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Magnetosonic waves in a quantum plasma with arbitrary electron degeneracy
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Using a two-species quantum hydrodynamic model, we derive the quantum counterpart of magnetosonic
waves, in a plasma with arbitrary degree of degeneracy and taking into account quantum diffraction effects due
to the matter-wave character of the charge carriers. The weakly nonlinear aspects of the associated quantum
magnetosonic wave are accessed by means of perturbation theory, with the derivation of a nonlinear evolution
equation admitting solitons, namely, the Korteweg–de Vries equation. The degeneracy and quantum diffraction
effects on soliton propagation are determined. A qualitative change on weakly nonlinear magnetosonic waves
appears when quantum diffraction matches certain conditions, producing shock solutions instead of solitons,
within the approximation level. We also include explicit numeric estimates and a discussion on the coupling
(nonideality) parameter for quantum plasmas with intermediate degeneracy degree.
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I. INTRODUCTION

The study of nonlinear magnetohydrodynamic (MHD)
waves in plasmas has gained interest due to its wide range
of application from astrophysical to laboratory plasmas. The
theory of MHD waves in infinite conducting medium was
first developed by Alfvén [1] with its application to sunspots,
coronal heating, particle acceleration, and generation of cos-
mic radiation. The Alfvén and magnetosonic waves are the
fundamental modes of MHD in plasmas. The Alfvén wave is a
transverse wave, which propagates parallel to the magnetic
field without fluid density perturbation. The magnetosonic
wave is partially longitudinal due to the plasma compression
and transverse due to the magnetic field lines compression [2].
The magnetosonic wave is also named the fast MHD wave as
its speed is greater than the Alfvén wave speed.

Recently, there has been great interest in studying col-
lective modes in quantum plasmas due to their applications
in semiconductors, nanoscale electromechanical structures,
laser plasma interactions, and dense astrophysical plasmas; see
[3–5] and references therein. The quantum or degeneracy
effects become important in plasmas when the de Broglie
wavelength associated with electrons/ions becomes of the
order of the average interparticle distance. The quantum effects
arise by both the Pauli exclusion principle (for fermions
like electrons and protons) and the Heisenberg uncertainty
principle due to wavelike nature of the particles. The collective
motion of quantum particles in magnetic fields can be studied
using quantum magnetohydrodynamic (QMHD) theory. The
linear and nonlinear MHD waves in fully degenerate plasmas

*fernando.haas@ufrgs.br
†shahzadm100@gmail.com

have been investigated already by a number of authors with
their application to interiors of massive planets, white dwarfs,
and pulsars. Haas [6] first introduced QMHD models, where
nonclassical corrections were included through a quantum
diffraction parameter. Further, Marklund and Brodin [7] ex-
tended the QMHD model by including spin-1/2 effects of
degenerate electrons to study low-frequency waves in magne-
tized quantum plasmas. Magnetosonic solitons were studied
in a quantum magnetoplasma, including the quantum Bohm
potential and electron spin-1/2 effects using the Sagdeev
potential approach [8]. The authors found that the rarefactive
magnetosonic solitons propagating with sub-Alfvénic speed
are formed due to balance between nonlinearities and quan-
tum tunneling effects. Also a generalized set of nonlinear
electromagnetic quantum hydrodynamic equations has been
presented, including certain spin and relativistic effects, in
Ref. [9]. Nonlinear magnetosonic waves in dense dissipative
magnetized plasmas have also been studied using reduc-
tive perturbation techniques, leading to the derivation of a
Zabolotskaya-Khoklov equation [10].

The equation of state for a degenerate electrons gas is
described by a Fermi-Dirac probability distribution charac-
terized by two independent parameters, i.e., the chemical
potential and the thermodynamic temperature [11–13]. The
main parameter in a near-to-equilibrium Maxwellian electron
gas is the thermodynamic temperature. On the other hand, in
a fully degenerate electron gas described by a Fermi-Dirac
distribution, the energy spread is uniquely determined by the
chemical potential, which is the same as the Fermi energy in
this case. In this context, it is interesting to investigate the
linear and nonlinear magnetosonic wave propagation in full
generality, with an equation of state for arbitrarily degener-
ate electrons in which these two parameters, i.e., chemical
potential and thermal temperature, can be equally relevant,
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and where quantum diffraction effects of electrons are also
taken into account. Our model is more relevant to systems
which are neither strongly degenerate nor close to classical
statistics. In other words, it is more pertinent to systems where
the Fermi and thermal temperatures are of the same order
of magnitude. This situation happens in inertial confinement
plasmas in laboratories with particle densities in the range
1030 to 1032 m−3 and thermodynamic temperatures above
107 K [14]. Moreover, it has applications such as in laboratory
simulations of astrophysical dense plasmas which are better
represented in the intermediate Maxwellian and degenerate
regimes [15] and in ultrasmall semiconductor devices operat-
ing in a mixed dilute-dense plasma regime [16]. In a certain
sense, systems with an intermediate statistics have a parallel
in certain space plasmas and dusty plasma crystals, where the
underlying quasi-equilibrium distribution function can be a
Maxwellian or a long tail, kappa distribution according to the
circumstances [17].

Using classical kinetic theory, and linearizing the Vlasov-
Poisson system around a Fermi-Dirac equilibrium, Maafa [18]
was the first to study ion-acoustic and Langmuir waves in
plasmas with arbitrary degeneracy of electrons. Recently, Haas
and Mahmood [13,19] investigated the linear and nonlinear
ion-acoustic waves unmagnetized (one-dimensional soliton)
and magnetized (two-dimensional soliton) in dense plasma
with arbitrary degeneracy of electrons. The quantum coupling
parameter is defined for an arbitrary degenerate plasma, with
limitations for the quantum diffraction parameter in quantum
hydrodynamic (QHD) models. Using quantum kinetic theory,
the low frequency longitudinal response was obtained in
electron-ion plasmas, including quantum recoil for the dilute
case [20] and then for the arbitrary degenerate case [21] in a
Fermi-Dirac equilibrium. Eliasson and Shukla [22] studied the
nonlinear quantum electron fluid evolution equations for the
Wigner function in terms of a local Fermi-Dirac equilibrium
with an arbitrary thermodynamic temperature. The Langmuir
waves were then investigated in the high (Maxwellian) and low
(fully degenerate) temperature limits. Dubinov et al. [23] stud-
ied the nonlinear ion-acoustic waves with arbitrary degeneracy
of electrons and ion by considering them as warm Fermi gases.

In the present paper, we analyze the propagation of linear
and weakly nonlinear magnetosonic waves in a plasma with
arbitrary degeneracy of electrons and with inclusion of Bohm
diffraction effects. For this purpose a two-species QHD model
is employed. The set of fluid equations and its linear wave
analysis are presented in Sec. II. The normalized set of
dynamic equations in described in Sec. III, and the derivation
of the Korteweg–de Vries (KdV) equation for magnetosonic
waves with arbitrary degeneracy of electrons is presented in
Sec. IV. Explicit numeric estimates are presented in Sec. V.
The conclusions are shown in Sec. VI. Finally, the Appendix is
reserved to show the specific form of certain functions obtained
in the weakly nonlinear perturbation theory.

II. SET OF DYNAMIC EQUATIONS
AND LINEAR WAVE ANALYSIS

We consider an electron-ion magnetized quantum plasma
which contains classical (due to their large inertia) and cold
ions and inertial degenerate electrons with inclusion of the

Bohm potential effect due to their wave nature, together with
Fermi pressure. To have more generality, we do not suppose
length scales much longer than the electrons skin depth, so that
a two-fluid model is more appropriate than QMHD. To study
the low frequency magnetosonic waves, our basic equations
are written as follows.

The continuity and momentum equations for the nondegen-
erate ions are written as

∂ni

∂t
+ ∇ · (nivi) = 0, (1)

∂vi

∂t
+ vi · ∇vi = e

mi

(E + vi × B), (2)

where ni and vi are respectively the ionic number density and
velocity field, E and B denote the electromagnetic field, mi is
the ions mass, and e is the elementary charge.

The continuity and momentum equations for inertial degen-
erate electrons are given by

∂ne

∂t
+ ∇ · (neve) = 0, (3)

∂ve

∂t
+ ve · ∇ve =− e

me

(E + ve × B) − 1

neme

∇p

+
(

α

3

)
h̄2

2m2
e

∇
(

1√
ne

∇2√ne

)
, (4)

where ne and ve are respectively the electronic number density
and velocity field, me is the electron mass, h̄ is the reduced
Planck constant, p is the electronic fluid pressure, and α is
a factor detailed below, introduced to better fit kinetic theory
results.

In order to derive the equation of state for electron pressure,
consider a local quasi-equilibrium Fermi-Dirac particle distri-
bution function f = f (v,r,t) for electrons [13,19,22], given
by

f (v,r,t) = A

1 + eβ(E−μ)
, (5)

where β = 1/(κBT ), E = mev
2/2, v = |v|, and μ is the

chemical potential regarded as a slowly varying function of
position r and time t . κB is the Boltzmann constant and T

is the thermodynamic electron temperature. In addition, the
normalization condition at equilibrium

∫
f d3v = n0 gives

− n0

Li3/2(−eβμ(0) )

(
βme

2π

)3/2

= 2

(
me

2πh̄

)3

= A, (6)

where μ(0) is the equilibrium chemical potential which is
related to the equilibrium number density n0. The factor 2 in
the middle term of the above equality is due to the electron’s
spin. Equation (6) contains the polylogarithm function Liν(−z)
[24], which for ν > 0 can be defined as

Liν(−z) = − 1

�(ν)

∫ ∞

0

sν−1

1 + es/z
ds, ν > 0, (7)

where �(ν) is the gamma function. For ν < 0 one applies

Liν(−z) =
(

z
∂

∂z

)
Liν+1(−z) (8)

as many times as necessary, where ν + 1 > 0.
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The scalar pressure follows from the standard definition for
an equilibrium with zero drift velocity,

p = me

3

∫
f v2d3v, (9)

which yields

p = ne

β

Li5/2(−eβμ)

Li3/2(−eβμ)
. (10)

The last term on right-hand side of Eq. (4) is the Bohm potential
term which is responsible for quantum tunneling effects. The
constant α in the Bohm potential term is included so that fluid
and kinetic theories yield the same dispersion relation in the
long-wavelength limit, as described in detail in [13,19] and
references therein. It can be also shown that

ne = n0
Li3/2(−eβμ)

Li3/2(−eβμ(0) )
. (11)

The numerical coefficient α appearing in the Bohm potential
term in Eq. (4) is defined in [13],

α = Li3/2(−eβμ(0) ) Li−1/2(−eβμ(0) )

[Li1/2(−eβμ(0) )]2
, (12)

an is expressed as a function of the equilibrium fugacity
z = exp(βμ(0)). In the classical limit (z � 1) one has α ≈ 1,
while in the full degenerate limit (z � 1) one has α ≈ 1/3.

The necessary Maxwell’s equations are

∇ × E = −∂B
∂t

(13)

and

∇ × B = μ0j+ 1

c2

∂E
∂t

, (14)

where μ0 is the free space permeability and c the speed of light.
The current density is given by

j = e(nivi − neve). (15)

The equilibrium is defined by ne,i = n0, ve,i = 0, E = 0,
and B = B0ẑ, a uniform magnetic field. In what follows, the
displacement current in Eq. (14) will be neglected under the
assumption that the wave phase velocity is much smaller than
the speed of light.

Without loss of generality, we assume that the magnetosonic
wave is propagating in the x direction, i.e., ∇ = (∂x,0,0), while
the electric field is lying in the XY plane, i.e., E = Exı̂ + Eyĵ ,
and the magnetic field is along the z axis, i.e., B = B0k̂ +
Bzk̂, for first-order quantities Ex,Ey and Bz. All perturbations
are supposed to be proportional to exp (ik · r − iωt), where
k = kı̂ and ω are the wave vector and the wave frequency,
respectively. With this geometry, the linear dispersion relation
for magnetosonic waves in a quantum plasma with arbitrary
degeneracy of electrons can be written as

ω2 =
(

c2
s + α

12

h̄2

mime

k2

)
k2 + k2v2

a

1 + k2λ2
e

, (16)

where the ion-acoustic speed is defined as

cs =
(

1

βmi

Li3/2(−eβμ(0) )

Li1/2(−eβμ(0) )

)1/2

, (17)

while the Alfvén speed is vA = B0/
√

μ0min0.
In the case k2λ2

e � 1, the dispersion relation described in
Eq. (16) becomes

ω2 =
(

c2
s + α

12

h̄2

mime

k2

)
k2 + �i�e, (18)

where �i = eB0/mi and �e = eB0/me are the ion and elec-
tron gyrofrequencies, respectively.

Now in the absence of Bohm potential force in the model,
we have

ω2 = c2
s k

2 + �i�e. (19)

In case of strong magnetic field (c2
s k

2 � �i�e), one has lower
hybrid oscillations, i.e., ω = √

�i�e.
Wave dispersion effects appear through the electron skin

depth λe = √
c/ωpe, where ωpe =

√
n0e2/(meε0) is the elec-

tron plasma frequency (with ε0 being the free space permit-
tivity). Wave dispersion arises due to the second term in the
parentheses of Eq. (16), which is due to the Bohm term. In the
long-wavelength limit, one simply has the phase velocity

ω

k
=

√
c2
s + v2

A, (20)

which is the standard magnetosonic wave for vA � c, but with
a modified ion-sound speed. In the dilute plasma case with
a small fugacity z � 1 and ignoring quantum diffraction, we
have

ω2 = c2
s k

2 + k2v2
A

1 + k2λ2
e

, (21)

which is the same as Eq. (16) in Ref. [25], where in this case
cs = √

κBT /mi .
In the fully degenerate case, we have z � 1 and Eq. (16)

can be written as

ω2 =
(

c2
s + h̄2

36mime

k2

)
k2 + k2v2

A

1 + k2λ2
e

, (22)

where the ion-acoustic speed becomes cs = √
2εF /(3mi),

in terms of the electrons Fermi energy εF = κBTF =
[h̄2/(2me)] (3π2n0)2/3, which is the same as the equilibrium
chemical potential in the deep degenerate situation, with a
Fermi temperature TF .

By definition, in a fluid treatment kinetic aspects such as
finite Larmor radius effects cannot be addressed. In view of
the cold ions assumption, this amounts to considering a long
wavelength λ such that λ � vT /�e, where vT = 〈v2〉1/2 is the
electron thermal speed. Here,

〈v2〉 =
∫

f v2d3v

n
= 3

meβ

Li5/2(−eβμ)

Li3/2(−eβμ)
, (23)

an expression valid for any degeneracy degree. In equilibrium
(μ = μ0), in the fully degenerate case one has 〈v2〉 = (3/5)v2

F ,
while on the opposite limit of a dilute plasma one has 〈v2〉 =
3κBT /m.
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III. NORMALIZED SET OF DYNAMIC EQUATIONS

It is convenient to write the above set of equations (1)–(4)
and (11) in dimensionless and component form, as follows.
The normalization of the number densities is defined by ñe,i =
ne,i/n0, while the normalized fluid velocities are ṽe,i = ve,i/cs .
Moreover, we use the following normalizations for space,
time, and electric and magnetic fields: x̃ = ωpi x/cs , t̃ = ωpit ,
Ẽ=eE/(micsωpi) and B̃ = B/B0. The ratio of ion-cyclotron
to ion plasma frequencies is defined as � = �i/ωpi , where
�i = eB0/mi and ωpi =

√
n0e2/(miε0). The dimensionless

quantum diffraction parameter is given [13,19] by

H = βh̄ωpe√
3

×
(

Li−1/2(−eβμ(0) )

Li3/2(−eβμ(0) )

)1/2

. (24)

Finally, δ = mi/me is the ion-electron mass ratio. With these
conventions, the ion continuity equation is given by

∂ñi

∂ t̃
+ ∂

∂x̃
(ñi ṽix) = 0. (25)

The x and y components of the ion momentum equation are
written as

∂ṽix

∂ t̃
+ ṽix

∂

∂x̃
ṽix = Ẽx + � ṽiyB̃, (26)

∂ṽiy

∂ t̃
+ ṽix

∂

∂x̃
ṽiy = Ẽy − � ṽixB̃. (27)

The electron continuity equation is given by

∂ñe

∂t̃
+ ∂

∂x̃
(ñeṽex) = 0. (28)

The x and y components of the electrons momentum equation
are written as

∂ṽex

∂t̃
+ ṽex

∂

∂x̃
ṽex = − δ Ẽx − δ � ṽeyB̃

−δ
Li1/2(−eβμ(0) )

Li1/2(−eβμ)

∂

∂x̃
ñe ,

+1

2
δ H 2 ∂

∂x̃

(
1√
ñe

∂2

∂x̃2

√
ñe

)
, (29)

∂ṽey

∂t̃
+ ṽex

∂

∂x̃
ṽey = −δ Ẽy + δ � ṽexB̃. (30)

ñe = Li3/2(−eβμ)

Li3/2(−eβμ(0) )
. (31)

The z component of Faraday’s law gives

∂Ẽy

∂x̃
= −�

∂B̃

∂t̃
. (32)

The x and y components of Ampere’s law yield

0 = ñi ṽix − ñeṽex, (33)

�
∂B̃

∂x̃
= c2

s

c2
(ñeṽey − ñi ṽiy). (34)

For simplicity, the tilde (∼) sign on the dimensionless quanti-
ties is not shown in the remaining calculations.

IV. DERIVATION OF A KdV EQUATION
FOR MAGNETOSONIC SOLITONS

In order to derive the KdV equation for magnetosonic
waves with arbitrary degeneracy of electrons, the well
known reductive perturbation method is employed [26]. The
stretching of spatial and temporal independent variables is
described as follows:

ξ = ε1/2(x − v0t), τ = ε3/2t.

Here ε is a small expansion parameter which characterizes the
nonlinearity strength and v0 is the phase velocity of the wave,
to be determined later on.

We expand the dynamical variables in terms of the smallness
parameter ε as follows (where j = e,i):

nj = 1 + εnj1 + ε2nj2 + · · · ,

vjx = εvjx1 + ε2vjx2 + · · · ,

vjy = ε3/2vjy1 + ε5/2vjy2 + · · · ,

Ex = ε3/2Ex1 + ε5/2Ex2 + · · · ,

Ey = εEy1 + ε2Ey2 + · · · ,

B = 1 + εBz1 + ε2Bz2 + · · · ,

μ = μ(0) + εμ1 + ε2μ2 + · · · . (35)

Now we apply the above perturbation scheme in Eqs. (25) to
(34). The lowest order of the x component of the ion continuity
and momentum equations give the following set of equations:

−v0
∂ni1

∂ξ
+ ∂vix1

∂ξ
= 0, (36)

−v0
∂vix1

∂ξ
= Ex1 + �viy1, (37)

Ey1 = �vix1. (38)

Similarly, the lowest-order (ε3/2) terms from the electron con-
tinuity and the x and y components of the electron momentum
equations are given as follows:

−v0
∂ne1

∂ξ
+ ∂vex1

∂ξ
= 0, (39)

v0
∂vex1

∂ξ
= δ Ex1 + δ � vey1 + δ

∂ne1

∂ξ
, (40)

Ey1 = �vex1. (41)

The lowest-order (ε) terms of Eq. (31) give

μ1 = 1

β

Li3/2(−eβμ(0) )

Li1/2(−eβμ(0) )
ne1. (42)

The lowest-order (ε3/2) terms from the z component of the
Faraday’s law give

∂Ey1

∂ξ
= v0�

∂Bz1

∂ξ
. (43)

The lowest-order (ε) and (ε3/2) terms from the x and y

components of Ampere’s law, respectively, yield

vix1 − vex1 = 0, (44)

c2
s

c2
(vey1 − viy1) = �

∂Bz1

∂ξ
. (45)
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Using the plasma approximation, the lowest-order terms of the
quasi-neutrality condition give ni1 � ne1.

The normalized phase velocity in the long wavelength
approximation, obtained from Eqs. (36) to (45), is given by

v0 = ±
√

v2
A

c2
s

+ 1, (46)

which is the same as Eq. (20) for a dispersionless wave. Without
loss of generality, the positive sign will be adopted.

The higher order set of equations is given as follows:

v0
∂ni2

∂ξ
− ∂vix2

∂ξ
= f1, (47)

v0
∂ne2

∂ξ
− ∂vex2

∂ξ
= f2, (48)

v0
∂vix2

∂ξ
+ Ex2 + �viy2 = f3, (49)

Ey2 − �vix2 = f4, (50)

v0
∂vex2

∂ξ
− δEx2 − δ � vey2 − δ

∂ne2

∂ξ
= f5, (51)

δEy2 − δ � vex2 = f6, (52)

∂Ey2

∂ξ
− �v0

∂Bz2

∂ξ
= f7, (53)

vix2 − vex2 = f8, (54)

c2
s

c2
(viy2 − vey2) + �

∂Bz2

∂ξ
= f9, (55)

where the expression of f1 to f9 are given in the Appendix.
Using the above set of equations, we find that

f2

v0
+ f3 + f5

δ
− �c2

c2
s

f9 − �c2

v0c2
s

f7 + 1

δ

(
�c2

v0c2
s

)
∂f6

∂ξ
= 0.

(56)
Equation (46) has been used in the derivation of Eq. (56).

In order to express the first-order quantities vix1, ni1, ne1,
Bz1, Ex1, Ey1, viy1, and vey1 in terms of vex1, we first solve
Eqs. (50) and (52), which gives a relation between electron
and ion momentum along the y axis i.e., vey1 = −δ viy1. Using
this relation and Eqs. (36)–(45), the variables vix1, ni1, ne1,
Bz1, Ex1, Ey1, viy1, and vey1 in terms of vex1 are written as

Ey1 = �vex1, (57)

vix1 = vex1, (58)

ni1 = ne1 = vex1

v0
, (59)

Bz1 = vex1

v0
, (60)

Ex1 = − 1

v0δ

(
v2

0 δ + 1
)∂vex1

∂ξ
≈ −v0

∂vex1

∂ξ
, (61)

viy1 = 1

�v0δ

∂vex1

∂ξ
, (62)

vey1 = 1

�v0

(
v2

0 − 1
)∂vex1

∂ξ
. (63)

In Eq. (61), the approximation comes from δ � 1, v0 > 1.
Using the above expressions (57)–(63) in Eq. (56), we obtain
the KdV equation in terms of the normalized electron perturbed
fluid velocity,

∂vex1

∂τ
+ a vex1

∂vex1

∂ξ
+ b

∂3vex1

∂ξ 3
= 0, (64)

where the nonlinearity and dispersion coefficients a and b are
defined as

a = 1

2

[
3 − 1

v2
0

(
1

δ
+ α

)]
≈ 1

2

(
3 − α

v2
0

)
> 0, (65)

b = 1

2v0

(
�2c4

δ c4
s

− H 2

4

)
. (66)

In Eq. (65), the approximation comes from δ � 1 and α being
of order unity. In addition, the positive sign of a is assured by
α � 1, v0 � 1. When the dispersion coefficient b = 0 at H =
2�c2/(

√
δc2

s ), Eq. (64) gives a shock instead of a solitonic
solution. Simple algebra yields the shock condition

b = 0 ⇒ memiλ
2
ev

2
A = αh̄2

12
, (67)

within the employed degree of approximation. However, it
should be stressed that when the coefficient b goes to zero,
the leading dispersion contribution appears at a higher order,
including a fifth-order spatial derivative term, yielding the
Kawahara equation [27]. This remark is applicable to all shock
conditions discussed herein. The corresponding reductive per-
turbation method would then be necessarily generalized, an
issue which will be not considered in the present work.

The limiting cases of Eq. (64) are obtained as follows. In
the dilute plasma case (z � 1), we have

∂vex1

∂τ
+

(
2u2

0 + v2
A

)
2u2

0

vex1
∂vex1

∂ξ

+ ω2
pi

2u0c3
s

(
λ2

ev
2
A − h̄2

12memi

)
∂3vex1

∂ξ 3
= 0, (68)

where u0 =
√

v2
A + c2

s is the magnetosonic speed and
cs = √

κBT /mi is the ion-acoustic speed in this situation.
Equation (68) is the same as Eq. (30) of Ref. [28], when written
in dimensional form and in terms of the first-order perturbed
electron density ne1 using relation (59), and neglecting quan-
tum diffraction.

The shock condition (b = 0) in the dilute case can be
expressed as

�e

ωpe

= h̄ωpe

2
√

3 mec2
, (69)

which depends only on density and magnetic field strength,
without a temperature dependence as long as T � TF , and
where �e = eB0/me is the electron cyclotron frequency.
Working out the numbers, Eq. (69) yields

n0

B0
= 1.49×1029 m−3 T−1, (70)

in terms of SI units. The equality is quite affordable for typical
laboratory and astrophysics environments, and constitutes a
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qualitative structural change due to quantum diffraction effects,
within the present level of approximation.

On the other hand, in the dense plasma case (z � 1), we
have

∂vex1

∂τ
+

(
8u2

0 + v2
A

)
6u2

0

vex1
∂vex1

∂ξ

+ ω2
pi

2u0c3
s

(
λ2

ev
2
A − h̄2

36memi

)
∂3vex1

∂ξ 3
= 0, (71)

where now cs = √
2εF /(3mi). The quantum diffraction pa-

rameter now is H = h̄ωpe/(2κBTF ). The shock condition is
similar to the dilute case:

�e

ωpe

= h̄ωpe

6 mec2
, (72)

yielding

n0

B0
= 2.58×1029 m−3 T−1, (73)

which is also empirically accessible.
The one-soliton solution of Eq. (64) is given by

vex1 = �0 sech2

(
η

�

)
. (74)

where η = ξ − uτ , denoting a stationary hump in the co-
moving frame with a velocity u, applying decaying boundary
conditions, i.e., vex1, ∂vex1/∂η, and ∂2vex1/∂η2 going to zero
as η → ±∞. Here �0 is the amplitude and � is the width of
magnetosonic soliton:

�0 = 3u

a
, � =

√
4b

u
. (75)

It can be seen from Eq. (66) that the amplitude of the soliton
depends on quantum degeneracy only, while the width also
depends on quantum diffraction.

V. NUMERICAL ESTIMATES AND
COUPLING PARAMETER

By definition, the present model applies to any degeneracy
degree. However, obviously it is more pertinent when the ther-
mal and Fermi temperatures are of the same order. Therefore,
in this section we develop the relevant numerical estimates

T K

n
m

FIG. 1. Plasma number density as a function of temperature, from
Eq. (76) and a fixed fugacity z = 1.

T K

g

FIG. 2. Plasma coupling parameter g versus electron temperature
T , from Eq. (77) and fugacity z = 1.

arising from the previous calculations, setting T = TF . In this
case, from Eq. (6) it is easy to obtain a fugacity value z ≈ 1,
which we adopt in what follows. Also from Eq. (6), we get

n0 = −2

(
me

2πβh̄2

)3/2

× Li3/2(−z), (76)

which for a fixed fugacity is a function of the temperature only.
In this context, we obtain Fig. 1, for typically dense plasmas.

A necessary validity condition for our mean field model dis-
regarding strong interactions between the charge carriers [29]
is a small coupling parameter g, which is the ratio between the
average potential and kinetic energies. The coupling parameter
g was determined in Ref. [19] as

g = −2αF

√
2βmec2

3
(
3
√

π
)1/3 ×

[
Li2

3/2(−z)
]2/3

Li5/2(−z)
, (77)

where αF = e2/(4πε0h̄c) � 1/137 is the fine structure con-
stant [30]. We then get Fig. 2, which shows g < 1 for suffi-
ciently high temperatures.

The increase of the ion-acoustic speed with the electronic
temperature (presently with the same numerical value as the
Fermi temperature) is shown in Fig. 3. In Fig. 4, we show the
decrease in the Alfvén speed due to the increase of the number
density and hence the increase of temperature (for z = 1).
Typical Alfvén speeds are shown in Fig. 4, for a few magnetic
field strengths.

T K

c s
m

FIG. 3. Ion-acoustic speed cs as a function of temperature, from
Eq. (17) and z = 1.
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T K

v A
m

FIG. 4. Alfvén wave speed vA as a function of temperature, for
B0 = 5 T. (solid curve) and B0 = 10 T (dashed curve), at z = 1.

The dependence of the quantum diffraction parameter H on
the electrons thermal temperature is shown in Fig. 5. It is seen
that H attains reasonably large values at least for sufficiently
cold plasma.

The variation of the dispersive coefficient b of the KdV
equation (64) for magnetosonic waves at different magnetic
field intensities is shown in Fig. 6. It can be seen from the
figure that b < 0 for electron temperatures T > 106 K. In
this case only rarefactive magnetosonic solitons structures are
formed with u < 0 since the nonlinearity coefficient a remains
positive. The velocity of the nonlinear structure u has to be
negative for the dispersive coefficient b < 0 case to give the
real value of the width of the soliton defined in Eq. (75),
which means that the speed of the nonlinear rarefactive soliton
will be less than the phase speed of the magnetosonic waves,
as discussed in detail in Ref. [13]. However, for electron
temperature values less than 106 K, the magnetosonic soliton
compressive structure is formed as the dispersive coefficient
b > 0 for which u > 0, and it moves with a speed greater
than the speed of the magnetosonic waves in the plasma with
arbitrary degeneracy of electrons. It can also be seen from
Fig. 6 that with the increase of the magnetic field intensity
the range of electron thermal temperature for the formation of
magnetosonic dip structures in the higher temperature region
is decreased.

Finally, the variations of dimensionless parameter � =
�i/ωpi (ratio of ion-cyclotron to ion plasma frequencies) is

T K

H

FIG. 5. Quantum diffraction parameter H as a function of tem-
perature, from Eq. (24) and z = 1.

T K

b

FIG. 6. Nonlinear dispersive coefficient b as a function of tem-
perature, from Eq. (66), for B0 = 5 T (solid curve) and B0 = 10 T
(dashed curve), at z = 1.

plotted in Fig. 7. It can be seen that the value of � decreases
with the increase in the electron thermal temperature. However,
it obviously increases with the magnetic field intensity, as
shown in the same figure.

VI. CONCLUSIONS

Besides Alfvén waves, magnetosonic waves are the most
basic low-frequency excitations propagating in electron-ion
magnetized plasmas. We have analyzed the linear and weakly
nonlinear propagation of magnetosonic waves in a quantum
plasma with arbitrary degeneracy of electrons and with in-
clusion of matter-wave diffraction effects. Using perturbation
theory, we have derived the appropriate nonlinear evolution
equation for the propagation of quantum magnetosonic waves.
In this case, it is a KdV equation whose coefficients strongly
depend on the degeneracy degree and strength of the quantum
diffraction effects. The impact of the quantum degeneracy
and diffraction effects on soliton propagation is discussed
with explicit numeric estimates for systems in the interme-
diate range of Maxwell-Boltzmann and Fermi-Dirac statistics.
Conditions for shock development, within the present weakly
nonlinear limits, were worked out in detail. The validity of
the weak coupling assumption was analyzed in concrete cases.
Generically, our main results are more relevant for plasmas
where the Fermi and thermodynamic temperature are of the

T K

FIG. 7. The ratio � of ion-cyclotron to ion plasma frequencies as
a function of temperature, for B0 = 5 T (solid curve) and B0 = 10 T
(dashed curve), at z = 1.
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same order. Finally, we observe that a rigorous treatment of
exchange-correlation effects in quantum plasma fluid models
at arbitrary degeneracy degree is still unavailable, and is under
analysis for future works.
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APPENDIX: FUNCTIONS DEFINED AFTER COLLECTING
FIRST- AND SECOND-ORDER TERMS FROM

PERTURBATION THEORY

The functions f1 to f9 defined after Eq. (46) are given as
follows:

f1 = ∂ni1

∂τ
+ ∂

∂ξ
(ni1vix1), (A1a)

f2 = ∂ne1

∂τ
+ ∂

∂ξ
(ne1vex1), (A1b)

f3 = ∂vix1

∂τ
+ vix1

∂

∂ξ
vix1 − �viy1Bz1, (A1c)

f4 = −v0
∂viy1

∂ξ
+ �vix1Bz1, (A1d)

f5 = ∂vex1

∂τ
+ vex1

∂

∂ξ
vex1 + δ � vey1Bz1

−δ α ne1
∂ne1

∂ξ
− δ

H 2

4

∂3ne1

∂ξ 3
, (A1e)

f6 = v0
∂vey1

∂ξ
+ δ� vex1Bz1, (A1f)

f7 = −�
∂Bz1

∂τ
, (A1g)

f8 = (ne1 − ni1)vex1, (A1h)

f9 = c2
s

c2

(
ne1vey1 − ni1viy1

)
. (A1i)
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