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The radiative transfer equation (RTE) has two asymptotic regimes characterized by the optical thickness,
namely, optically thin and optically thick regimes. In the optically thin regime, a ballistic or kinetic transport is
dominant. In the optically thick regime, energy transport is totally dominated by multiple collisions between
photons; that is, the photons propagate by means of diffusion. To obtain convergent solutions to the RTE,
conventional numerical schemes have a strong dependence on the number of spatial grids, which leads to a
serious computational inefficiency in the regime where the diffusion is predominant. In this work, a discrete
unified gas kinetic scheme (DUGKS) is developed to predict radiative heat transfer in participating media.
Numerical performances of the DUGKS are compared in detail with conventional methods through three cases
including one-dimensional transient radiative heat transfer, two-dimensional steady radiative heat transfer, and
three-dimensional multiscale radiative heat transfer. Due to the asymptotic preserving property, the present method
with relatively coarse grids gives accurate and reliable numerical solutions for large, small, and in-between
values of optical thickness, and, especially in the optically thick regime, the DUGKS demonstrates a pronounced
computational efficiency advantage over the conventional numerical models. In addition, the DUGKS has a
promising potential in the study of multiscale radiative heat transfer inside the participating medium with a
transition from optically thin to optically thick regimes.
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I. INTRODUCTION

Photon transport, conventionally called radiation transport,
plays an important role in laser materials processing [1], op-
tical tomography [2], solar energy harvesting [3], combustion
systems [4], and many other applications [5,6]. Hence large
scientific efforts have been invested to tackle a wide range
of radiative heat transfer problems in the past 50 years. Since
exact analytical solutions are available only in a few simplified
cases, a full understanding of radiative transport phenomena
in more complicated cases (i.e., nonhomogeneous, nonisother-
mal, scattering, nongray media, and collimated intensities) re-
quires the numerical solution to the radiative transfer equation
(RTE). The RTE is an integrodifferential equation in terms of
radiative intensity which is a function in seven-dimensional
phase space. Due to the high dimensionality of RTE, the
presence of integral coupling terms, and the complexity of
the radiative transfer problem, finding its numerical solution is
a challenging task. Efficient, accurate, and stable simulation
techniques are in urgent need for the analysis of radiative
transfer in participating media.

Over the years, various numerical methods based on
the RTE have been developed and implemented, includ-
ing the zonal method [7], the spherical harmonics method
[8], the discrete transfer method (DTM) [9,10], the discrete
ordinates method (DOM) [11], the finite volume method
(FVM) [12], the finite element method (FEM) [13–15], the
meshless method [16–18], and Monte Carlo method (MCM)
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[19,20]. Detailed reviews of the different methods are available
in the literature [21,22]. Among these methods, DOM, FVM,
and FEM are deterministic schemes and solve the RTE by
angular and space discretization. These deterministic methods
have achieved great success in dealing with radiative transport
in relatively optically thin media (the optical thickness or the
reciprocal of Knudsen number is often less than 6). For photon
transport in thick media where temporal and spatial scales of
different magnitudes come into play, the treatment of a small
mean free path (MFP) poses great computational challenge.
From a numerical point of view, the numerical stability for
explicit schemes requires a mesh size smaller than the MFP of
photons and a time step with the order of the square of the mean
free path in transient calculations due to the usual parabolic
Courant-Friedrichs-Lewy (CFL) condition [23]. An implicit
scheme has no such restriction on the time step, but a large
algebraic system involving the information of the total grid
system needs to invert. These constraints make the numerical
solution of the RTE computationally expensive for the optically
thick medium. On the other hand, as a probabilistic approach,
MCM is to trace the physical process of radiative transfer by
random simulation of photon bundle behaviors happening in
participating media. So no angular discretization is required
and the MCM solutions are often considered the benchmark.
Despite the great success in the simulation of radiative transfer
by MCM, MCM becomes very costly in the diffusive regime
(the optical thickness of the medium is high) due to frequent
collision of photons. What is worse is that the statistical cer-
tainty of MCM may generate noisy results. A well-known way
to tackle the radiative transport problem in thick media is based
on the diffusive equation (DE) where the P1 approximation
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and diffusion approximations are assumed, which is easier
and faster. However, the DE-based method is not accurate
in a lot of physical simulations and fails to describe both
short-time and long-time radiation transport when the medium
is not optically thick. In fact, the radiative transfer exhibits
multiscale characteristics with the change of optical thickness.
In the medium with a small optical thickness, a ballistic or
kinetic transport dominates, while as the optical thickness
increases, the collision between photons becomes frequent,
and a diffusive transport characteristic gradually appears; that
is, in the situation the thermal radiation is transferred by means
of diffusion. In summary, it is necessary to develop multiscale
schemes which can efficiently and accurately solve radiative
transfer not only in optically thin media but also in optically
thick media.

The first kind of multiscale technique is to couple the RTE
model and DE model in a domain-decomposition framework.
However, the coupling condition of different models is often
difficult to obtain. To settle the coupling problem, Roger and
Crouseilles introduced a smooth transition region called a
buffer zone which matches the RTE model and DE model
[23]. The second possibility is given by using the micro-macro
model [24,25] or its variant, the hybrid transport-diffusion
(HTD) model, proposed by Roger et al. [26]. In the micro-
macro model, the radiation intensity is decomposed into two
parts, a mesoscopic component and a macroscopic component,
and the component equations are established accordingly.
However, the coupling treatment of equations for the two
components is a tough problem. The HTD model decouples the
two equations and thus the artificial boundary condition for the
macroscopic component is avoided. The macroscopic equation
in this model is solved independently without the coupling with
the mesoscopic equation. As a result, The HTD model shows
a significant improvement in the numerical implementation in
comparison with the standard micro-macro formulation. The
third possible approach for such multiscale radiation problems
is the asymptotic preserving (AP) method. Comparing with
domain-decomposition or intensity-decomposition-type meth-
ods, the AP methods avoid the coupling of different models.
The AP methods solve the RTE in the entire domain and make
a fully consistent discretization of the DE model automati-
cally in the optically thick limit with a fixed computational
grid. The AP methods capture the radiation diffusion limit
efficiently in the optically thick regime without numerically
resolving the small MFP of photons. So the AP methods
have great potential to provide accurate results for radiative
transfer with small computational cost for various optical
thicknesses.

One of the AP methods that has been successful in doing that
is the so-called unified gas kinetic scheme (UGKS) [27,28].
By utilizing the coupling treatment of photon transport and
collision in the flux construction, the UGKS can accurately
and efficiently capture numerical solutions to both the linear
radiation transport equation [27] and the nonlinear radiation
transport equation [28] without using a mesh size smaller
than the photon MFP. For the attractive property and great
potential applications, the UKGS is subsequently extended
to frequency-dependent radiative systems [29]. In a recent
study, an implicit UGKS was developed for both gray and

frequency-dependent radiative systems with strong isotropic
scattering [30]. With an implicit formulation, the CFL con-
straint on the numerical time step is much relaxed and a large
time step is used in simulations, resulting in a considerable
improvement in computational efficiency. Later, the implicit
UGKS was further extended to a multidimensional radiative
system with complex geometry by using the unstructured mesh
technique [31].

In this series of work, we aim to develop another asymptotic-
preserving method, the so-called discrete unified gas ki-
netic scheme (DUGKS), for radiative transfer problems. The
DUGKS is a simplification of UGKS and was designed
originally for solving the Boltzmann equation by Guo et al.
[32,33]. Similar to UGKS, the DUGKS is a hybrid of the
discrete velocity method (for velocity space, or the discrete
ordinate method for angle space) and the finite volume method
with special spatial discretization schemes. Both DUGKS and
UGKS have an asymptotic-preserving property. However, they
differ completely in the flux construction. In the DUGKS, the
flux construction is simplified and the numerical flux at a cell
interface is evaluated by integrating the kinetic equation along
the characteristic line while the numerical flux in the UGKS
is approximated by the local integral solution of the kinetic
equation [34]. On the other hand, through employing variable
transformation, the evolution of macroscopic variables in
UGKS is not required in DUGKS. In some sense, the DUGKS
can also be considered a finite volume version of the lattice
Boltzmann method (LBM) and it takes advantage of the
geometrical flexibility and strong conservation property of the
FVM. Like the LBM, DUGKS is also explicit and can be easily
adapted for parallel computing. In addition, easy boundary
treatments, the bounce-back rule, and the nonequilibrium
extrapolation scheme widely used in LBM are also employed
in the DUGKS framework. However, quite different from other
versions of off-lattice Boltzmann method, DUGKS has an
asymptotic-preserving property, has low numerical dissipa-
tion, and satisfies numerical stability even at a big time step
size. This approach removes the tight bound on the maximally
allowed time step via applying a semi-implicit treatment of
the collision term and evaluating the cell interface flux of the
convective term at a temporal midpoint. In other words, the tie-
up of mesh spacing and time step that exists in the conventional
LBM and other explicit schemes is completely removed. Of
late, as one of the efficient and robust multiscale methods,
DUGKS has been already applied to a wide range of problems
including nonequilibrium gas flow [35], natural convection
[36], and phonon conduction [37,38]. Due to the similarity of
the intrinsic kinetic nature of molecules, phonons, and photons,
it is natural to solve the RTE by DUGKS. Indeed, The RTE can
be considered a linear variant of the Boltzmann equation. The
present study is aimed at demonstrating the applicability of
this method to various problems encountered in radiative heat
transfer.

The remainder of this paper is organized as follows.
Section II gives a short overview of RTE. Section III
generalizes the idea of DUGKS for solving RTE and gives the
implementation details. Several numerical cases are addressed
in Sec. IV. Finally, we make a conclusion in Sec. V with a brief
summary.
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II. KINETIC THEORY OF PHOTONS AND RADIATIVE
TRANSFER EQUATION

The Boltzmann equation for photon gases accounts for
photon distribution changes in the phase space number density
as the photons stream along their geodesics. In the absence
of general relativistic effects, the most known Boltzmann
equation can be written mathematically as

∂f (x,s,v,t)

∂t
+ cs · ∇f (x,s,v,t) = Q[f (x,s,v,t)], (1)

where f is the number density distribution function of photons
in terms of the seven independent variables (x,s,ν,t) and c is the
speed of photons; x is a spatial position vector, s is the direction
vector of photon propagation, ν is the photon frequency, and t

is a temporal variable. The second term on the left-hand side
of Eq. (1) is the convective term, representing the difference
between the numbers of photons entering and leaving the
region per unit volume. On the right-hand side of Eq. (1), Q is
the collision operator, accounting for the interactions between
photons and surrounding matter. Since the heat transfer is of
concern, another fundamental quantity, the specific intensity
of photons, is defined as I = hνcf with the Planck constant
h. The specific intensity stands for the energy carried by
photons per unit area, time, frequency interval, and solid angle,
crossing a small test surface which is oriented normal to
the propagation direction of phonons. The specific intensity
provides a complete mesoscopic description of the unpolarized
radiation field. Ignoring the frequency dependence, Eq. (1) can
be rewritten in terms of the radiative intensity:

1

c

∂I (x,s,t)
∂t

+ s · ∇I (x,s,t) = hνQ[I (x,s,t)]. (2)

From the point of view of phenomenology, the interactions
of attenuation and augmentation by absorption, emission, and
scattering processes are commonly taken into account [39,40].
Hence the collision integral term on the right-hand side of
Eq. (2) can be expressed as follows:

hνQ[I (x,s,t)] = −βI (x,s,t) + β(1 − ω)Ib(x,t)

+ βω

4π

∫
4π

I
(
x,s′,t

)
�(s′,s)d�′, (3)

where Ib is the blackbody intensity, � is the scattering phase
function, β = β(x) is the extinction coefficient which is
related to the local MFP of photon gas, and ω = ω(x) is the
scattering albedo. Substituting Eq. (3) into Eq. (2), we obtain
the radiative transfer equation,

1

c

∂I (x,s,t)
∂t

+ s · ∇I (x,s,t)

= −βI (x,s,t) + β(1 − ω)Ib(x,t)

+ βω

4π

∫
4π

I (x,s′,t)�(s′,s)d�′, (4)

which describes the radiative transport in an absorbing, emit-
ting, and scattering medium under local thermal equilibrium. In
the present work, diffusely emitting and reflecting boundaries
are considered, and the general boundary condition for Eq. (4)

is

I (xw,s,t) = (1 − ρw)I ext(xw,s,t) + εwIb(xw)

+ρw

π

∫
nw·s′<0

(nw · s′)I (xw,s′,t)d�′, (5)

where I ext (xw,s,t) is the externally incident radiation, εw is
the diffuse emissivity, ρw is the diffuse reflectivity, and nw is
the unit inner normal vector at the boundary. Ib (xw) is the
blackbody radiation intensity at the boundary surface having
a specified temperature. It should be noted that for opaque
boundaries, the first term on the right-hand side is omitted, and
for semitransparent ones, the second term is not considered.
In order to reduce the ray effect caused by discontinuities or
abrupt changes of the wall temperature, some modifications are
made. Following Refs. [41,42], we decompose the radiation
intensity into two parts: a direct intensity component Ic (x,s,t)
due to externally incident collimated radiation after partial
extinction, by absorption and scattering, along its paths, and a
diffuse intensity component Id (x,s,t), resulting from emission
from the boundaries, emission from within the medium, and
the radiation scattered away from the collimated irradiation,
that is, I (x,s,t) = Ic (x,s,t) + Id (x,s,t).

1

c

∂Ic(x,s,t)
∂t

+ s · ∇Ic(x,s,t) = −βIc(x,s,t), (6)

1

c

∂Id(x,s,t)
∂t

+ s · ∇Id(x,s,t)

= −βId(x,s,t) + β(1 − ω)Ib(x,t)

+ βω

4π

∫
4π

I (x,s′,t)�(s′,s)d�′, (7)

subject to the boundary conditions

Ic(xw,s,t) = (1 − ρw)I ext(xw,s,t), (8)

Id(xw,s,t) = εwIb(xw,t) + ρw

π

∫
nw·s′<0

(nw · s′)I (xw,s′,t)d�′.

(9)

With the boundary conditions, the solution to Eq. (6) can
be given analytically as [26]

Ic(x,s,t) = (1 − ρw)I ext

(
xw,s,t − ‖x − xw‖

c

)

× exp

(
−

∫ ‖x−xw‖

0
βdl

)
. (10)

After that, Eq. (7) can be solved numerically, which is
illustrated in the following section.

III. DISCRETE UNIFIED GAS KINETIC SCHEME FOR RTE

In this section, we extend the spirit of DUGKS in
Refs. [32,33] to the gray radiative transfer system. For sim-
plicity, only isotropic scattering (� = 1) is considered in this
work. Similar to other deterministic approaches, the DUGKS
solves the RTE by the discretization of angle space and physical
space. The starting point is the angular discretization. The
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DOM is employed for the angular variable of Eq. (7). The
integration over a solid angle is evaluated by a quadrature
over a representative finite set of directions according to a cer-

tain quadrature rule (e.g., Gauss-Legendre quadrature, Gauss-
Chebyshev quadrature, SN quadrature, etc.). Thus the corre-
sponding discrete ordinate form of Eq. (7) can be written as

1

c

∂Id(x,sk,t)

∂t
+ sk · ∇Id(x,sk,t) = −βId(x,sk,t) + β(1 − ω)Ib(x,t) + βω

4π

∑
m

I (x,sm,t)wm, (11)

where wm is the weight assigned to the direction sm. The sum of the weights is equal to the area of the surface of a unit sphere.
Spatial discretization and time integration are treated separately. For time variables, let tn = n�t , where �t is the time step. The
physical space is discretized into a set of cells and the terms on both sides of Eq. (11) are integrated over every cell as done in the
finite volume method. Id (xj ,sk,tk) denote the cell averaged value for the diffuse intensity at time tn in cell j with control volume
of Vj located at xj along photon propagation direction sk . Following Refs. [32,33], integrating Eq. (11) over cell j and applying
the trapezoidal rule for the collision term, conventionally called the radiative source term in radiative transfer theory, yields that

Id(xj ,sk,tn+1) − Id(xj ,sk,tn)

c
+ 1

Vj

∫ tn+1

tn

∫
Vj

sk · ∇Id(x,sk,t)dV dt

= β�t

2

[
(1 − ω)Ib(xj ,tn+1) + ω

4π

∑
m

I (xj ,sm,tn+1)wm − Id(xj ,sk,tn+1)

]

+ β�t

2

[
(1 − ω)Ib(xj ,tn) + ω

4π

∑
m

I (xj ,sm,tn)wm − Id(xj ,sk,tn)

]
. (12)

Rearranging for the evolution equation in time and introducing the two variables

Ĩ (x,s,t) = Id(x,s,t) + χ

2

[
Id(x,s,t) − (1 − ω)Ib(x,t) − ω

4π

∫
4π

I (x,s′,t)d�′
]
, (13)

Ĩ+(x,s,t) = Id(x,s,t) − χ

2

[
Id(x,s,t) − (1 − ω)Ib(x,t) − ω

4π

∫
4π

I (x,s′,t)d�′
]
, (14)

with χ = c�tβ, Eq. (12) may be rendered into a fully explicit form:

Ĩ (xj ,sk,tn+1) = Ĩ+(xj ,sk,tn) − c

Vj

∫ tn+1

tn

∫
Vj

sk · ∇Id(x,sk,t)dV dt . (15)

By applying the Gauss divergence theorem and midpoint rule for the time integration, the convective term can be approximated
by

c

Vj

∫ tn+1

tn

∫
Vj

sk · ∇Id(x,sk,t)dV dt = c�t

Vj

∑
f

(sk · nf )Id(xf ,sk,tn+1/2)�Sf , (16)

where nf and �Sf are the outer normal vector and control area of the interface, respectively. Id (xf ,sk,tn+1/2) denotes the mean
radiative intensity at time tn+1/2 = (2n + 1)�t/2 at the cell interface along photon transport direction sk . The numerical flux
over the boundary of the cell is approximated by the summation over the cell interfaces of the integrand function. The subscript
f denotes a cell interface under consideration. In order to update the system (15), we have to determine all terms unknown in
Eq. (15). First, we integrate Eq. (11) along the characteristic line within a half time step and also approximate the right-hand term
of Eq. (11) by the trapezoidal rule. This yields the following discrete equation:

Id(xf ,sk,tn+1/2) − Id(xf − skch,sk,tn)

c

= βh

2

[
(1 − ω)Ib(xf ,tn+1/2) + ω

4π

∑
m

I (xf ,sm,tn+1/2)wm − Id(xf ,sk,tn+1/2)

]

+ βh

2

[
(1 − ω)Ib(xf − skch,tn) + ω

4π

∑
m

I (xf − skch,sm,tn)wm − Id(xf − skch,sk,tn)

]
(17)

with h = �t/2. In order to remove the implicity, another two new variables are introduced:

Ī (x,s,t) = Id(x,s,t) + χ

4

[
Id(x,s,t) − (1 − ω)Ib(x,t) − ω

4π

∫
4π

I (x,s′,t)d�′
]
, (18)
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Ī+(x,s,t) = Id(x,s,t) − χ

4

[
Id(x,s,t) − (1 − ω)Ib(x,t) − ω

4π

∫
4π

I (x,s′,t)d�′
]
. (19)

Substituting the above two equations into Eq. (17), we can obtain

Ī (xf ,sk,tn+1/2) = Ī+(xf − skch,sk,tn). (20)

Since the position xf − skch may not be located at the cell center, the unknown variable Ī+(xf − skch,sk,tn) in Eq. (20) can
be approximated by linear interpolation (other high-order interpolations are also available), as done in Refs. [33,37]. To avoid
the creation of artificial oscillations in the solution, the van Leer limiter is used in the gradient reconstruction. Then the diffuse
component Id(x,s,t) can be computed as

Id(x,s,t) = 4

4 + χ
Ī (x,s,t) + 4χω

π (4 + χ)[4 + χ (1 − ω)]

∫
4π

Ī (x,s′,t)d�′

+ χ (1 − ω)

4 + χ (1 − ω)
Ib(x,t) + χω

π [4 + χ (1 − ω)]

∫
4π

Ic(x,s′,t)d�′. (21)

Combining Eqs. (13), (14), and (19), we also obtain

Ĩ+(x,s,t) = 4

3
Ī+(x,s,t) − 1

3
Ĩ (x,s,t), (22)

Ī+(x,s,t) = 4 − χ

4 + 2χ
Ĩ (x,s,t) + 3χω

[2 + χ (1 − ω)](2 + χ )

1

4π

∫
4π

Ĩ (x,s′,t)d�′ + 3χ (1 − ω)

4 + 2χ (1 − ω)
Ib(x,t)

+ 3χω

4 + 2χ (1 − ω)

1

4π

∫
4π

Ic(x,s′,t)d�′. (23)

In Eqs. (21) and (23), the black radiative intensity Ib (x,t)
is still unknown and will be computed next. At radiative equi-
librium, the blackbody intensity is calculated by considering
the energy conservation condition, that is,

Ib(x,t) = 1

4π

∫
4π

I (x,s,t)d�

= 1

4π

∫
4π

Ĩ (x,s,t)d� +
(

1 + χ

2

) 1

4π

∫
4π

Ic(x,s,t)d�

= 1

4π

∫
4π

Ī (x,s,t)d� +
(

1 + χ

4

) 1

4π

∫
4π

Ic(x,s,t)d�.

(24)

The radiative equilibrium condition implies that the volu-
metric absorption equals the volumetric emission. For simple
radiative nonequilibrium problems, the temperature field of
the medium or the emission power field is commonly given.
In the former case, the blackbody intensity is calculated by the
Stefan-Boltzmann law,

Ib(x,t) = σT 4(x,t), (25)

in which σ is the Stefan-Boltzmann constant and T is the local
temperature of the medium under local thermal equilibrium.

Up to now, only time step left is unknown. Note that the
treatment of both convective and collision terms is semi-
implicit in the DUGKS framework. The present method is sta-
ble without resolving the scales of photon MFP. The principle
for the choice of �t is that the free transport distance in a cell,
c�t , should be smaller than the cell size to avoid extrapolation,
i.e., c�t < �x with �x the minimal grid spacing. This
condition can also be written as a form of the CFL condition,

�t = α
�x

c
, (26)

where 0 < α < 1 is the CFL number. It is obvious that the
maximum stable time step is not limited by the extinction
coefficient.

For the black wall, a photon is absorbed as it hits the
wall, and a new photon in thermal equilibrium with boundary
temperature is emitted into the domain. For the gray wall, some
of the incident photons are absorbed and the rest are reflected
diffusively back to the domain, depending on the reflectivity
of the wall. The general boundary condition can be expressed
mathematically as

Id(xw,sk,tn) = εwIb(xw)+ ρw

π

∑
nw·s′

m<0

(nw · s′
m)

× I (xw,s′
m,tn)wm,nw · sk > 0, (27)

where sk and s′
m are the directions of propagation and inci-

dence, respectively.
In practical simulations, the direct intensity component is

calculated analytically. The transformed intensities Ĩ (x,s,t)
and Ī+(x,s,t) are stored and updated with time. In summary,
the DUGKS algorithm employed to solve the RTE can thus be
listed as follows:

Ic(xj ,sk,tn) and Ĩ (xj ,sk,tn)

(22),(23)−−−−−→Ī+(xj ,sk,tn) and Ĩ+(xj ,sk,tn)

(20)−−−−−→Ī (xf ,sk,tn+1/2)

(21)−−−−−→Id(xf ,sk,tn+1/2)

(15)−−−−−→Ĩ (xj ,sk,tn+1).
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Once the transformed intensity distribution is known, the
local incident radiation and net radiative flux can be also
obtained by

G =
∫

4π

I (x,s,t)d�

= 2

2 + χ (1 − ω)

∫
4π

Ĩ (x,s,t)d� + χ (1 − ω)

2 + χ (1 − ω)
4πIb(x,t)

+ 2+χ

2 + χ (1 − ω)

∫
4π

Ic(x,s,t)d�, (28)

q =
∫

4π

I (x,s,t)sd�

= 1

3

∫
4π

[Ĩ (x,s,t) + 2Ī+(x,s,t) + 3Ic(x,s,t)]sd�. (29)

From the above solution process, it can be seen that the
present DUGKS is different in the flux reconstruction from the
conventional FVM solver of RTE, in which the step scheme
(first-order accurate) and the curved-line advection method
(CLAM, second-order accurate) [43] are usually utilized.
Compared to the fully implicit scheme, DUGKS calculations
can be carried out in a local stencil, resulting in a much
better parallel scalability. Moreover, the special treatments for
temporal and spatial variables in DUGKS ensure a second-
order accuracy in both time and space. It can be easily proved
that the present DUGKS for a gray radiative transfer system is
asymptotic preserving. The proof procedure is similar to those
for phonon transport. A detailed analysis of the asymptotic
property can be found in Ref. [37]. We only give a sketch of it
in the Appendix.

IV. RESULTS AND DISCUSSION

Three test cases are presented to validate the numerical
performance of the method in this section. The first addresses
one-dimensional transient problems with collimated incident
radiation. The rest are multidimensional radiative transfer
problems in both homogenous and inhomogeneous media.
All computations are performed on a machine with an Intel®

Core
TM

i7-4790 CPU 3.6 GHz processor with 8.00 GB RAM
and 64-bit operating system.

A. One-dimensional transient problems

The DUGKS now is applied to transient radiative transfer
in a plane-parallel slab filled with an absorbing-scattering
gray participating medium having two diffuse boundaries. One
of the boundaries is subjected to a collimated beam. Owing
to its wide application, this problem has been investigated
by various methods, including FVM [10,44], MCM [23,26],
and the integral equation (IE) method [45]. In this work,
we consider three kinds of irradiation, namely, continuous
collimated incidence, single square pulse collimated incidence,
and truncated Gaussian pulse collimated incidence. The corre-
sponding incident radiation can be written mathematically as
follows:

I ext(xw,s,t) = I0δ(s − s0), t > 0,

I ext(xw,s,t) = I0δ(s − s0), 0 < t < tp,

FIG. 1. Spatial and temporal distributions of radiation energy due
to continuous collimated radiation: (a) incident radiation and (b)
radiative flux.

I ext(xw,s,t) = I0δ(s − s0) exp

[
−4 ln 2

(
t − 3tp

tp

)2
]
,

0 < t < 6tp, (30)

where s0 is the irradiation direction, tp is the incident pulse
width, and I0 is the maximum radiative intensity of the pulse.
The irradiation is normal to the left face of the slab, namely,
s0 · nw = −1. Initially, the medium inside the slab is cold and
the medium emission is neglected (Ib = 0) due to the ultrashort
timescales of pulsed radiation. The extinction coefficient and
the scattering albedo are homogeneous in the medium.

Figure 1 shows the incident radiation and radiation flux due
to continuous collimated irradiation with β = 1 and ω = 0.5.
The DUGKS results are compared with solutions of the IE
[45] and conventional FVM [44], in which an implicit scheme
is employed for temporal discretization and a step scheme or
CLAM scheme is employed for spatial discretization. In this
case, the mesh and discrete angle set in DUGKS simulations
are identical to those described in the literature [44]. Forty
control angles and 300 uniform control volumes are used. It
is seen from Fig. 1 that the DUGKS captures correctly the
transient effect of light propagation due to the large speed
of light compared to the local time and length scales, and
produces accurate solutions as the IE has done. Due to the
excessive numerical smearing, the step scheme and CLAM
scheme cannot capture accurately the discontinuity in the
incident radiation and radiation flux at the radiation wave front.

FIG. 2. Time history of transmittance due to square pulse irradi-
ation with a width of βctp = 1: (a) β = 1 and (b) β = 10.
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FIG. 3. Time history of transmittance due to Gauss pulse irradiation with a width of βctp = 0.5: (a) β = 10, ω = 0.5; (b) β = 20,ω = 0.5;
(c) β = 20,ω = 0.9; and (d) β = 20,ω = 0.9.

Figure 2 displays the time-resolved transmittance due to
square pulse irradiation with a width of βctp = 1. Transmit-
tance is defined as the dimensionless net radiative heat flux at
the exit boundary:

Transmittance = 1

πI0

∫
s·nw<0

(nw · s)I (xw,s,t)d�. (31)

Transmittance provides specific information about the me-
dia and is a significant measured signal in the analysis of
transient radiative heat transfer. In DUGKS modeling, the grid
number is uniform and the same for all cases considered, and
the number of spatial grids is Nx = 200. The CFL number is
fixed to 0.9. Forty equally spaced directions are taken for all
cases, which may be of high computational cost in optically
thick media but are not of concern for our present purpose. As
seen from Fig. 2(b), the temporal distribution of transmittance
has two local maxima for a big extinction coefficient of
β = 10 m−1 and scattering albedo (ω = 0.9). The first peak
occurs as soon as the direct pulse reaches the exit surface of
the slab. The second peak is due to the scattered radiation and
appears only in media where the scattering albedo is large.
For comparison, the solutions obtained by conventional FVM
[10] and MCM are also plotted in Fig. 2. The MCM solutions
are taken as benchmarks. For β = 1 m−1, the DUGKS, FVM,

and MCM results are seen obviously to agree very well with
each other. For β = 10 m−1, the DUGKS solution has the same
level of accuracy as the MCM, while the FVM underestimates
the peak value of transmittance, especially for ω = 0.9, even
with a fine-grid system of Nx = 500. The reason for this is
that photon transport is dominated by scattering in an optically
thick regime. The error on the scattering term significantly
reduces the accuracy of numerical simulations and needs
careful handling.

To further demonstrate the numerical performance of
DUGKS in an optically thick regime, the transient effects due
to Gauss-shaped pulse irradiation with a width of βctp = 0.5
are also investigated by DOM, MCM, DUGKS, HTD, and
DE, respectively. The spatial and angular discretization for
DUGKS and DOM simulations is the same as that for the
modeling of radiative transfer in the medium subject to a square
pulse irradiation. The CFL number is set to 0.5. For DOM,
the full explicit scheme is employed for temporal discretizing
and the step scheme for spatial discretizing. Results obtained
by these models are presented in Fig. 3. The numerical
solutions of MCM are taken as benchmarks. Obviously, the
results by DUGKS closely match the MCM solutions, no
matter how large the optical thickness of the medium is. In
an optically thick regime, DUGKS and the HTD model [26]
have the same order of accuracy. Among these methods, the
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TABLE I. Comparison of the computation times for DOM and DUGKS (RE indicates relative errors for the peak transmittance).

β = 1 β = 5 β = 10 β = 20

Method Grid number CFL number CPU time (s) RE (%) CPU time (s) RE (%) CPU time (s) RE (%) CPU time (s) RE (%)

0.5 10.28 0 2.14 0 1.03 0 0.51 0
DUGKS 200

0.9 5.54 0.01 1.15 0.03 0.59 0.21 0.30 0.43

200 3.92 0.35 0.80 0.72 0.39 3.58 0.20 30.71
500 4.34 0.51 2.29 0.63 1.23 9.82

DOM 0.5
1000 8.35 0.37 4.48 3.42
2000 16.80 0.33

DE model cannot predict the transmittance signal correctly.
As for DOM, its numerical accuracy depends heavily on the
density of spatial grids, and it requires a very fine grid system
for predicting transient radiative transfer well in the medium
having a big extinction coefficient, as shown in Fig. 3(d) and
Table I. The computational time and relative errors at the
peak point of transmittance curves of DOM and DUGKS for
various extinction coefficients and ω = 0.9 are compared and
illustrated in Table I. The results by DUGKS with a CFL
number of 0.5 are considered benchmarks for comparison here.
It is found that the DUGKS requires a larger computational
cost for all cases with the same grid number. The calculative
inefficiency of DUGKS results from the flux reconstructions,
where the absorbing and scattering effects are considered.
Since DUGKS is more stable than the explicit DOM, the
computational efficiency of DUGKS can be improved by using
a coarse mesh or a larger CFL number; e.g., the CFL number is
set to be 0.9. In fact, the satisfactory solutions can be obtained
with a spatial grid number of 200, or even 100 by DUGKS,
while a mesh refinement is required for DOM simulations
in optically thick medium to reduce the calculation error, as
shown in Fig. 3(d) and Table I. In order to obtain the convergent
solutions having approximately the same accuracy as DUGKS,
grid numbers of 1000 and 2000 are required in DOM for
β = 10 and β = 20 m−1, respectively, as shown in Table I.
Table I also reveals that the mesh refinement in DOM increases
the CPU times considerably. In this case, DUGKS has great
computational advantage over the explicit DOM.

B. Two-dimensional steady-state problems

The second test case considers the steady-state radiative
heat transfer in the two-dimensional (2D) square gray par-
ticipating media with the side length of L enclosed by four
boundaries. All boundaries of the enclosure are diffusive and
gray. This problem has been widely used in the literature
[13,46,47] and is the representative 2D benchmark problem
for validating numerical method to solve the RTE. In the
present work, this steady problem is modeling as a transient
problem by DUGKS, and a steady-state solution is achieved
when the relative difference of the incident radiation between
two successive 100 time steps is less than 10−6. Both radiative
equilibrium and radiative nonequilibrium are considered in this
work. Since there is no irradiation, we have

Ic(x,s,t) ≡ 0, I (x,s,t) = Id(x,s,t). (32)

For the DUGKS modeling, a uniform mesh system in
Cartesian coordinates is used for physical space and the Gauss-
Legendre quadrature is utilized for angular discretization. The
direction cosine of zenith angle μ is discretized into Nμ points
in [−1, 1]. The azimuth angle ϕ is discrete into Nϕ points in
[0, π ] ([0, 2π ] for three-dimensional cases). The CFL number
is taken to be 0.5 unless stated otherwise.

The radiative equilibrium problem is considered first. In
this case, the bottom boundary of the enclosure is kept hot and
has unity emissive power, whereas the other three boundaries
are kept cold with a dimensionless temperature of 0 K. The
medium is homogeneous with a constant scattering albedo
ω = 1. When radiative equilibrium is reached, the incident
radiation is balanced with the blackbody emission from the
medium at every location. For comparison, this problem is
investigated by the present DUGKS and a published FVM code
(developed by Chai, called RAT) [48,49]. If τ = βL < 2, the
angular discretization in both DUGKS and FVM simulations
is set to be Nμ × Nϕ = 16 × 16. For a higher value of the
extinction coefficient, τ � 2, a smaller number of discrete
directions is used, that is, Nμ × Nϕ = 8 × 16. Figure 4(a) and
4(b) display the net radiative flux at the hot wall obtained
by these two methods with different mesh resolutions. It is
found that DUGKS is insensitive to grid refinement for a fixed
angular discretization. This indicates that a coarse grid system
(e.g., Nx × Ny = 40 × 40) is sufficient to obtain convergent
solutions. However, in FVM simulations, a fine mesh system
is required to obtain grid-independent results for a higher
value of the optical thickness (e.g., τ = 5,10,20). For all
optical thicknesses considered, the DUGKS solutions are in
a good agreement with the convergence outcomes by FVM.
The total CPU time of the DUGKS and the FVM simulations
is compared in Table II. It is observed from Table II that
the DUGKS takes more computational time for all optical
thicknesses with the same mesh system of 40 × 40. The
reason for this is that DUGKS solves a steady-state problem
as a limiting case of a transient problem, which results in
computational inefficiency. However, the FVM converges very
slowly in the optically thick regime and takes much more
time for the convergence results because of the use of much
denser mesh. In this case, the FVM requires grid numbers
of at least 200 × 200 and 400 × 400 for obtaining the
convergent solutions for τ = 10 and 20, respectively, while the
DUGKS requires only 40 × 40 grids, independent of optical
thickness. This revealed that the present DUGKS is a promising
approach with high efficiency and satisfactory accuracy for
simulating radiative heat transfer in an optically thick medium,
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FIG. 4. Nondimensional net radiative heat flux at the hot wall for the radiative equilibrium problem: (a) DUGKS solutions at different
optical thickness, (b) FVM solutions at different optical thickness, and (c) the effects of wall emissivity.

and its computational efficiency advantage over the FVM will
become increasingly evident as the optical thickness is further
increased.

The effects of wall emissivity in the case of τ = 1 are
investigated by the present DUGKS and displayed in Fig. 4(c).
After the grid independence and ray independence tests, a
40 × 40 uniform grid system and an 8 × 16 discrete angle
set are employed in the DUGSK simulations. In Fig. 4(c),
the variations of dimensionless net radiative flux at the hot
boundary are shown for wall emissivities εw = 0.1,0.5, and 1,
respectively. The DUGKS solutions are found to compare very
well with the results by the zonal method [13].

The radiative nonequilibrium problem is also investigated
here. In this case, all four boundaries of the enclosure are cold
and the medium is kept hot with a unitary emission (Ib = 1/π ).
After the independence test, the same mesh system Nx = Ny =
40 is employed for all cases and the discrete angles Nμ × Nϕ =
8 × 8,8 × 8, and 4 × 8 are employed for τ = 0.1,1, and 10,
respectively. Figures 5(a) and 5(b) shows the variation of net
heat flux on the bottom wall with different scattering albedos
and optical thicknesses. It is seen from Fig. 5 that the results
obtained by DUGKS agree well with those by the collapsed
dimension method (CDM) [47] and the zonal method [13]. As
shown in Fig. 5(b), there are some small deviations between the

TABLE II. Comparison of the CPU times of the DUGKS and the FVM in the modeling of radiative equilibrium problem.

CPU time (s)

Methods Mesh (Nx × Ny) τ = 0.1 τ = 1 τ = 2 τ = 5 τ = 10 τ = 20

DUGKS 40 × 40 3.65 2.71 2.95 4.23 6.474 10.58
40 × 40 0.17 0.11 0.19 0.53 1.20 2.82

100 × 100 1.05 1.44 3.81 9.28 24.51
FVM

200 × 200 16.05 41.23 140.06
400 × 400 204.02 625.21
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FIG. 5. Nondimensional net wall radiative heat flux at the radia-
tive nonequilibrium: (a) effects of scattering albedo and (b) effects of
extinction coefficient.

two calculation models, particularly near the boundary with a
sharp gradient of radiation intensity as the optical thickness of
the medium increases. Nevertheless, the maximum deviation is
less than 1.8%. For further comparison, the results calculated
by the FVM code RAT [48,49] are also plotted in Fig. 5(b). It is
found that DUGKS leads to considerably accurate outcomes
like the FVM.

To test the numerical stability of DUGKS, a special
case, radiative transfer in a unit square enclosure within an
absorbing-emitting medium having a Gaussian emissive field is
studied. This case can be considered a special kind of radiative
nonequilibrium problem with the nonhomogenous emission

FIG. 6. Radiative intensity distributions in the square enclosure with different optical thicknesses: (a) Galerkin FEM solutions, (b) analytical
solutions, and (c) DUGKS solutions.
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FIG. 7. Schematic of the cubic enclosure subjected to an incident
short-pulse laser.

power

Ib(x,y) = 1

β
exp

[
− 1

α2

(
x + y√

2
− c

)2
]
, (33)

in which the emission profile parameters are selected as α =
0.02 and c = √

2/2. The boundary condition is prescribed on
the inflow boundaries with null emission. Considering the
incident direction s = (

√
2/2,

√
2/2), the analytical solution

to this problem can be obtained in Refs. [18,46]. DUGKS
is applied to solve the intensity distribution in the medium
for different values of τ = 0.1,1, and 10. The spatial grid
system in DUGKS simulations is the same as that for the
radiative equilibrium case. The corresponding results are
compared to numerical results obtained by the Galerkin FEM
with the same meshes and analytical solutions and displayed
in Fig. 6. As seen from Fig. 6, DUGKS is almost stable
with slightly spurious oscillations for all optical thicknesses
while the Galerkin FEM produces an apparent oscillating
intensity field, especially at small optical thickness. These
nonphysical oscillations result from the inappropriate spatial
discretization for a strong convection-dominated equation,
and special stabilization techniques (e.g., upwind scheme and
least-squares scheme) [50–52] are usually required to remove
such oscillations.

C. Three-dimensional multiscale problem

In this section we present an application of the proposed
DUGKS to a three-dimensional multiscale radiative transfer
problem. As illustrated in Fig. 7, a unit cube is filled with
a nonhomogenous absorbing-scattering medium. The right-
handed coordinate system is created with the coordinate origin
located at one of the vertices. The extinction coefficient of
the medium varies vertically and is governed by the following
expression:

β = βmax − 2(βmax − βmin)|z − 0.5|, 0 � z � 1, (34)

in which βmax and βmin are the maximum and minimum
values of extinction coefficient, respectively. Equation (34) in-
dicates that the extinction coefficient distributes symmetrically,
increases linearly with z for z < 0.5, and reaches the peak value
βmax at z = 0.5, then decreases with z. The minimum extinction
coefficient βmin occurs at the face z = 0 or z = 1. Additionally,
the scattering albedo ω is assumed to be constant in this work.
At t = 0, the top face of the cubic enclosure is irradiated by an
incident short-pulse laser, and the direction of the collimated
irradiation is normal to the top face. The intensity of the laser
pulse is given by

I (x,y,z = 1,s0,t) = I0δ(s − s0), 0 < t < tp, (35)

where I0 is the radiative intensity of the square pulse, s0 is
the irradiation direction, and tp = 1/(βmaxc) is the width of the
square pulse. According to Eq. (35), the medium is free from
irradiation after tp. The media are supposed to be nonrefracting
and photons travel with the same velocity. All boundaries are
cold and nonreflecting.

This transient radiative transfer problem associated with the
spatially varying radiative property is of great interest due to its
frequent occurrence in both nature (e.g., multilevel cloud sys-
tems, biological tissues, etc.) and technological applications.
For this problem, no analytical solution is available and MCM
is difficult and very time consuming. A wide spatial range of
optical thickness divides the computational domain into the
diffusive regime and kinetic regime, and therefore brings great
challenges for numerical simulations. We employ DUGKS
to solve this problem with three different uniform meshes,
namely, 20 × 20 × 50, 20 × 20 × 100, and 20 × 20 × 200. Here
a finer grid in the streamwise direction is used to accurately
capture the variance of optical thickness. Additionally, the
angular discretization Nμ × Nϕ = 16 × 32 is utilized here to
reduce the ray effect as much as possible. For different mesh
resolutions, we fixed the time step c�t = 0.0125 to reduce the
effect of time step on numerical solutions. In addition, we fixed
the extinction coefficient βmin = 1 to form a kinetic regime.
The effects of the maximum value and scattering albedo are
investigated.

Figure 8 shows the dimensionless transmittance signals,
which are defined as

T (t) = 1

I0

∫ 1

0

∫ 1

0

∫
s·nw<0

(nw · s)I (x,y,z = 0,s,t)d�dxdy.

(36)

Figures 8(a) and 8(b) display the predicted transmittance
signals at a smaller βmax = 20 while Figs. 8(c) and 8(d) display
the transmittance signals at a lager βmax = 50. In general, the
temporal transmittance exhibits a sharp peak. The transmit-
tance stay zero until photons travel across the medium and
reach the boundary z = 0. Then the transmittance increases
significantly up to the peak value due to the scattering within
the medium. Since the medium in the middle layer has a larger
optical thickness, it takes a long time for scattered photons to
reach the right boundary due to the frequent scatter event in
the diffusive regime. It can be also seen from Fig. 8 that larger
value of at βmax results in a smaller peak value of transmittance
signals and larger peak time. With the increase of scattering
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FIG. 8. The predicted transient transmittance signals for various parameters: (a) βmax = 20, ω = 0.5; (b) βmax = 20, ω = 0.95; (c) βmax =
50, ω = 0.5; and (d) βmax = 50, ω = 0.95.

albedo, the diffuse component becomes dominant and the
transmittance increases by orders of magnitude. Comparing
results by different mesh resolutions, the DUGKS solutions
exhibit low grid dependence especially for large scattering
albedo. This suggests that DUGKS is flexible enough to
deal with the diffusive and the kinetic regimes and offers a
robust tool for multiscale radiative transfer problem where both
regimes can be found.

V. CONCLUSION

Radiative transfer in participating media has multiscale
characteristics due to the influence of optical thickness (the
reciprocal of the Knudsen number). If the optical thickness is
much smaller than unity, photons fall in the ballistic regime
where the ballistic transport is dominated. If the optical
thickness is much larger than unity, photons fall in the diffusive
regime where the radiative transfer by diffusion is dominated.
All conventional methods based on the RTE such as MCM,
DOM, FVM, and so on converge slowly when the solution
domain is close to the diffusive regime. Accordingly, the
computational requirements increase linearly with the dth (d
denotes the dimensionality of the solution domain) power of
the optical thickness.

In this work, we presented an asymptotic-preserving dis-
crete unified gas kinetic scheme for efficiently and accurately
solving the transient radiative transfer equation in the whole
range of optical thicknesses. In the numerical scheme, the dis-
crete ordinate method is applied to discretize angle direction,
the finite volume method is used for the spatial discretization,
and a semi-implicit scheme is adopted for the time integration.

In contrast with the conventional finite volume method, the
flux at the cell interface in the DUGKS is approximated by
integrating the RTE along the characteristic line, respecting
the physics of radiative transport like the MCM. As a result,
the spurious diffusion is effectively mitigated. In the DUGKS,
each time step can be computed explicitly and cheaply without
subiteration and the CFL restriction on the time step size is
removed. Our developed scheme does preserve the asymptotic
diffusion limit of the radiative transfer system without resolv-
ing the mesh size, and is correct, efficient, and stable to solve
the radiative transfer equation in the optically thin, optically
thick, and transition regimes.

For validation purposes, the present method is tested by a
set of radiative transport problems including one-dimensional
transient radiative transfer and multidimensional steady radia-
tive transfer. The numerical results obtained by the present
method have been compared with other different numerical
schemes. These comparisons reveal that the proposed DUGKS
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has a good performance in both transient and steady modeling.
Since the spurious diffusion is effectively mitigated, the present
method does improve significantly the accuracy in optically
thick media avoiding using a fine computational grid system
compared to the conventional methods like DOM and FVM.
Moreover, the present method is found to be much more
efficient than the conventional numerical methods when the
physical conditions are close to the radiative diffusion regime.
The computational results also confirm the promising and
excellent capability of the present method in capturing the
sharp spatial discontinuities in the radiation field and modeling
multiscale radiative transfer.

The present work is currently limited to the regular geome-
tries and isotropic scattering. In future work, we will extend
the DUGKS to radiative transfer in complex configurations
based on the unstructured mesh technique. We will also modify
the DUGKS for solving the radiative transfer in anisotropic
scattering media. In addition, we can extend the DUGKS to
frequency-dependent radiative transfer and polarized radiative
transfer.
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APPENDIX

The asymptotic property of DUGKS is analyzed here. More
precisely, we show that the present DUGKS is able to give
a suitable numerical approximation in the limit of both β

large and small. Let us first consider the asymptotic behavior
of the scheme in the limit where β tends to infinity. For
simplicity, the external irradiation is ignored. Thus all terms
involving the component Ic(x,s,t) can be omitted. Since we are
mainly interested in optically thick limits leading to diffusion
equations, we apply the following change of variables,

t → ε2t0, x → εx0, (A1)

where ε is small parameter related to the MFP of photons.
Inserting Eq. (A1) into Eq. (4), Eq. (4) can be rewritten as

ε2

c

∂I

∂t0
+ εs · ∂I

∂x0
= −βI + β(1 − ω)Ib + βω

4π

∫
4π

I�d�′.

(A2)

In order to analyze multiscale effects of the underlying
equations, it is often advisable to apply a formal asymptotic
analysis and express all variables in the form of the Hilbert
expansion in the parameter ε by

I = I (0) + εI (1) + · · · . (A3)

We substitute this expansion into Eq. (A2) and compare the
equal-order terms in ε,

ε0 : −βI (0) + β(1 − ω)Ib + βω

4π

∫
4π

I (0)d�′ = 0, (A4)

ε : s · ∂I (0)

∂x0
= −βI (1) + βω

4π

∫
4π

I (1)d�′. (A5)

Integrating Eq. (A4) over the solid angle yields∫
4π

I (0)d�′ = 4πIb, I (0) = Ib. (A6)

Noticing that I (0) is angle independent and integrating
Eq. (A5) over the solid angle yields

I (1) = 1

β
s · ∂Ib

∂x0
. (A7)

Substituting Eqs. (A6) and (A7) into Eq. (A3), the radiative
intensity can be approximated as

I = Ib − ε

β
s · ∂Ib

∂x0
+ O(ε2) ≈ Ib − ε

β
s · ∂I

∂x0
+ O(ε2)

≈ Ib − 1

β
s · ∂I

∂x
+ O(ε2). (A8)

The above expression is also called the Rosseland approx-
imation in radiation theory. Similarly, integrating Eq. (4) over
the solid angle and combining with Eqs. (A6) and (A8), the
macroscopic diffusion equation for radiative transport can be
obtained [26],

1

c

∂G

∂t
+ ∂

∂x
·
(

1

3β

∂G

∂x

)
= β(1 − ω)(4πIb − G), (A9)

where we have made use of the property of angular quadrature,

∑
k

skwk = 0,
∑

k

skskwk = 4π

3
δij . (A10)

For the DUGKS formula, plugging Eq. (A8) into Eq. (16)
and integrating Eq. (15) over the solid angle yields that

G(xj ,tn+1) − G(xj ,tn)

c�t
−

∑
f

�Sf

3βVj

nf · ∇G(xf ,tn+1/2)

= β

2
(1 − ω)[4πIb(xj ,tn+1) − G(xj ,tn+1)

+ 4πIb(xj ,tn) − G(xj ,tn)], (A11)

which is a consistent approximation of Eq. (A9). This indicates
that the DUGKS is AP in the thick diffusive limit.

Now we discuss the AP property of the DUGKS in the
optically thin limit. Noticing that βc�t 	 1 in this case,
Eqs. (20) and (12) reduce to

I (xf ,sk,tn+1/2) = I (xj − skch,sk,tn), (A12)

1

c

I (xj ,sk,tn+1) − I (xj ,sk,tn)

�t

+ 1

Vj

∑
f

(sk · nf )I (xf ,sk,tn+1/2)�Sf = 0, (A13)

which is a consistent discretization of RTE in the optically thin
limit where the convection is dominant for photon transport.
In other word, DUGKS is also AP in optically thin regions.
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