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Magnetic energy transient growth in the subcritical Kazantsev model
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We study average magnetic field growth in a mirror-symmetrical Kazantsev turbulent flow near the dissipative
scales. Our main attention is directed to a subcritical regime, when an exponential decrease of magnetic energy
is usually expected. We show that instead of damping, transient energy growth can be obtained, for example, in
stochastic processes supported by the large-scale magnetic fields. We calculate the longitudinal correlation func-
tions and demonstrate that they can tend to nonzero stationary solutions, whose localization width is inversely pro-
portional to the square of the magnetic Reynolds numbers and with amplitude depending on the closeness of these
numbers to the critical value. We present the local generation effect without any external support, predicted by Zel-
dovich in 1956. Numerically solving the initial-boundary Kazantsev problem on the nonuniform grids, we simulate
this process by implicit schemes and discuss the possible consequences of subcritical growth for dynamo theory.
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I. INTRODUCTION

The magnetospheres of planets and stars are believed to
be formed by large-scale hydrodynamic processes, which
transform the kinetic energy of turbulent flows into the en-
ergy of magnetic fields [1]. Such transformations are usually
considered as threshold phenomena, in which the process is
possible if the dynamo intensity is larger than some critical
value [2–5], whereas in subcritical regimes this process decays
similarly to nonuniform temperature fields. However, in 1956
Zeldovich made an important remark that there should be
a fundamental difference between subcritical magnetic field
processes and temperature perturbations [6]. He noticed that
despite the maximum principle for parabolic equations that
affirms the monotonic decreasing of maximum temperature
[7], the analogous principle for the magnetic energy should be
invalid, because of tangling of mixed magnetic lines. In other
words, an increase of magnetic energy can be expected even
in subcritical cases.

Such subcritical regimes have not been studied in detail by
the astrophysical dynamo community, mentioned only in sev-
eral books as a probable phenomenon (see, e.g., Refs. [1,8,9])
and investigated for some stationary flows (see Refs. [10,11]).
A possible reason can be connected with the substantial
supercriticality of dynamo regimes for most celestial bodies
[12]. Nevertheless, this phenomenon seems deserving of at-
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tention, even if it is temporal, because nowadays this research
is conducted in association with contemporary progress in
dynamo experiments (see, e.g., Refs. [13–15]). Indeed, in the
frame of laboratory physics the critical value of the generation
regime is hard to reach: too large of velocities and scales
are required, so mostly only the subcritical generation can
be realized. Thus for practical applications in liquid metal
mechanisms or magnetic storage devices any results about
subcritical behavior of magnetic fields are surely essential and
important.

The aim of this paper is to consider subcritical cases in
the frame of the simplest small-scale dynamo model [16]. As-
suming an isotropic reflectively invariant and instantaneously
correlated velocity field of turbulent electrically conducting
flow, suggested by Kazantsev in 1967 (see, e.g., Ref. [17]), we
solve numerically the evolutional equation for the longitudinal
correlation function M(r,t) of a random magnetic field B(r,t):
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= 2

r4

∂
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The mirror symmetry and isotropy of this model allows us to
write the magnetic correlation tensor in the form

〈
Bi(r) Bj (0)

〉 =
(

M + r

2

∂M

∂r

)
δij − ∂M
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2r
. (2)

The particular solution of Eq. (1) is determined by the boundary
conditions and by the magnetic Reynolds number Rm, included
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in the model through a function of magnetic viscosity

η(r) = 1

Rm
+ F (0)

3
− F (r)

3
, (3)

where the longitudinal correlation function of the random
velocity field F (r) is assumed to be known. The problem is
dimensionless, since the function F (r) is localized on the scale
r ∈ [0,1] (see, e.g., Refs. [4,18–21]). For the delta-correlated
in time velocity tensor ∼δ(t) both analytical and numerical
investigations prove the existence of such a critical value
Rmcr ∼ 58, from which the small-scale generation of the
magnetic field begins. In other words, for supercritical regimes
Rm > Rmcr the correlation function M(r,t) exponentially in-
creases, and for subcritical values Rm < Rmcr it exponentially
decays. Note that this subcritical interval Rm < 58 includes
the typical laboratory Reynolds numbers Rm ∼ 20, so the
subcritical conditions of the possible magnetic field growth
do not seem unrealistic.

Previously for supercritical cases Rm > Rmcr it was natural
to reduce the differential partial equation (1) to the eigenvalue
problem [22], so the results obtained earlier usually describe
only the exponential behavior and do not take into account the
initial data. Moreover, the region was traditionally assumed
unbounded with zero boundary conditions at r → ∞, in other
words without large-scale correlations (the main analytical and
numerical results, estimates of small-scale dynamo rates, and
analysis of symmetrical and asymmetrical cases for super-
critical regimes can be found in, e.g., Refs. [4,9,19]). Here
by numerical methods we solve the evolutional Kazantsev
equation and study the dynamics of the function M(r,t),
developed from the nonzero initial distribution M0(r) or from
the nonzero boundary conditions at large distances r � 1.
For numerical realizations we use the ideas of the special
substitution, suggested in Ref. [19], which transform Eq. (1)
to a Schrödinger-like problem and then solve it on nonuniform
grids by implicit schemes (see, e.g., Ref. [23]). We show that
for the subcritical values Rm < Rmcr the initial large-scale
correlations cannot lead to exponential decay, as was found
without large-scale support, but to saturation up to the nonzero
stationary solution. It will be better to connect this process
with a transient growth, not with a subcritical dynamo effect,
assuming that in subcritical regimes the growth reaches a
saturated state due to some nonlinear effects. We show that the
amplitude of such an ultimate solution strongly depends on
both the activity of the external magnetic field and parameters
of the velocity random field. We estimate the rate of approach
to the stationary level, compare it with analytical results on
dissipative r � 1 and energy r � 1 scales, and show that the
situation when the subcritical longitudinal correlation function
M(r,t) temporally grows (even without permanent support at
the large scales) is also possible.

Finally, note that we clearly recognize the delicate and
controversial features of the Kazantsev model. In particular, the
condition of short correlation times contradicts our understand-
ing of different correlation intervals on different scales, so it can
be used only as the first approximation (see, e.g., Ref. [24], and
concerning the problem for flows with finite correlation times
see Ref. [25]). Moreover, this model does not include the decay
of magnetic field due to the boundary effects and assumes
implicitly that the size of the computational region is much

larger than the typical correlation length, because it is well
known that a realistic dynamo operates in regions of finite size
where dynamo action is impossible for 2D flow [9], whereas the
isotropic and unbounded flows can lead to the generation (see,
e.g., Ref. [26]). Fortunately, here the magnetic field growth is
concentrated only in a limited range of spatial and timescales,
so it seems reasonable to use this model for our purposes.

II. METHOD AND REGIMES

We further relate the average magnetic energy density with
the longitudinal correlation function, rewriting the correlation
tensor (2) as the scalar product

〈B(r,t) B(0,t)〉 = 1

r2

∂(r3M(r,t))
∂r

.

To find M(r,t) we use the replacement proposed for the first
time in Ref. [19]:

M(r,t) = φ(r,t)

r2η1/2
. (4)

This substitution (4) allows us to use the zero boundary
condition φ(0,t) = 0 at the point r = 0, assuming that the
correlation function M(0,t) is bounded.

Moreover, the replacement (4) transforms Eq. (1) to the
form of a well-known Schrödinger-type problem for a particle
in a potential well:
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where the potential
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To define the magnetic viscosity η(r) by the longitudinal
correlation function (3) we use the special Gaussian form for
the velocity correlations F (r) = exp(−3r2/5). The details and
explanations of this reasonable and traditional choice for the
random velocity field can be found in, e.g., Refs. [4,19,20].

So we suggest that the correct boundary condition
M(∞,t) = M∞ does not depend on time. Usually the Kazant-
sev problem is combined with the zero condition M∞ =
0, which assumes an absence of large-scale correlations in
the small-scale model. This is a quite rational assumption,
because the function M(r,t) in supercritical regimes Rm >

Rmcr is usually localized in a very narrow region 0 < r <

1/Rm1/2. However, nobody can deny the possibility of nonzero
large-scale correlations M∞ 
= 0, for example, maintained by
an external permanent fields or originating from the initial
nonzero distribution. One more instance of a nonzero large-
scale correlation can arise in mirror-asymmetrical cases, where
a large-scale field can be generated for any Rm, thus M∞ can
be supported by the mean field processes.

In this work we consider only two modes of the numerical
experiment:

First mode: with nonzero right-hand condition M∞ 
= 0 and
with uniform initial distribution M(r,0) = M∞

Second mode: with zero right condition M∞ = 0 and with
large initial Gauss-type perturbation M(r,0), localized at an
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FIG. 1. Second mode: (a) the evolution of the Kazantsev solution
from nonzero initial perturbation (red line). Different snapshots
are marked by t1, t2, and t3. (b) The maximum of the correlation
function as a function of time. Line 1 approximates the energy
growth [max |M| = 5.6 − 6.1 exp(−0.13t)]; line 2 approximates the
damping (max |M| ∼ t−2.1).

energy scale r � 1. Of course, such an initial perturbation is
unrealistic, because the maximum of real correlation function
should be at the point r = 0. However, calculations show
similar evolution for various initial distributions: if M(r,0)
is a set of small-scale perturbations, then the solution M(r,t)
immediately begins to fade, and if M(r,0) is localized at large
scales, then the solution rapidly grows to a stationary level, and
only after that does it begin to damp (see the example in Fig. 1).

Note that the first model allows us to simulate the contri-
bution in the subcritical regime from an external large-scale
magnetic field given by, e.g., the geomagnetic field present
in any laboratory experiment. The second model excludes
the large-scale external field as a source and considers the
small-scale seed field only. Our analysis of the external source
is not exhaustive because such a seed can destroy isotropy of
the magnetic amplified field; however we ignore this option in
the context of this paper.

Taking into account the boundary condition at the right hand
end [for nonzero M∞: φ(r,t) ∼ r2] and simultaneously the
strong localization of solution at the interval [0,1/Rm1/2], we

use a quasi-uniform grid:

r̂i = b ri

c − 1

c − ri

, (6)

where ri ∈ [0,1] is uniform.
Using various grid parameters shows us that the solutions

are sensitive to having a sufficient number of nodes near
zero and at large r , but do not strongly depend on the value
b (if it is large enough, e.g., b � 10). Therefore, for all
results presented we take b = 100 and, thus, set the right
boundary condition near the point r = 100. Larger values of b

lead to larger values of φ ∼ r2 at the right boundary, which
enhances calculation errors. We restrict ourselves to a grid
with 2000 nodes and c = 1.007. A hyperbolic initial-boundary
value problem is solved with a purely implicit scheme and
with shifted derivatives (various technical details of implicit
counting on quasiuniform grids, and questions of the accuracy
and convergence of difference methods can be found, e.g., in
Refs. [27,28]). According to the computed auxiliary function
φ(r,t), the correlation function M(r,t) is calculated at each
time step (over �t = 1). Also solving the stationary Kazantsev
problem for M∞ 
= 0, we study the typical dependencies of
a stationary solution Mst (r) on values M∞ and Rm. The
main results of these calculations for various parameters are
discussed in the next section.

III. RESULTS AND ESTIMATES

A. First mode

For subcritical Rm the longitudinal correlation function
M(r,t) grows near the dissipative scale r � 1 with the per-
manent support of a correlated magnetic field at the large
scale M∞ 
= 0. Figure 2(a) demonstrates the function M(r,t),
transforming from the initial uniform data to a bell-shaped
form and then tending to the stationary solution Mst (r) (bold
black line). Figure 1(b) shows the time dependence of the
difference between the stationary Mst (0) and dynamical ampli-
tudes M(0,t) for various values of Rm = 30, 40, and 50. The
curves consist of two parts: rapidly and slowly decreasing.
They are plotted with a log scale, so we can say that these
dependences appear exponential for the initial parts, decreasing
with growth of Rm, and with the rates of the second parts not
dependent on Rm. The fast growth interval contains all three
time snapshots t1, t2, and t3, marked in the top panel. Note
that this situation differs from the supercritical dependences,
where the exponential rate logarithmically grows and tends to
the constant (3/4) for Rm → ∞ (see, e.g., [4,19,29]).

The second part with slow saturation can be also confirmed
by the analytical estimates. Indeed, expanding the magnetic
viscosity in a Taylor series for small r as η(r) = 1/Rm +
r2/5 + o(r2), and substituting this expansion in Eq. (5), we
obtain a parabolic equation for the difference between station-
ary φst (r) and dynamical functions φ(r,t):

1

2

∂(φ − φst )

∂t
= 1

Rm

∂2(φ − φst )

∂r2
− 2

Rm

(φ − φst )

r2
(7)

One of the possible solutions,

(φ − φst ) ∼ r sin
(
rμRm1/2

)
exp(−2μ2t),
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FIG. 2. First mode: (a) The stationary solution (bold line) and
the dynamical solutions for different time snapshots t1 = 1, t2 = 2
and t3 = 4. (b) The dependences of the maximal deviation between
stationary and dynamical solutions for Rm = 5, 30, and 50. Red lines
approximate initial intervals of rapid magnetic energy growth.

shows that this difference decreases with rate independent of
Rm, if the localization area ∼1/Rm1/2 does not depend on
time.

We use two parameters to characterize a stationary distri-
bution Mst (r): the amplitude of the stationary solution Mst (0)
and its width �r on the half-amplitude level Mst (0)/2. The
amplitude Mst (0) depends both on the right hand boundary
condition M∞ and on the magnetic Reynolds number Rm; the
localization �r depends only on Rm. Due to the linearity of
the problem the dependence on M∞ is direct, so we choose
M∞ = 1. The dependences on Rm for Mst (0) and �r are
shown in the top and bottom panels of Fig. 3. One can see that
if the dependence Mst (0) is complex, then the dependence �r

is inversely proportional to Rm1/2 (for Rm > 1). An analogous
dependence for the localization scale was earlier obtained for
growing solutions of the Kazantsev model in supercritical
regimes Rm > Rmcr [19,29,30]. For very small Rm the sta-
tionary solution occupies the entire region of velocity field
correlations [0,1].

When Rm approaches the critical value Rmcr , the amplitude
of the stationary solution Mst (0) rapidly increases as (Rmcr −
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FIG. 3. (a) The dependence of the amplitude of the stationary
solution on Rm (red line denotes the critical value Rmcr ). (b) The
dependence of the width of the stationary solution on Rm and its
approximation �r = −0.01 + 1.5

√
2/Rm, marked by the red line.

Rm)−1 (see the top panel of Fig. 3, where the vertical line
shows Rmcr = 58.3; the approximation is calculated but not
shown here). In the supercritical regime it changes sign: Mst (0)
becomes negative. However, for Rm > Rmcr the Kazantsev
problem becomes incorrect due to the nonuniqueness of
exponentially growing solutions, so we remove such cases
from our consideration. The rapid growth of M(0,t) near
cr means that in a near-critical regime, the influence of the
external magnetic field on the small-scale processes should be
quite significant, and correspondingly the inverse effect will be
inessential. For small Rm < 1, the amplitude Mst (0) tends to
M∞, so possible influences between the large and small scales
become comparable.

B. Second mode

In this mode the function M(r,t) evolves from the initial
shifted Gauss-type bell form [see the example in Fig. 2(a)].
Previous work shows that in the absence of external mag-
netic fields (large-scale correlations) any nonzero Kazantsev
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solutions eventually damp if Rm < Rmcr . The rate of this
damping can be estimated from Eq. (1) under the assumption
r � 1. In this case, the value of the magnetic viscosity can be
estimated as η(r) ∼ 1/Rm + 1/3, and the Kazantsev equation
can be rewritten in the form

∂M

∂t
= 2η

r4

∂

∂r

(
r4 ∂M

∂r

)

with the solution

M(r,t) ∼ 1

|8ηt − 1|5/2
exp

( −r2

|8ηt − 1|
)

. (8)

We see that for large t the amplitude of function M(r,t)
decreases as t−5/2 and spreads like t1/2. In other words, the
equation at large scales behaves similarly to the heat equation,
andM(r,t) decreases as a power law. For small-scale processes,
this decreasing distribution defines the nonzero M∞ serving
as an external support. This external support leads to rapid
small-scale growth (compare with the first mode). Thus, even in
the absence of a permanent support Minf 
= 0, the longitudinal
correlation function can grow for some time. Therefore, an
increase in the small-scale magnetic energy is possible for
subcritical regimes without any additional support but for
limited times, depending on the initial large-scale distribution.

A number of numerical experiments with different initial
distributions confirm that such dynamo growth actually takes
place [see the example presented in Fig. 2(a)]. In the bottom
panel, which depicts the amplitude max[M(r,t)] as a function
of time, we at first see rapid growth up to the stationary solution
as ∼ [1 − exp(−0.13t)] (compare with the first mode), and
then a slow power law decrease with rate tending to t−2.1 (all
approximations were realized by the NLLS method). Thus we
can state that for nonzero initial distributions M(r,0) and for
subcritical magnetic Reynolds numbers, a small-scale transient
generation (Zeldovich effect) can be expected in both the
presence and absence of external support.

IV. DISCUSSION AND CONCLUSIONS

The traditional small-scale dynamo models predict sta-
ble magnetic energy growth only for large enough mag-
netic Reynolds numbers Rm > Rmcr ; however, the subcritical
regimes Rm < Rmcr are not as trivial as at first glance. This
situation connects with general study of magnetic field time
dependency in a special exponential form ∼exp(λt), which
can lead only to two cases: exponential increase or exponential
decay. In such “traditional” approaches one does not take into
account the regimes with nonexponential, local in time growth,
when the small-scale magnetic fields are formed under the
large-scale magnetic field support.

We consider here the classical Kazantsev model for mirror-
symmetrical delta-correlated flows with Gaussian correlation
function and show that even for subcritical Reynolds numbers
the local growth of magnetic fields is possible. Therefore, from
the physical point of view it means that the use of conductive
mediums in external magnetic fields, or in fields generated by
large-scale processes, can be accompanied by magnetic energy
growth near the dissipative scales and by mutual interaction
between small and large scales.

The region of subcritical energy growth near the dissipative
scales follows from the existence of a stationary nonzero
solution of the Kazantsev equation in the presence of a large-
scale correlated magnetic field. The stationary longitudinal
correlation function Mst (r) has a bell-shaped form with width
changing as Rm−1/2. The ratio of amplitudes of correlation
functions on small scales M(0,t) and large scale M∞ can
be quite significant: numerical results show that it can in-
definitely increase for Reynolds numbers approaching the
critical value Rmcr (even for arbitrary small M∞). It means
that near the critical conditions the external magnetic fields
strongly influence the small-scale process, and conversely
the small-scale fields have almost no effect on large scales.
On the other hand, far from the critical situation Rm � Rmcr

the relationship between different scales increases, because the
ratio M(0,t)/M∞ tends to unity.

The dependence for subcritical behavior M(r,t) on time
is also different at large and small scales. For r � 1 the
approach to the stationary solution is exponential, while for
r � 1 the amplitude of the correlation function power law
decreases by analogy with solutions of the heat equation. Thus
there is the possible situation where the correlation function
M(r,t) increases rapidly at small scales with the support of a
large-scale slow decreasing of initial distribution. Of course,
after saturation we should observe a slow power law-like
decrease due to decay of external (large-scale) support. It
is clear that the duration of magnetic energy growth and
amplitude will be defined by the initial data, external magnetic
fields, and magnetic Reynolds number, but for the near-critical
values Rm ∼ Rmcr this local-in-time field generation can be
quite continuous and significant. Summing up the results we
can confirm that magnetic energy growth can be expected
in both the supercritical and subcritical regimes, but in the
subcritical case it is bounded by an external support, and in the
supercritical case it can grow without limit, in the frame of the
general Kazantsev model.

The subcritical results obtained have many disputable
points: the equality of correlation times at different scales,
the simultaneous existence of space isotropy and correlated
external field, the possibility and uniqueness of expression for
the correlation tensor (2), the influence of mirror asymmetry
and magnetic helicity, which should exist in any real random
flow, among others. We do not have the opportunity to consider
all these questions here but hope that the behavior of the
longitudinal function M(r,t) described here will be confirmed
in laboratory experiments and by direct numerical simulations
of turbulent conductive fluids in future studies. We believe
that the isolation of subcritical magnetic field growth can be
a reasonable milestone on the way to laboratory realization of
small-scale dynamos.
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