convergence rate in time under the acoustic scaling of the
symmetrized operator split forcing scheme.
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APPENDIX: STRANG SPLITTING IMPLEMENTATION OF BODY FORCES IN 3D CENTRAL MOMENT LB METHOD

For the propose of illustration, we will consider the 3D central moment LB method using the three-dimensional, fifteen velocity
(D3Q15) [56] lattice, but can be readily extended for other lattices such as the D3Q27 lattice. The components of the particle
velocity vectors along with the |1〉 vector (which is used to represent the zeroth moment with the distribution function) for this
lattice are

|ex〉 = (0,1,−1,0,0,0,0,1,−1,1,−1,1,−1,1,−1)†,

|ey〉 = (0,0,0,1,−1,0,0,1,1,−1,−1,1,1,−1,−1)†,

|ez〉 = (0,0,0,0,0,1,−1,1,1,1,1,−1,−1,−1,−1)†,

|1〉 = (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)†. (A1)

The corresponding linearly independent orthogonal basis vectors are given by [56]

|K0〉 = |1〉, |K1〉 = |ex〉, |K2〉 = |ey〉, |K3〉 = |ez〉, |K4〉 = |exey〉, |K5〉 = |exez〉, |K6〉 = |eyez〉,
|K7〉 = ∣∣e2

x − e2
y

〉
, |K8〉 = ∣∣e2

x + e2
y + e2

z

〉 − 3
∣∣e2

z

〉
, |K9〉 = ∣∣e2

x + e2
y + e2

z

〉 − 2|1〉,
|K10〉 = 5

∣∣ex

(
e2
x + e2

y + e2
z

)〉 − 13|ex〉,
|K11〉 = 5

∣∣ey

(
e2
x + e2

y + e2
z

)〉 − 13|ey〉, |K12〉 = 5
∣∣ez

(
e2
x + e2

y + e2
z

)〉 − 13|ez〉,
|K13〉 = |exeyez〉, |K14〉 = 30

∣∣e2
xe

2
y + e2

xe
2
z + e2

ye
2
z

〉 − 40
∣∣e2

x + e2
y + e2

z

〉 + 32|1〉. (A2)

Then, the orthogonal matrix K follows as

K = [|K0〉,|K1〉,|K2〉,|K3〉,|K4〉,|K5〉,|K6〉,|K7〉,|K8〉,|K9〉,|K10〉,|K11〉,|K12〉|K13〉,|K14〉], (A3)

which maps the change of moments under collisions back to the changes in the distribution functions. The central moments and
raw moments of the distribution function and its equilibrium of order (m + n + p) are defined, respectively, as(

κ̂xmynzp

κ̂
eq
xmynzp

)
=

∑
α

(
fα

f
eq
α

)
(eαx − ux)m(eαy − uy)n(eαz − uz)

p, (A4)

and (
κ̂

′
xmynzp

κ̂
eq′
xmynzp

)
=

∑
α

(
fα

f
eq
α

)
em
αxe

n
αye

p
αz. (A5)
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The central moment equilibria used for the construction of the 3D cascaded collision operator for the D3Q15 lattice is presented in
Ref. [56]. The collide and stream steps of the 3D cascaded method are formally represented in Eqs. (22a) and (22b), respectively.
Owing to the mass and momentum being collision invariants, it follows that ĝ0 = ĝ1 = ĝ2 = ĝ3 = 0. For the nonconserved
moments, the change of moments under cascaded collision are given by

ĝ4 = ω4

8
[−κ̂

′
xy + ρuxuy], ĝ5 = ω5

8
[−κ̂

′
xz + ρuxuz], ĝ6 = ω6

8
[−κ̂

′
yz + ρuyuz],

ĝ7 = ω7

4

[ − (̂κ
′
xx − κ̂

′
yy) + ρ

(
u2

x − u2
y

)]
, ĝ8 = ω8

12

[ − (̂κ
′
xx + κ̂

′
yy − 2̂κ

′
zz) + ρ

(
u2

x + u2
y − 2u2

z

)
,

ĝ9 = ω9

18

[ − (̂κ
′
xx + κ̂

′
yy + κ̂

′
zz) + ρ

(
u2

x + u2
y + u2

z

)]
,

ĝ10 = ω10

16

[ − κ̂
′
xyy + 2uyκ̂

′
xy + uxκ̂

′
yy − 2ρuxu

2
y

] + uyĝ4 + 1

8
ux(−ĝ7 + ĝ8 + 3ĝ9),

ĝ11 = ω11

16

[ − κ̂
′
xxy + 2uxκ̂

′
xy + uyκ̂

′
xx − 2ρu2

xuy

] + uxĝ4 + 1

8
uy(ĝ7 + ĝ8 + 3ĝ9),

ĝ12 = ω12

16

[ − κ̂
′
xxz + 2uxκ̂

′
xz + uzκ̂

′
xx − 2ρu2

xuz

] + uxĝ5 + 1

8
uz(ĝ7 + ĝ8 + 3ĝ9),

ĝ13 = ω13

8
[−κ̂

′
xyz + uxκ̂

′
yz + uyκ̂

′
xz + uzκ̂

′
xy − 2ρuxuyuz] + uzĝ4 + uyĝ5 + uxĝ6,

ĝ14 = ω14

16

[ − κ̂
′
xxyy + 2uxκ̂

′
xyy + 2uyκ̂

′
xxy − u2

x κ̂
′
yy − u2

y κ̂
′
xx − 4uxuyκ̂

′
xy + ˜̂κxx

˜̂κyy + 3ρu2
xu

2
y

] − 2uxuyĝ4

+ 1

8

(
u2

x − u2
y

)
ĝ7 + 1

8

( − u2
x − u2

y

)
ĝ8 +

(
3

8

( − u2
x − u2

y

) − 1

2

)
ĝ9 + 2uxĝ10 + 2uyĝ11. (A6)

The output velocity field u0 = (uo
x,u

o
y,u

o
z) is obtained following the streaming step as

ρuo
x = ∑14

α=0 fαeαx, ρuo
y = ∑14

α=0 fαeαy ρuo
z = ∑14

α=0 fαeαz. (A7)

As in the 2D case, the precollision forcing step F1/2 involves the following update to the velocity field:

ux = 1

ρ

(
ρuo

x + Fx

2
�t

)
, uy = 1

ρ

(
ρuo

y + Fy

2
�t

)
, uz = 1

ρ

(
ρuo

z + Fz

2
�t

)
, (A8)

which will be used in the determination of the cascaded collision based change of different moments, i.e., ĝβ , where β =
4,5, . . . ,14 as given in Eq. (A6). Analogously, the other post-collision step F1/2 in the symmetrized operator splitting can be
written as

ρup
x = ρux + Fx

2
�t, ρup

y = ρuy + Fy

2
�t, ρup

z = ρuz + Fz

2
�t, (A9)

which, via Eq. (A8), reads as

ρup
x = ρuo

x + Fx�t, ρup
y = ρuo

y + Fy�t, ρup
z = ρuo

z + Fz�t. (A10)

To effectively introduce this effect into the 3D cascaded formulation, we take the first-order moments of the post-collision
distribution function f

p
α = fα + (K · ĝ)α , which yields

ρup
x = �αf p

α eαx = �αfαeαx + �β〈Kβ |ex〉ĝβ , (A11a)

ρup
y = �αf p

α eαy = �αfαeαy + �β〈Kβ |ey〉ĝβ , (A11b)

ρup
z = �αf p

α eαz = �αfαeαz + �β〈Kβ |ez〉ĝβ . (A11c)

Based on the orthogonal basis vectors Kβ given in Eq. (A2), it follows that

�β〈Kβ |ex〉gβ = 10ĝ1, �β〈Kβ |ey〉gβ = 10ĝ2, �β〈Kβ |ez〉gβ = 10ĝ3. (A12)

Using Eqs. (A11a)–(A11c) along with Eqs. (A7) and (A12) and comparing with Eq. (A10), we obtain the following result for the
change of first-order moments due to the force field:

ĝ1 = Fx

10
�t, ĝ2 = Fy

10
�t, ĝ3 = Fz

10
�t. (A13)
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Finally, using Eq. (A13) and Eq. (A6) for the change of moments under cascaded collision in (K · ĝ)α and expanding it, we get
the expressions for the post collision-distribution function, which read as

f
p

0 = f0 + [̂g0 − 2ĝ9 + 32ĝ14],

f
p

1 = f1 + [̂g0 + ĝ1 + ĝ7 + ĝ8 − ĝ9 − 8ĝ10 − 8ĝ14],

f
p

2 = f2 + [̂g0 − ĝ1 + ĝ7 + ĝ8 − ĝ9 + 8ĝ10 − 8ĝ14],

f3 = f3 + [̂g0 + ĝ2 − ĝ7 + ĝ8 − ĝ9 − 8ĝ11 − 8ĝ14],

f
p

4 = f4 + [̂g0 − ĝ2 − ĝ7 + ĝ8 − ĝ9 + 8ĝ11 − 8ĝ14],

f
p

5 = f5 + [̂g0 + ĝ3 − 2ĝ8 − ĝ9 − 8ĝ12 − 8ĝ14],

f
p

6 = f6 + [̂g0 − ĝ3 − 2ĝ8 − ĝ9 + 8ĝ12 − 8ĝ14],

f
p

7 = f7 + [̂g0 + ĝ1 + ĝ2 + ĝ3 + ĝ4 + ĝ5 + ĝ6 + ĝ9 + 2ĝ10 + 2ĝ11 + 2ĝ12 + ĝ13 + 2ĝ14],

f
p

8 = f8 + [̂g0 − ĝ1 + ĝ2 + ĝ3 − ĝ4 − ĝ5 + ĝ6 + ĝ9 − 2ĝ10 + 2ĝ11 + 2ĝ12 − ĝ13 + 2ĝ14],

f
p

9 = f9 + [̂g0 + ĝ1 − ĝ2 + ĝ3 − ĝ4 + ĝ5 − ĝ6 + ĝ9 + 2ĝ10 − 2ĝ11 + 2ĝ12 − ĝ13 + 2ĝ14],

f
p

10 = f10 + [̂g0 − ĝ1 − ĝ2 + ĝ3 + ĝ4 − ĝ5 − ĝ6 + ĝ9 − 2ĝ10 − 2ĝ11 + 2ĝ12 + ĝ13 + 2ĝ14],

f
p

11 = f11 + [̂g0 + ĝ1 + ĝ2 − ĝ3 + ĝ4 − ĝ5 − ĝ6 + ĝ9 + 2ĝ10 + 2ĝ11 − 2ĝ12 − ĝ13 + 2ĝ14],

f
p

12 = f12 + [̂g0 − ĝ1 + ĝ2 − ĝ3 − ĝ4 + ĝ5 − ĝ6 + ĝ9 − 2ĝ10 + 2ĝ11 − 2ĝ12 − ĝ13 + 2ĝ14],

f
p

13 = f13 + [̂g0 + ĝ1 − ĝ2 − ĝ3 − ĝ4 − ĝ5 + ĝ6 + ĝ9 + 2ĝ10 − 2ĝ11 − 2ĝ12 + ĝ13 + 2ĝ14],

f
p

14 = f14 + [̂g0 − ĝ1 − ĝ2 − ĝ3 + ĝ4 + ĝ5 + ĝ6 + ĝ9 − 2ĝ10 − 2ĝ11 − 2ĝ12 − ĝ13 + 2ĝ14]. (A14)

The overall algorithmic sequence of steps for the 3D cascaded LB method with the operator split forcing implementation is
similar to that presented in Sec. IV. Notice the significant simplification offered by the present 3D symmetrized operator split
forcing scheme, when compared to that presented in Ref. [56].
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