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Linear stability analysis of thermoviscous instability in immiscible displacement
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We study the thermoviscous fingering instability problem that develops when an injected fluid is displacing a
fluid with different temperature and viscosity in a Hele-Shaw cell or porous medium. Using linear stability theory,
we show how the thermal front caused by the different temperature of the injected fluid impacts the growth rate of
instabilities on an immiscible radial displacement front. The immiscible front is stabilized by interfacial tension
when the front radius is small but becomes unstable as the front radius grows larger. When the thermal front is
unstable, it destabilizes the immiscible fluid front and makes instability possible at smaller front radii. When the
thermal front is stable, it stabilizes the fluid front and delays the growth of instabilities. However, the thermal
front has only a small impact on the maximum obtainable perturbation growth rates when the front radius is large.
In porous medium flow we observe that a thermal front that lags further behind the fluid front is more effective
at stabilizing the fluid front.
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I. INTRODUCTION

When an injected fluid is used to displace another in a
porous medium or Hele-Shaw cell and the injected fluid has
the lower viscosity, it is possible for the interface separating
the two fluids to become unstable. This instability, commonly
referred to as viscous fingering, was first described by Hill
[1] in a series of displacement experiments using a column
packed with charcoal. The same stability problem was later
expanded on in several studies considering immiscible linear
displacement [2,3] and radial displacement [4,5]. In these stud-
ies of immiscible displacement, interfacial tension was found
to have a stabilizing influence. Viscous fingering also occurs
in miscible displacement, which was first studied in detail by
Tan and Homsy [6] for rectilinear flow and Tan and Homsy
[7] for radial flow. A review of the viscous fingering literature
was written by Homsy [8] for both miscible and immiscible
displacement in porous media and Hele-Shaw cells.

If the fluid injected into the porous medium has a different
temperature, a coupled two-front stability problem emerges.
Because the heat is shared with the porous matrix, a second
thermal front lagging behind the fluid front travels through the
porous medium. Since the viscosity changes with temperature,
fingering instabilities can occur on both fronts. This particular
problem was studied, using linear stability theory for radial
miscible displacement, by Pritchard [9]. The stability of the
overall system was found to be dominated by the fluid front,
which had a much lower diffusivity than the thermal front. The
thermal front, however, still had an impact on the growth rates
of perturbations.

Several studies, both using linear stability theory and
numerical simulations, have looked into this type of thermo-
viscous stability problem in miscible displacement, including
studies of linear displacement [10,11] and the quarter five-spot
[12]. Although far less attention has been paid to the immiscible
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thermoviscous stability problem, a recent numerical study [13]
investigated the effect of different injection temperatures in
immiscible displacement. It was found that the fluid interface
was stabilized by a cold injection fluid and destabilized by
a warm injection fluid. Once the fingers started forming,
however, the temperature had little impact on the growth. This
type of two-front stability problem also shares similarities with
the double interface problem studied by Cardoso and Woods
[14], where the injected fluid was displacing a second and third
fluid. Some important similarities are the interaction between
two fronts separated in space and the stabilizing influence of
interfacial tension. However, the problem studied by Cardoso
and Woods [14] also differs in that both fronts are nondiffusive
and stabilized by interfacial tension.

We use linear stability theory to study the coupled stability
problem that occurs when a fluid is injected into a porous
medium or Hele-Shaw cell saturated with a fluid of different
viscosity and temperature. We consider immiscible displace-
ment and investigate how the diffusion-stabilized thermal front
impacts the stability of the immiscible fluid front stabilized by
interfacial tension. In the Hele-Shaw cell the two fronts are
colocated, while in the porous medium the thermal front lags
behind. This thermoviscous stability problem is interesting in
itself, as a coupled dual front stability problem, but is also
of relevance in enhanced oil recovery [15], where hot water
injection is sometimes used to displace oil.

The mathematical formulation of the physical problem is
described in Sec. II, and the linear stability analysis is presented
in Sec. III. Results for the stability problem are plotted and
discussed in Sec. IV A for Hele-Shaw flow and Sec. IV B for
porous medium flow. The main results and conclusions are
summarized in Sec. V.

II. PROBLEM FORMULATION

We consider the radial displacement flow that results from a
point source injection at the origin in a two-dimensional plane,
describing a two-dimensional porous medium or a Hele-Shaw
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cell. The plane is initially filled with fluid 2 with viscosity μ̂∞
and temperature T̂∞. At time t̂ = 0 fluid 1 with temperature T̂0

and viscosity μ̂0 is injected at constant areal flux q̂, which gives
a volume flux q̂/ĥ for a Hele-Shaw cell with plate spacing ĥ.
A front separating fluid 1 from fluid 2 at r̂ =

√
q̂ t̂/π moves

through the medium. The velocity û = (ûr ,ûθ ) in fluid j is
ûj , the pressure is p̂j and the temperature is T̂j . When writing
equations that are satisfied in both fluids 1 and 2, we drop the
index for simplicity.

The velocity û, pressure p̂, and temperature T̂ are governed
by the equation for mass conservation,

∇̂ · û = 0, (1)

Darcy’s law,

∇̂p̂ = − μ̂

k̂
û, (2)

and the advection diffusion equation for temperature,

∂T̂

∂t̂
+ λ

φ
∇̂ · (ûT̂ ) = κ̂T ∇̂2T̂ , (3)

where κ̂T is the thermal diffusivity. In porous medium flow k̂

is the permeability of the porous matrix, while in Hele-Shaw
flow it is equal to ĥ2/12.

The thermal lag coefficient λ [9,16] in porous medium flow
is defined as

λ = φt ρ̂fluidĈfluid

φt ρ̂fluidĈfluid + (1 − φt )ρ̂matrixĈmatrix
< 1, (4)

with density ρ̂ and specific heat capacity Ĉ. The total porosity
φt is different from the effective porosity φ, which is asso-
ciated with connected void space. While the viscosity μ̂ is a
function of temperature and different in the two fluids, all other
parameters are constant and equal in the two fluids.

The thermal lag coefficient is a measure of how much the
thermal front lags behind the fluid front, as a result of sharing
heat with the porous matrix. By representing the heat loss from
the fluid using the thermal lag coefficient we assume that the
fluid is in thermal equilibrium with the matrix. For simplicity,
we assume that there is no heat loss through the upper and
lower boundaries of the Hele-Shaw cell. This allows us to
use the same formulation for heat transfer as in the porous
medium flow but with λ = 1. Throughout this paper we refer
to the thermal and fluid fronts as two separate fronts, even when
λ = 1 and they are colocated.

We choose an arbitrary lengthscale r̂0, define the timescale
t̂0 = 2πr̂2

0 /q̂, and nondimensionalize the equations using

r = r̂

r̂0
, t = t̂

t̂0
, ur,θ = ûr,θ

t̂0

r̂0φ
,

T = T̂ − T̂0

T̂∞ − T̂0
, μ = μ̂

μ̂0
, p = p̂

2πk̂

μ̂0φq̂
. (5)

The nondimensional governing equations in fluids 1 and 2 are

1

r

∂

∂r
(rur ) + 1

r

∂uθ

∂θ
= 0, (6)

∂p

∂r
= −μur,

1

r

∂p

∂θ
= −μuθ , (7)

and

∂T

∂t
+ λ

[
1

r

∂(rurT )

∂r
+ 1

r

∂(uθT )

∂θ

]

= 1

Pe

[
1

r

∂

∂r

(
r
∂T

∂r

)
+ 1

r2

∂2T

∂θ2

]
, (8)

where Pe = q̂/(2πκ̂T ) is the Péclet number.
Following Tan and Homsy [7] we use an exponential

dependence on temperature for the viscosity and specify the
viscosities in fluids 1 and 2 as

μ1 = e−βT , μ2 = αe−βT . (9)

The parameters α and β decide the change in viscosity over the
fluid and thermal fronts, respectively. Because the temperature
is normalized to take values between 0 and 1, a change in
β can be interpreted either as a change in the temperature
sensitivity of the viscosity or as a change in the temperature
itself. Negative values of β lead to an increase in viscosity over
the thermal front (from behind to in front of) and therefore
a potentially unstable thermal front. When β is positive the
thermal front is stable.

It is important to remember that even though β < 0 means
that the viscosity μ is increasing with increased T it does not
necessarily mean that the viscosity is increasing with increased
T̂ . Because of the chosen nondimensionalization of T̂ [Eq. (5)],
the viscosity will decrease with increasing T̂ when β < 0 if
T̂0 > T̂∞. For a fluid with a viscosity that decreases with an
increase in T̂ , the two cases β < 0 and β > 0 correspond with
T̂0 > T̂∞ and T̂0 < T̂∞, respectively. The two different cases
studied are therefore best understood as hot fluid injection
(β < 0) and cold fluid injection (β > 0).

The solution to the governing equations must satisfy the
boundary conditions

T = 0 at r = 0, T → 1 as r → ∞, lim
r→0

rur = 1,

(10)
along with matching conditions at the interface between fluid 1
and 2 that we will get back to in Sec. III. By using the similarity
variable ζ = r2/(4t), we find the base temperature solution
independent of θ as

Tb(r,t) = γ (λPe/2,Peζ )


(λPe/2)
, (11)

where 
(s) is the standard γ function and γ (s,x) is the lower
incomplete γ function.

The base viscosity μb = μ(Tb) is plotted in Fig. 1 for three
different values of λ to illustrate how the thermal lag coefficient
influences the position of the thermal front. The thermal front
is the diffuse region where the viscosity changes as a result
of the change in temperature. As seen in Fig. 1 this thermal
front partly overlaps with the fluid interface, and the extent to
which it overlaps depends on λ and Pe. We choose to define the
position of the thermal front as

√
λq̂t̂/π , which is the radius at

which the temperature change occurs if Pe → ∞. This is the
same definition of the thermal front position as that used by
Pritchard [9].
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FIG. 1. Base viscosity solution for Pe = 50, α = 2, β = − log 2,
and λ = 0.3 (solid line), 0.7 (dashed line) and 0.9 (dotted line).

III. THERMOVISCOUS STABILITY ANALYSIS

The nondimensional system of equations in Sec. II describes
a physical system in which we have a moving fluid front at
R(t) = √

2t and a second thermal front at RT (t) = √
2λt . We

perturb the fluid interface at R(t) such that the fluid fluid
interface is located at r = R(t) + εeimθa(t), and we expand
the velocity, temperature, and pressure in the following way:

ur = urb + εeimθU (r,t), uθ = εeimθV (r,t),

T = Tb + εeimθT (r,t), p = pb + εeimθP (r,t). (12)

The viscosity then becomes

μ = μb − βμεeimθT , (13)

with μb given by Eq. (9) evaluated with temperature Tb.
By solving for the perturbations U , V , T , P , and a, we
determine the spatial and temporal evolution of the first order
perturbations. The solution for the interface perturbation a will
tell us if a mode m perturbation grows or decays, and therefore
if the interface is stable or unstable. Figure 2 shows a sketch
of the two fronts and the wavelike perturbations.

Inserting the first-order expansions into the governing
equations, and eliminating P and V , we get to first order

∂

∂r

[
μbr

∂

∂r
(rU )

]
= m2

r
(Ur − βT )μb, (14)

and for the temperature

∂T

∂t
+ λ

(
U

∂Tb

∂r
+ 1

r

∂T

∂r

)
= 1

Pe

[
1

r

∂

∂r

(
r
∂T

∂r

)
− m2

r2
T

]
.

(15)

By introducing χ = rU and ζ = r2/(4t), the equations can be
written as

∂

∂ζ

(
μbζ

∂χ

∂ζ

)
= m2

4ζ
(χ − βT )μb, (16)

t
∂T

∂t
= 1

Pe

∂

∂ζ

(
ζ

∂T

∂ζ

)
+

(
ζ − λ

2

)
∂T

∂ζ

− 1

4

m2

Pe

T

ζ
− λ

2
χ

∂Tb

∂ζ
. (17)

FIG. 2. Circular fluid interface of radius R with perturbation
εeimθa, and position of diffuse thermal front at RT .

The perturbations must vanish far away from the interface
and therefore we have the boundary conditions

T ,χ = 0 at ζ = 0 and as ζ → ∞. (18)

At the interface (ζ = 1/2) we have the matching conditions

χ1
(

1
2 ,t

) = χ2
(

1
2 ,t

)
, T1

(
1
2 ,t

) = T2
(

1
2 ,t

)
, (19)

and

∂T1

∂ζ

∣∣∣∣
ζ= 1

2

= ∂T2

∂ζ

∣∣∣∣
ζ= 1

2

. (20)

The final matching condition is associated with the pressure
jump over the immiscible interface. We follow Chuoke et al. [2]
and Paterson [5] and assume that the pressure difference is
equal to the product of interfacial tension σ̂ and the macro-
scopic curvature of the perturbed interface. This gives us the
last matching condition

∂χ1

∂ζ

∣∣∣∣
ζ= 1

2

− α
∂χ2

∂ζ

∣∣∣∣
ζ= 1

2

= m2a

[
α − 1√

2t
+ σ (1 − m2)

e−βTb(1/2)

]
. (21)

The nondimensional interfacial tension is defined asσ=2πk̂σ̂ /

(q̂ r̂0μ̂0).
The temperature and velocity equations are through these

interface conditions coupled with the equation for the interface
perturbation a:

t
da

dt
+ a

2
=

√
t

2
χ1

(
1

2
,t

)
. (22)

Equations (16), (17), and (22) are solved numerically by
discretizing in the ζ coordinate using a spectral element
formulation and integrating in time. Details of the numerical
methodology are given in the Appendix.
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IV. RESULTS

A. Hele-Shaw flow (λ = 1)

1. Neutrally stable thermal front (β = 0)

Before we go into the thermoviscous stability results, we
will briefly look at some features of the single front radial
stability solution obtained when β = 0. For a single radial front
moving as R(t) = √

2t , the perturbation amplitude a follows
[5]

1

a

da

dt
= 1

2t

(
m

μ2 − μ1

μ1 + μ2
− 1

)
− σ

(2t)3/2

m(m2 − 1)

μ1 + μ2
. (23)

With initial perturbation a(t0) = 1, the solution is

a(t) =
(

t

t0

) 1
2 (m μ2−μ1

μ1+μ2
−1)

× exp

[
σ

21/2

m(m2 − 1)

μ1 + μ2
(t−1/2 − t

−1/2
0 )

]
. (24)

When t → ∞ a(t) grows as a power law with exponent

ω∞ = 1

2

(
m

μ2 − μ1

μ1 + μ2
− 1

)
. (25)

With the nondimensional viscosity defined in Eq. (9), we
get μ1 = 1 and μ2 = α. This is the same problem as the
one studied by Paterson [5], although the general solution in
Eq. (24) was not included there. All results presented in this
paper where β = 0 are from Eq. (24) and not from numerical
simulations.

As long as the interfacial tension σ is not equal to zero,
the only effect of changing it is to rescale time. This is
true both for the simple one front solution in Eq. (24) and
the complete thermoviscous stability problem. Therefore all
simulations with nonzero σ use σ = 1, and the results are
plotted as functions of the scaled time t/σ 2. Time is linked
to the radius of the moving front through R(t) = √

2t , and the
limit t/σ 2 → ∞ is also the large radius limit R/σ → ∞.

The single front solution in Eq. (24) is plotted in Fig. 3
for three different values of m, and with μ2 = α = 4. For
low values of t/σ 2 the front is stabilized by the interfacial
tension and the perturbation magnitude falls rapidly. Then we
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10−27
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101

a

FIG. 3. Perturbation amplitude a as function of t/σ 2 for m = 4
(solid line), 5 (dashed line), and 6 (dotted line).
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FIG. 4. Perturbation growth rate ω as function of m at times
t/σ 2 = 1, 10, 102, 103 and 104 (solid lines from left to right at ω = −1)
compared with perturbation growth as t/σ 2 → ∞ (dotted line).

get to a point where the destabilizing effect of the viscosity
difference overcomes the stabilizing effect of the interfacial
tension and the perturbation starts growing. As time increases
the curvature of the perturbation decreases, and the relative
importance of interfacial tension decreases. Higher wave-
number perturbations will decay more rapidly initially and start
growing at a later time, but grow more rapidly when they first
become unstable. This is seen in Fig. 3.

As a measure of how fast a perturbation grows at a given
time we use the perturbation growth rate,

ω = t

a

da

dt
. (26)

When the perturbation grows as a power law, which it does
when t/σ 2 → ∞, ω is the exponent of that power law. If
ω > 0, then perturbations grow in amplitude and the flow is
unstable. However, the radius of the front grows with ω = 1/2
and so for the perturbation to grow in size relative to the front
size, ω must be greater than 1/2.

In Fig. 4 we plot the growth rate ω at different times when
μ2 = α = 10. The dots represent the actual data points, while
the lines are added to make the plot easier to read. When
t/σ 2 → ∞, ω approaches ω∞, which is also plotted in Fig. 4.
We can see that the first mode to become unstable is the m = 2
mode, and that the higher order modes are effectively stabilized
by interfacial tension. After this, higher wave-number modes
become unstable as time, and the diameter of the front,
increases. The most unstable mode (highest ω) also moves to
higher and higher values ofm, as the growth rate asymptotically
approaches the t/σ 2 → ∞ solution.

2. Stable or unstable thermal front (β < 0 or β > 0)

When t/σ 2 → ∞, the interfacial tension has no impact and
a approaches power-law growth, i.e., ω approaches a constant
value. The asymptotic values of ω are obtained by doing
simulations with σ = 0 and comparing with the isothermal
(β = 0) growth rates (ω∞) in Fig. 5. The Péclet number is 50,
α = 10, and β = − log 1000, 0, and log 1000.

The effect of the thermal front on the stability of the interface
is moderate, even when the viscosity ratio is 100 times greater
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FIG. 5. Growth rate as function of m as t/σ 2 → ∞ for Hele-Shaw
flow with α = 10 and β = − log 1000 (solid line), 0 (dashed line), and
log 1000 (dotted line).

over the thermal front. It is clear that the growth rate of the
interface is dominated by the immiscible front, when it is
not stabilized by interfacial tension. When β = − log 1000,
the temperature has a small destabilizing effect at small wave
numbers and a stabilizing effect at high wave numbers. The
thermal front with β = log 1000 has a stabilizing effect at small
wave numbers and a destabilizing effect at high wave numbers.
If Pe is reduced, the crossover point moves to lower values of
m, while an increase in Pe shifts the crossover point towards
higher m (not shown).

0.00 0.25 0.50 0.75 1.00 1.25 1.50

ζ

0.0

0.5

1.0

1.5

U
/
|U

ζ
=

1
/
2
|

m = 25

0.00 0.25 0.50 0.75 1.00 1.25 1.50

0.0

0.5

1.0

1.5

U
/
|U

ζ
=

1
/
2
|

m = 5
(a)

(b)

FIG. 6. Radial velocity perturbation in the t/σ 2 → ∞ case with
α = 10, and β = − log 1000 (solid line), 0 (dashed line), and log 1000
(dotted line).
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FIG. 7. Perturbation growth rate as function of m for α = 10 and
β = − log 10 (solid line) β = 0 (dashed line) and β = log 10 (dotted
line). The time is t/σ 2 = 10 in (a) and 100 in (b).

The effect at low wave numbers is consistent with what
we would expect for thermal fronts with unstable (β < 0) and
stable (β > 0) viscosity profiles. To understand the reversal at
high wave numbers, we plot the radial perturbation velocity U

in Fig. 6. Considering the moderate effect of the thermal front
on the growth rates in Fig. 5, the strong effect on the shape of
the radial velocity perturbation is noteworthy.

When m = 5, the destabilizing effect of the temperature
is creating a velocity maximum behind the fluid interface
that dominates the shape of the velocity. The much higher
viscosity jump (β = − log 1000) caused by the change in
temperature, makes the diffuse thermal front more unstable
than the fluid front. When β = log 1000, the stabilizing effect
of the temperature induced viscosity profile creates a set of
counter-rotating vortices behind the fluid front, as seen by the
negative values of U at low ζ when m = 5 and β = log 1000.
These counter-rotating vortices reduce the growth rate of the
fluid front.

At m = 25 the effect of temperature is smaller and the im-
pact on the growth rates is different. When β = − log 1000 and
the wave number is high, the unstable thermal front is partly sta-
bilized by diffusion. This has a strong impact on how it is able to
modify the stability of the fluid interface. At m = 25 the growth
rate of the thermal front is much lower than the growth rate of
the fluid front even though the velocity jump is much greater
over the thermal front. This is because of the strong damping
effect of diffusion at higher wave numbers, and the less
unstable thermal front is impeding the growth of the fluid front.
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FIG. 8. Radial velocity perturbation for (a) t/σ 2 = 18.28 (solid
line) and t/σ 2 = 49.68 (dotted line), and (b) t/σ 2 = 2713 (solid line)
and t/σ 2 = 7374 (dotted line), for m = 15.

When β = log 1000 and the thermal front has a stable vis-
cosity ratio, the growth rate of the fluid interface is increased,
and not decreased as one might expect. Looking at the velocity
profile in Fig. 6(b), we see that the stabilizing counter-rotating
vortices have been damped by diffusion, and what remains is
a sharper and more unstable fluid perturbation. It has previ-
ously [17] been shown that diffusion can have a destabilizing
effect in miscible displacement when the viscosity profile is
nonmonotonic.

After having looked at what happens when the radius of
the front is large, or t/σ 2 → ∞, we will consider the effects
of finite interfacial tension (σ = 1). In Fig. 7 the perturbation
growth rates are plotted at two different times and for the three
different thermal stability cases, β < 0, β = 0, and β > 0.
We use α = 10, and because the effect of the thermal front
is much more significant than in the t/σ 2 → ∞ case, we use
β = ± log 10. The Péclet number is still 50.

At both t/σ 2 = 10 and 100, we see that the thermal front
with β = − log 10 dramatically increases the growth rate of
the perturbation while also shifting the most unstable mode
towards higher values of m. Since the growth rates obtained as
t/σ 2 → ∞ will not be much changed by the thermal front with
β = − log 10, the primary effect of the unstable thermal front
is to shift the point at which the perturbations start growing to
earlier times or smaller front radii. At all times, the unstable
thermal front will make the fluid front more unstable and
increase the frequency of the most unstable perturbation.

When β = log 10, the front is stabilized. The growth rate
is decreased and the most unstable mode is shifted to lower
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β = − log 10
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β = log10
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FIG. 9. Perturbation growth rate at time t/σ 2 = 100 for Pe = 25
(solid line), Pe = 50 (dashed line) and Pe = 100 (dotted line).

m. Another worthwhile observation is that when ω < 0 in
Fig. 7(a), the perturbations decay much faster when β = 0 than
when β = ± log 10. This is because the diffusive dampening of
the temperature perturbation is much slower than the dampen-
ing caused by interfacial tension, and so even the stable thermal
front will impede the decay of the fluid front. The results shown
in Figs. 5 and 7 are consistent with the observations made by
Jackson et al. [13] that temperature could stabilize or destabi-
lize the fluid interface, but once the interface becomes unstable
its growth rates are not much influenced by temperature.

The corresponding velocity perturbation profiles for
m = 15 are plotted in Fig. 8 right before and right after ω goes
from negative to positive. Both when β = − log 10 and when
β = log 10 we see that the thermal and fluid fronts are working
against each other before the growth rate becomes positive. The
unstable thermal front (β = − log 10) is destabilizing the fluid
front before it is on its own unstable and therefore expediting
the growth of instabilities on the interface. The stable thermal
front is holding back an unstable fluid front and therefore
delaying the destabilisation of the interface.

For all the results thus far, the Péclet number (Pe) has been
50. To illustrate the effect of different values of Pe, we plot
the growth rates for Pe = 25, 50, and 100 in Fig. 9, with
α = 10 and β = ± log 10. When β = − log 10, the growth
rates increase with increasing Pe. This is due to the reduced
dampening effect of diffusion at higher Péclet numbers. Since
the unstable thermal front is stabilized by diffusion, a reduction
in diffusion naturally leads to a more unstable interface.
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FIG. 10. Growth rate as function of m as t/σ 2 → ∞ for porous
medium flow with α = 10 and λ = 0.3 (solid line), 0.7 (dashed line),
and 0.9 (dotted line), for (a) β = − log 1000 and (b) β = log 1000.

When β = log 10 the stable higher wave-number modes
decay faster when Pe is increased. For these wave numbers
the diffuse thermal front is having a dampening effect and
increased diffusion leads to quicker decay. At lower values
of m, when ω is greater than zero, an increase in Pe reduces
the growth rate of the front. Even when λ = 1, most of the
change in viscosity caused by temperature happens behind the
fluid front. When Pe is reduced, there is less overlap between
the viscosity jump caused by the temperature change and the
viscosity jump between the two fluids. Why this might make
the thermal front more effective at stabilizing the fluid front is
discussed in Sec. IV B.

B. Porous medium flow (λ < 1)

We have so far looked into results for Hele-Shaw flow, when
λ = 1. In a porous medium, where λ < 1, the thermal front will
lag behind the fluid front and we expect this to change how it
influences the stability. Nevertheless, the observations made in
Sec. IV A about how the thermal front impacts the stability are
also seen in porous medium flows. When β < 0, the unstable
thermal front will make instability possible at earlier times
(lower t/σ 2), or lower front radii. When β > 0, the opposite is
true. However, there are also some differences, which will be
made clear in the following results. We use Pe = 50 throughout
this section.

In Fig. 10 we investigate the effect of the thermal lag
coefficient λ, by revisiting what happens when interfacial
tension becomes insignificant (t/σ 2 → ∞). The effect of the
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FIG. 11. Perturbation growth rate at t/σ 2 = 1000 in porous
medium flow with λ = 0.7 (solid line) and λ = 0.9 (dashed line)
compared with Hele-Shaw flow with λ = 1 (dotted line).

thermal front on instability is similar to what was seen in Fig. 5,
with the difference that the effect becomes less pronounced as
λ is reduced. When λ = 0.9 and the fronts are strongly coupled,
the stabilizing and destabilizing effect is much the same as in
Hele-Shaw flow. When λ = 0.3, the temperature has almost
no effect on stability.

A lower value of λ means the thermal and fluid fronts are
more separated in space, which reduces the thermal fronts
ability to influence the stability of the fluid front. This is
very much in line with both reasonable expectations for
two interacting fronts and previous results for two diffusive
fronts [9].

Once again this is changed when interfacial tension is intro-
duced. The perturbation growth rates for the porous medium
flow with λ = 0.7, α = 10, and β = ± log 10 are plotted in
Fig. 11, while the corresponding velocity perturbation profiles,
right before and right after the front becomes unstable, are
plotted in Fig. 12. When β = − log 10 and the thermal front
is unstable, the effect of temperature is to increase the growth
rates and shift the most unstable mode to higher m. This effect
is made stronger, not weaker, by a reduction in λ, as seen in
Fig. 11. Looking at the velocity profile in Fig. 12(a), we see that
before the perturbation starts growing the profile is completely
dominated by the unstable thermal front. When the thermal
front is further behind the fluid front it is less limited by the
stabilizing influence of the interfacial tension and therefore
ends up being more unstable. This leads to perturbations on
the fluid front growing sooner, than in the Hele-Shaw flow.
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FIG. 12. Radial velocity perturbation in porous medium flow with
λ = 0.7 and m = 15 for (a) t/σ 2 = 2.474 (solid line) and 18.28
(dotted line), and (b) t/σ 2 = 20 040 (solid line) and 54 490 (dotted
line).

Lower values of λ (0.5 and 0.3 were tested) resulted in growth
rates very close to those found for λ = 0.7.

When β = log 10 the thermal front is more effective in
dampening the growth of the fluid front when λ is reduced,
except at the lowest wave numbers. It is not obvious why
the thermal front would be able to stabilize the fluid front
more effectively when it lags further behind, but we propose
a possible explanation. When λ is close to 1, the two fronts
are overlapping and behave as one front with a nonmonotonic
viscosity profile. The stability of this nonmonotonic viscosity
profile will be largely determined by the sharp fluid front, but
modified by the thermal viscosity profile. When the thermal
front is further behind the fluid front it behaves more like a sep-
arate and stable front than as part of a combined nonmonotonic
unstable viscosity front. The thermal front therefore remains
more stable and creates an effective barrier to perturbation
growth behind the fluid front. This also accounts for the effect
of Pe seen in Fig. 9, where the thermal front was more effective
at stabilizing the fluid front when there was less overlap
between the two.

V. CONCLUSION

We have investigated the thermoviscous stability problem
that results when fluid is injected at a constant flowrate from
a point source in a Hele-Shaw cell or two-dimensional porous
medium. When the temperature and base viscosity of the
injected fluid differs from the fluid initially saturating the

plane, we get a coupled two-front stability problem where both
the thermal and fluid fronts contribute to the overall stability.
We have used linear stability theory to determine how much
the stability of the immiscible fluid front is impacted by the
thermal front. The radial fluid front is effectively stabilized by
interfacial tension if the radius is small, but becomes unstable
at larger radii.

When t/σ 2 → ∞ and the radius is large, interfacial tension
has no stabilizing effect on the interface and the stability of the
coupled problem is dominated by the unstable sharp fluid front.
Only small changes to the perturbation growth rates are made
by the thermal front and only when the viscosity jump over the
thermal front is much greater than the viscosity jump over the
fluid front. At finite radii, the thermal front can have a dramatic
effect on the stability of the fluid interface by either advancing
or delaying the transition to instability. If the thermal front
is unstable, perturbations on the fluid interface start growing
earlier and the most unstable mode is shifted to higher wave
numbers. If the thermal front is stable, the opposite happens.
These effects are seen in both Hele-Shaw and porous medium
flow.

In porous medium flow the thermal front lags behind
the fluid front by an amount determined by the thermal lag
coefficient λ. At finite front radii, we find that the thermal
front is more effective at stabilizing the unstable fluid front
in porous media if it lags further behind. When the thermal
front is more separated from the fluid front it is not so easily
destabilized, and it functions as a more effective barrier to the
growth of perturbations on the fluid front.

The linear stability results presented here are only valid
when the perturbation amplitudes are small. To determine
the extent to which the observations made here remain valid
when the perturbations grow larger, fully nonlinear simulations
would be a useful extension of the current work.
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APPENDIX: NUMERICAL METHODOLOGY

Equations (16), (17), and (22) are solved numerically as a
coupled system. The equations are integrated in time using
a third order backward differentiation formula (BDF), and
discretized in the spatial direction by using a spectral element
formulation. A nodal N th order polynomial basis on the Gauss
Lobatto Legendre points is used in each element.

The domain is divided into three elements, each with their
own geometry transformation that transforms the reference
variable ξ ∈ (−1,1) to the physical domain, using the follow-
ing functions:

ζ (1) = 0.25(1 + ξ ), (A1)

ζ (2) = 0.5 + 1.1
e0.7ξ − e−0.7

e0.7 − e−0.7
, (A2)

ζ (3) = 2.0
1 + ξ

1 − ξ
+ 1.6. (A3)
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The first element covers the part of the domain containing
fluid 1, while the other two cover the rest. Element 3 stretches
to infinity, where our boundary conditions are expressed.
The constants in the geometry transformations are chosen so
that the grid derivatives dζ

dξ
,
dξ

dζ
do not change much between

adjoining elements. Continuity is enforced between element 2
and 3, while the matching conditions between element 1 and
2 are given by Eqs. (19), (20), and (21).

Before the equations are integrated in time, they are trans-
formed to logarithmic time by introducing τ = log t . The third
order BDF method is then used to integrate the equations in
logarithmic time τ with the timestep �τ . By transforming to
τ , more timesteps are used in the beginning of the simulation
where the finest time resolution is needed, and the total error
for a given number of timesteps is reduced.

We use �τ = 10−4 and N = 40 for all simulations.
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