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Networked-oscillator-based modeling and control of unsteady wake flows
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A networked-oscillator-based analysis is performed to examine and control the transfer of kinetic energy for
periodic bluff body flows. The dynamics of energy fluctuations in the flow field are described by a set of oscillators
defined by conjugate pairs of spatial proper orthogonal decomposition (POD) modes. To extract the network of
interactions among oscillators, impulse responses of the oscillators to amplitude and phase perturbations are
tracked. Tracking small energy inputs and using linear regression, a networked-oscillator model is constructed
that reveals energy exchange among the modes. The model captures the nonlinear interactions among the modal
oscillators through a linear approximation. A large collection of system responses is aggregated to capture the
general network structure of oscillator interactions. The present networked-oscillator model describes the modal
perturbation dynamics more accurately than the empirical Galerkin reduced-order model. The linear network
model for nonlinear dynamics is subsequently utilized to design a model-based feedback controller. The controller
suppresses the modal amplitudes that result in wake unsteadiness leading to drag reduction. The strength of the
proposed approach is demonstrated for a canonical example of two-dimensional unsteady flow over a circular
cylinder. The present formulation enables the characterization of modal interactions to control fundamental energy
transfers in unsteady bluff body flows.
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I. INTRODUCTION

Oscillations play an important role in a variety of physical
and biological systems. These oscillations often result from a
set of fluctuating entities called oscillators. Biological oscil-
lators, including neurons and heart cells, are integral to the
various rhythms and regulatory systems of the human body.
Such collective rhythms arise from the coupling of multiple
oscillators with the physics encapsulated by the transfer of
energy between them. There has been a rich history of studies
on the collective dynamics of oscillators, in particular by
Kuramoto [1] and Strogatz [2]. The foundational work laid
out by Kuramoto [3] elegantly describes the interactive phase
dynamics between oscillators. Mutual synchronization of a
system occurs when interacting oscillators affect their phases
so as to spontaneously lock on to a particular frequency
or phase [4]. The collective phase sensitivity of globally
coupled oscillators to external perturbations was investigated
by Kawamura et al. [5]. In the works of Aizawa [6] and
Mirollo and Strogatz [7], the oscillator phase interactions
were generalized to incorporate amplitude variation effects.
Yamaguchi and Shimizu [8] discovered the amplitude death
phenomenon associated with coupled oscillators leading to
suppression of oscillator amplitudes to steady state. In the
present paper, we examine the coupled oscillator dynamics
in unsteady fluid flows.

Unsteady fluid flows governed by the Navier-Stokes equa-
tion exhibit strong nonlinear dynamics and are characterized
by spatiotemporal oscillations. In flows past bluff bodies,
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oscillatory behavior of the flows is revealed through shedding
of coherent vortices observed in the wake. Such periodic
shedding generates unsteady forces on the body which can lead
to detrimental increase in drag associated structural fatigue
due to the emergence of flow-induced vibrations [9,10]. In the
work of Roshko [11], the relationship between form drag and
vortex shedding was explored in detail. It was demonstrated
that unsteady force oscillations and drag can be reduced
by mitigating the wake unsteadiness. Since then, a myriad
of studies using active and passive flow control strategies
have focused on controlling bluff body wake vortex shedding
and the resulting unsteady forces, summarized in a review
by Choi et al. [12]. Although there have been tremendous
breakthroughs in applying flow control techniques for drag
reduction, only a few studies make use of the fundamental
energy transfer mechanisms and interactions in unsteady fluid
flows and controlling the flow unsteadiness therein. Also,
suppression of these oscillations is intrinsically associated to
the amplitude death phenomena by modification of coupling
interactions [13,14].

The oscillations embedded in fluid flows can be extracted
naturally as spatial structures (modes) and their associated
temporal weights using modal decomposition techniques [15].
For time-periodic flows, individual coherent structures are
described by conjugate mode pairs which can be viewed as
a set of modal oscillators exhibiting periodic fluctuations. In
particular, proper orthogonal decomposition (POD) [16–18]
and dynamic mode decomposition (DMD) [19–21] techniques
can extract modal oscillators from snapshot flow field data
based on energy and dynamics of the flow, respectively. The
general behavior of nonlinear flows can also be described by
spectral analysis of the linear, infinite-dimensional Koopman
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operator which yields Koopman modes [20,22,23] closely
related to DMD.

The interactions between the modes in unsteady fluid flows
can be captured by reduced-order models while dramatically
reducing the computational expense to model fluid flows of
interest [17,24]. The projection of the Navier-Stokes equations
onto the modal basis results in an empirical Galerkin formu-
lation [25]. However, mode deformations and truncation of
energy cascades in unsteady fluid flows pose a significant chal-
lenge in developing accurate reduced-order models [26,27].
In the current paper, we examine how modal oscillators in
unsteady fluid flows interact to distribute energy in unsteady
conditions. The present model is constructed by tracking
perturbations introduced to the modal oscillators and analyzing
the resulting energy transfer dynamics.

The mathematical framework to describe a graph G =
{V,E,W} consists of a set of nodes V connected by edges
E with associated edge weights W [28,29]. The network
nodes form the quantities of interest with the interactions
between them as edges. Network analysis is primarily con-
cerned with interactions between quantities of interest [28,30]
and has found widespread applications in social sciences
[31], biological sciences [32–35], and many other fields [36].
In epidemiology, network analysis has aided in analyzing
epidemics and designing appropriate containment and control
measures [37–39].

The application of network analysis has recently been
extended to represent vortical interactions in fluid flows [40].
The network-theoretic framework is composed of discrete
point vortices as nodes and interactions between them as
edges. The network representation allows for the utilization of
techniques such as spectral sparsification [41] to identify key
vortical interactions and development of sparsified-dynamics
models, which preserve the invariants of discrete vortex
dynamics. Moreover, the extraction of the vortical network
structure of turbulent flows has revealed the scale-free network
property of decaying two-dimensional isotropic turbulence
[42]. The resulting framework enables the assessment of the
resilience of turbulent flow structures. In the present paper,
we extend network analysis to describe and control modal
interactions in fluid flows, by casting fluid flow in terms
of a networked-oscillator system. Here, we view the modal
oscillators as nodes and coupling interactions between them
as edges, highlighting complex energy transfer dynamics. We
utilize modal decomposition techniques in conjunction with
coupled oscillator models to capture the interactive physics
involved in unsteady fluid flows.

The objective of the present paper is threefold: (1) char-
acterize the nonlinear energy transfer between modes and
construct a networked dynamics model for tracking amplitude
and phase perturbations in unsteady fluid flows, (2) describe
interactive dynamics between modes from a network-theoretic
perspective, and (3) control the perturbations with respect
to the limit cycle state of periodic flows as well as the full
state itself. To accomplish these goals, mode pairs describ-
ing individual coherent structures in baseline (unforced and
unperturbed) time-periodic flows are considered as a set of
oscillators. Examining the impulse responses of the oscillators
to perturbations, the associated network structure is extracted
using a linear regression procedure [43].

A networked-oscillator model herein describes the temporal
dynamics of modes in unsteady fluid flow with a network
structure embedded in it. With the network dynamics model
established, we are able to study the amplitude and phase
dynamics of coupled oscillators in the presence of perturba-
tions on the modal interaction network [44]. Thus, we arrive
at a reduced-order network model using modal oscillators that
highlight energy transfer dynamics among the modes which
can subsequently be used for the control of flow unsteadiness.
We design flow control strategies to suppress modal fluctua-
tions using the network based insights that consequently leads
to drag reduction. In what follows, we first lay the theoretical
foundation of this paper in Sec. II. We then demonstrate
the strength of our approach using a canonical example of
two-dimensional cylinder flow in Sec. III. We end the paper
with concluding remarks in Sec. IV.

II. FORMULATION

A. Oscillator representation

Let us first consider the baseline case corresponding to
time-periodic flow without any forcing or perturbations in-
troduced in the Navier-Stokes equations. The POD technique,
also known as Karhunen-Loève decomposition and principal
component analysis, can be utilized to extract coherent struc-
tures in fluid flows that span a sequence of finite-dimensional
subspaces of the full phase space [25]. POD decomposes the
data set to capture maximum energy content with minimum
number of basis functions or modes. Using the method of
snapshots [16] to compute POD modes, the unsteady velocity
field u can be approximated by a finite series in terms of a mean
(time-averaged) velocity field ū and N orthonormal spatial
POD modes φu

j as

u(x,t) ≈ ū(x) +
N∑

j=1

aj (t)φu
j (x), (1)

where aj (t) = 〈u(x,t) − ū(x),φu
j (x)〉 are the temporal coeffi-

cients and 〈·,·〉 denotes the inner product over the computa-
tional domain. The kinetic energy of the fluctuating velocity
field is given by E = 〈u(x,t) − ū(x),u(x,t) − ū(x)〉/2. As the
temporal fluctuations of the spatial modes are represented by
their temporal coefficients, the contribution of the individual
modes to the fluctuation kinetic energy is given by a2

j /2,

providing a total modal energy of E ≈ ∑N
j=1 a2

j /2. In this
paper, we track the variations in the modal fluctuation energy.

We obtain modes in conjugate pairs from POD for time-
periodic flows. Each conjugate mode pair, describing periodic
coherent structures in the baseline case, defines an oscillator
in our analysis. A set of N POD modes results in M = N/2
oscillators. Conjugate mode pairs (φu

2j−1,φ
u
2j ) with temporal

coefficients (a2j−1,a2j ) can be represented in the complex
plane as

zm = a2j−1 + ia2j = rm exp(iθm), (2)

where m = I,II, . . . ,M; j = 1,2, . . . ,N/2; rm = |zm|; and
θm = ∠zm. Throughout this paper, the oscillators will be num-
bered by m ∈ {I, II,. . . ,M} in roman numerals to distinguish
from mode numbering, j ∈ {1,2, . . . ,N}. Each oscillator m
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is associated with a temporal coefficient (zm) which consists
of an odd-number mode with coefficient a2j−1 and an even-
number mode with coefficient a2j . The temporal coefficient
corresponding to the mean flow (ū), z0 = 1. Equivalent to
Eq. (1), we can recover the velocity field in terms of oscillators
as

u(x,t) = ū(x) +
M∑

m=1

{
Re[zm(t)]φu

2m−1(x)

+ Im[zm(t)]φu
2m(x)

}
, (3)

where Re(zm) and Im(zm) represent real and imaginary com-
ponents of zm, respectively.

In the baseline case, oscillators follow a natural limit cycle,
which is described by the Stuart-Landau equation

żb
m = zb

m

(
λm − ∣∣zb

m

∣∣2 + i�b
m

)
(4)

with zb
m = rb

m exp(iθb
m), λm = (rb

m)2, and �b
m is the oscillator

frequency, where · denotes the time average and superscript b
denotes the baseline case. The dynamics of a set of oscillators
can be represented by Eq. (4). In our case, we approximate
the dynamics of networked conjugate POD mode pairs by the
Stuart-Landau equation. The conjugate mode pairs of each
oscillator exchange energy among themselves to describe the
self-sustaining equilibrium behavior of each coherent structure
in an unsteady fluid flow. Similar to the present analysis, the
work of Bagheri [45] demonstrates the use of the Stuart-Landau
equation to perform multiscale Koopman expansion of the
cylinder wake.

To highlight interactions between the oscillators, we intro-
duce perturbations impulsively in direct numerical simulation
(DNS) to the baseline temporal coefficients of oscillators at t =
t0. These perturbations introduced to the baseline state enable
the emergence of nonlinear interactions and energy exchange
among the oscillators resulting in fluctuations described by

z′
m = a′

2j−1 + ia′
2j = ε′

mrb
m exp

(
i
[
θb
m + θ ′

m

])
, (5)

where ()′ denotes the perturbation quantity and ε′
m(t0) and

θ ′
m(t0) are the amplitude and phase perturbations for the mth

oscillator, respectively. Note that ε′
m is normalized by the

baseline amplitude of each oscillator. The energy exchange
between the oscillators captures the transfer of fluctuation
kinetic energy.

The total temporal coefficient for each oscillator in the
perturbed case can then be described by combining the baseline
temporal coefficient and fluctuation as

zm = rm exp(iθm) = zb
m + z′

m. (6)

The overall oscillator model, including perturbations, is shown
in Fig. 1. The blue circle in the top left figure indicates the
natural limit cycle for oscillator m (zb

m). The perturbations
in amplitude (ε′

m) and phase (θ ′
m) result in a total temporal

coefficient (zm) off the limit cycle. Perturbations can be intro-
duced to each oscillator m by specifying the initial amplitude
of perturbation ε′

m(t0) and initial phase perturbation size θ ′
m(t0).

Once these factors are prescribed, using Eqs. (5), (6), and (3),
the initial velocity field for DNS is prepared.

Once the perturbations are introduced to the flow, the per-
turbation energy is distributed among the oscillators according
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oscillator III oscillator I

oscillator IV
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m
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FIG. 1. Modal oscillator model in the complex plane and oscil-
lator network. The circle in the oscillator model describes the limit
cycle trajectory of the oscillators (zb

m) and the perturbed temporal
coefficients (zm). The nodes of the network correspond to oscillators
with directed edges showing interactions. Modal interactions corre-
sponding to edges from oscillator I to II highlighted in red (bottom
shaded edge) are further expanded (top right).

to natural advection and diffusion. The temporal dynamics of
the modes are attributed to the interactions resulting primarily
from the advective term of the Navier-Stokes equation. The
temporal coefficients of the modes in the perturbed case can be
extracted by projection, asaj = 〈u − ū,φu

j 〉. We then construct
zm for each oscillator m using Eq. (2). To capture the fluctuating
amplitude ε′

m(t) and phase θ ′
m(t) of the temporal coefficients

due to interactions, we track the normalized fluctuation

ζm = z′
m/zb

m = ε′
m exp(iθ ′

m). (7)

The amplitude fluctuations of the oscillators are related to
the variation in oscillator fluctuation energy E′

m(t) compared
to the baseline, given by

E′
m = 1

2

(|zm|2 − ∣∣zb
m

∣∣2) = 1
2 [(1 + ε′

m)2 − 1]
(
rb
m

)2
, (8)

where E′
m(t0) represents the oscillator energy input and the

total baseline modal energy, Eb = ∑M
m=I(r

b
m)2/2. If only phase

perturbations are introduced in the simulation, a variation in
oscillator energy may be observed due to oscillator interac-
tions, although E′

m(t0) = 0. The quantities E′
m/(rb

m)2 and θ ′
m

are used to track the energy perturbations and phase of the
oscillators, respectively. The perspective of viewing the flow
as an ensemble of limit cycle Stuart-Landau oscillators, each
with their own intrinsic frequency, enables a network-based
representation of the fluid flow dynamics as discussed below.
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B. Networked oscillator representation

Based on the oscillator representation using the POD modes
and the fluctuations about the baseline flow, we can now create
a network-theoretic representation of the unsteady fluid flow
system. We consider the collection of oscillators (modes pairs)
characterizing unsteady fluctuations to be the nodes (V) of the
network and the interaction between them as edges (E). To
characterize the interactions between oscillators, we need a
model that captures the coupling between the oscillators. This
motivates a networked-oscillator model of M linearly coupled
oscillators given by

ζ̇m =
M∑

n=I

[AG]mn(ζn − ζm) = −
M∑

n=I

[LG]mnζn, (9)

where [AG]mn and [LG]mn are the adjacency and the in-degree
graph Laplacian matrices, respectively. The dynamics of nor-
malized fluctuations of temporal coefficients are nonlinear in
general due to convective physics in unsteady fluid flows.

For a set of M oscillators, the above adjacency matrix AG ∈
CM×M concisely describes the network connectivity given as

[AG]mn = wmn = |wmn| exp (i∠wmn). (10)

The rows of the adjacency matrix indicates the dependence
of the oscillators n on the dynamics of oscillators in column
m, i.e., wmn. The in-degree (km) of a node m represents the
summation of the incoming weights of the edges connected to it
given by km = ∑M

n=I[AG]mn. The (in-degree) graph Laplacian
is related to the adjacency matrix as LG = DG − AG , where
DG is a diagonal matrix with elements equal to the in-degree
of the nodes, DG = diag([km]Mm=I). The graph Laplacian is a
discrete analog of the continuous Laplacian operator. In the
current paper, it encodes structural properties of the networked-
oscillator model.

Using the time series of normalized fluctuations of each
oscillator from DNS, i.e., ζ and ζ̇ , we use a linear regression
procedure to determine the adjacency matrix weights for
the networked-oscillator model. These weights could also be
obtained through a Galerkin regression approach [46]. The
temporal coefficient associated with the mean flow is assumed
to be fixed at unity and does not contribute to normalized
fluctuations of the modes. Thus, the mean flow is considered
as an isolated node in this formulation.

The oscillator network representation is illustrated in Fig. 1.
The magnitudes of the edge weights (|wmn|) signify the
influence of oscillator n on oscillator m as illustrated in Fig. 1.
The phase of the edge weights (∠wmn) represents the indi-
vidual modal contributions in oscillator phase interactions. In
particular, it highlights the phase advances or delays imposed
between modes of interacting oscillators. The odd-odd mode
interactions and even-even mode interactions are given by
|wmn| cos∠wmn while the odd-even and even-odd mode in-
teractions are given by |wmn| sin∠wmn and −|wmn| sin∠wmn,
respectively. Details are provided in the Appendix.

For comparison with the networked-oscillator model, we
also consider the Galerkin projection model for the incom-
pressible Navier-Stokes equations, by projecting the equations
onto the POD modes to construct the POD-Galerkin reduced-
order model [25,47]. The resulting Galerkin model can be

expressed as

ȧj = γj +
N∑

k=1

ψjkak +
N∑

k, l=1

χjklakal, i = 1,2, . . . N,

(11)

with

γj = 1

Re
〈φj ,∇2ū〉 − 〈φj ,∇ · (ūū)〉,

ψjk = 1

Re
〈φj ,∇2φk〉 − 〈φj ,∇ · (ūφk)〉 − 〈φj ,∇ · (φk ū)〉,

χjkl = −〈φj ,∇ · (φkφl)〉, (12)

where γj , ψjk , and χjkl are the constant mean shift coefficient,
linear coefficient, and quadratic coefficient terms, respectively.
The linear term represents diffusive physics of the modes,
while the quadratic term represents the advective physics.

III. APPLICATION TO FLUID FLOW

We now consider the application of the networked-oscillator
approach to the two-dimensional flow over a circular cylinder,
which serves as a canonical flow.

A. Computational approach

We gather the flow field data from DNS of incompressible
flow past a circular cylinder using the immersed boundary
projection method [48–50] at a diameter-based Reynolds num-
ber of Re = 100. This method employs a Cartesian grid with
the immersed boundary formulation to generate the cylinder.
We take advantage of the multidomain technique to simulate
cylinder flow in free space. The innermost domain is chosen
as −1 � x/d � 29,−15 � y/d � 15 with a resolution of
600 × 600 grid points where d is the cylinder diameter. Here, x
is the streamwise direction and y is the cross-stream direction.
The outermost domain is chosen as −16 � x/d � 44,−30 �
y/d � 30, far enough so as to not affect the results in the near
field. Uniform flow is prescribed at the far-field boundaries. For
time integration, this solver uses an implicit Crank-Nicholson
scheme for the viscous term and an Adam-Bashforth method
for the advective term.

From the simulation, the drag coefficient (CD) and lift
coefficient (CL) are computed as

CD = FD

1
2ρU 2d

and CL = FL

1
2ρU 2d

, (13)

where FD and FL are the drag and lift forces on the cylinder, ρ
is the freestream density, and U is the freestream velocity field.
The Strouhal number for the flow is St ≡ fnd/U , where fn is
the natural shedding frequency. We obtain a Strouhal number
of St = 0.164, drag coefficient CD = 1.35 ± 0.009, and lift
coefficient CL = ±0.325 from DNS, which agree well with
those reported in the literature [48,51,52]. The flow exhibits
vortex shedding behavior in the cylinder wake, as shown by the
instantaneous vorticity field in Fig. 2(a). Such vortex shedding
characterizes a von Kármán vortex street due to the repetitive
pattern of vortices in the unsteady wake. The time-averaged
(mean) vorticity field is shown in Fig. 2(b). We collect the
snapshots of the flow field and perform POD on the velocity
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FIG. 2. (a) Instantaneous and (b) time-averaged (mean) vorticity
fields. Proper orthogonal decomposition (POD) applied to the cylinder
flow problem results in (c) spatial modes and (d) temporal coefficients
of oscillators in the complex plane. The colorbar of the spatial modes
indicates the contour level and the colorbar of the temporal coefficients
and oscillators indicates the phase of the oscillators varying from
[−π,π ] over the periodic limit cycles.

field (u) with the method of snapshots [16]. The POD modes
and temporal coefficients obtained are in agreement with those
from the work by Noack et al. [24]. The extracted spatial modes
in terms of the vorticity field, φω

j = ∇ × φu
j , are shown in

Fig. 2(c).

B. Unperturbed flow (baseline)

We define the conjugate mode pairs as independent oscilla-
tors in our formulation. The oscillators are ordered in terms of
decreasing energy content, shown in Fig. 2 (top to bottom). As
the first eight POD modes capture 99.98% of the fluctuation
kinetic energy, we choose N = 8 for our analysis. The energy
content of oscillators I, II, III, and IV are 96.87,2.18,0.88,

and 0.05%, respectively. The oscillator temporal coefficients

in the complex plane (zb
m) are shown in Fig. 2(d). For this

canonical problem, the frequencies associated with the higher-
order oscillators are harmonics of the lowest-order oscillator,
�b

m = m�b
I with �I = St = 0.164. As the frequency (�b

m)
associated with the temporal coefficients of the mode pairs
increases, the size of the spatial modal structures becomes finer.
Again, the oscillators in the baseline flow are associated with
limit cycle temporal dynamics described by Eq. (4). The lack
of coupling in the generalized limit cycle dynamics is unable to
capture the oscillator interactions in unsteady fluid flow, which
calls for the analysis below.

C. Perturbed flow

To capture interactions between oscillators, additional fluc-
tuation energy and phase perturbations are introduced to the
simulation through the initial condition. These perturbations
cause added fluctuations in the temporal coefficients of the
modes. The projected coefficients from the perturbed case
are extracted from DNS and the normalized fluctuation ζm(t)
is tracked using the networked-oscillator model discussed in
Sec. II. We expect that as the perturbation convects down-
stream, the normalized fluctuation of the oscillators will decay
to zero and the perturbed flow will return to the baseline limit
cycle. However, the addition of a perturbation to the flow results
in a constant phase shift of each oscillator in the final limit
cycle, compared to the unperturbed limit cycle.

In two-dimensional unsteady cylinder flow, the leading
POD mode pair (oscillator I) holds the largest energy content.
Any deviation from the baseline limit cycle is immediately
reflected in the phase of oscillator I (θI). Thus, to construct
the normalized fluctuation time series for each oscillator, we
align the phase of oscillator I for the perturbed case and
the baseline case as ζm = (zm − zb

m|θ=θI )/z
b
m|θ=θI . Once the

normalized fluctuation ζm is evaluated, we also determine
its time derivative ζ̇m. We then construct the bases (ζn − ζm)
for each oscillator m. We perform a simple linear regression
on the time series to obtain the network structure [AG]mn.
Once the network structure is obtained, we solve the linear
networked-oscillator model in Eq. (9) for prediction with a
prescribed initial condition and compare the fluctuations with
those obtained in DNS. While it is not necessary, one could
also consider quadratic or higher interaction terms [46,53].

Let us demonstrate the model development for a case
where we first introduce an amplitude perturbation to oscillator
II. Addition of a perturbation at this harmonic frequency
perturbs not only the natural shedding process but also the
oscillators associated with higher harmonics of the flow due to
interactions. Let us consider the addition of 20% of baseline
modal energy to oscillator II. No perturbation in phase is added,
i.e., θ ′

II(t0) = 0. As the introduced perturbation in oscillator II
convects downstream in the numerical simulation, its energy
propagates to other oscillators through interactions. Using
the procedure discussed above, we can extract the adjacency
matrix AG that captures network interactions.

The magnitude and phase of the adjacency matrix are shown
in Fig. 3(a). In this example, the dynamics of oscillator I is not
affected noticeably by the other oscillators. The dynamics of
oscillators II and III show strong dependence on oscillator I.
This is consistent with our expectation as most of the energy in
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FIG. 3. Response of the system to amplitude perturbation in-
troduced to oscillator II. (a) Adjacency matrix of the networked-
oscillator model and (b) corresponding network of oscillator in-
teractions. The color and thickness of the network edges in the
network represent the magnitude of the elements of AG . (c) Oscillator
dynamics from DNS, the networked-oscillator model, and the POD-
Galerkin model (color of temporal dynamics of oscillators indicates
phase). The red dot in oscillator II dynamics indicate the initial
perturbation.

the flow is held in oscillator I and passes down to higher-order
oscillators. For the dynamics of oscillator II (modes 3 and
4), the phase of the edge weights indicates that interactions

between modes 1 → 3, 2 → 4, 8 → 3, and 7 → 4 are larger
than other modal interactions. For this perturbed case, phase
advancing effects are generally predominant for the oscillators
affecting each other. The network structure of oscillators is
visualized in Fig. 3(b) illustrating the leading influence of
oscillator I.

We then solve the linear networked-oscillator model spec-
ifying the perturbed initial condition. For comparison, we
also prepare the empirical Galerkin reduced-order model. The
oscillator dynamics from DNS (reference) and those predicted
from the networked-oscillator and POD-Galerkin models are
shown in Fig. 3(c). The initial amplitude of the perturbed
temporal coefficients for oscillator II (rII(t0)) corresponds to
the red dot. The initial amplitude and phase of the other
oscillators are unchanged, as no perturbations are introduced
to these oscillators. It can be seen in Fig. 3(c) that the oscillator
dynamics predicted by the networked-oscillator model agree
well with DNS trajectories, particularly oscillators I, II, and
III. Due to its low energy content, any small deviation in
the dynamics of lower-order oscillators causes comparable
changes in the trajectory of oscillator IV. On the other hand, the
POD-Galerkin model overpredicts the fluctuations in oscilla-
tors. As discussed in the work by Rempfer [54], the restricted
completeness property of the POD basis creates problems for
integrating the POD-Galerkin system for any initial conditions
lying outside the ensemble of trajectories used to compute the
basis. Thus, small perturbations or disturbances created by
numerical error in integration of the Galerkin model lead to
incomplete representation of the Navier-Stokes operator.

There are two mechanisms of kinetic energy transfers
in incompressible fluid flows, one from advection and the
other from dissipation. In the incompressible Navier-Stokes
equations, the advective term −(∇ · u)u results in advection
of kinetic energy in the flow while the diffusion term ν∇2u
results in dissipation of energy [55]. In the Galerkin model,
the energy dissipation is modeled by the linear term and the
advective energy transfer is modeled by the quadratic term [56].
In the networked-oscillator model, the diagonal terms of the
Laplacian contribute to the dissipative physics of the individual
oscillators and the off-diagonal terms model the advective
physics. The absence of the mean in the network oscillator
model results in energy exchanges only between the oscillators.

To further compare the details of the predicted trajectories,
we track the fluctuations in modal amplitude and oscillator
energy in Fig. 4. The networked-oscillator model shows ex-
cellent agreement with DNS, tracking the amplitude (a2j−1)
and energy transfers (E′

m). Moreover, we see agreement in the
long-time behavior of the fluctuations as the flow returns to the
baseline state for the networked-oscillator model. In contrast,
the POD-Galerkin model is not well designed for modeling
the long-time behavior of modal fluctuations and hence is not
expected to work well as time progresses [57,58]. As indicated
by the green dashed line, the POD-Galerkin model overpredicts
these fluctuations and their associated time scales.

D. Aggregate network model

The network structure of interactions can be extracted
individually by tracking the trajectory of the oscillator
fluctuations from DNS as demonstrated above. While the
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FIG. 4. (a) Modal amplitude and (b) energy tracking for amplitude
perturbation introduced to oscillator II. Network model and Galerkin
model dynamics are shown by red (darker gray) and green (lighter
gray) dashed lines, respectively.

corresponding linear networked-oscillator models can be
built for each specific case, the resulting network structure
obtained depends on the initial perturbations introduced.
Thus, one may argue that such individually tuned models do
not necessarily capture the overall interactions in response to
a generic perturbation. A general network interaction model
is desired not only to capture interactions for any combination
of perturbations but also to design effective strategies for flow
control. In this section, we describe our approach to build an
aggregate network model that captures the fluid flow response
to a variety of perturbation inputs.

We consider a range of perturbed flow cases by varying the
amplitude and phase of perturbations to different combinations
of oscillators. For a particular oscillator perturbed, we vary
the energy input from 5 to 100% additional baseline modal
fluctuation energy in the flow. We also vary the phase pertur-
bation size (θ ′

m) from −2π/3 to 2π/3 to cover a broad coverage
of plausible initial perturbations introduced. The range of

amplitude and phase perturbations considered here is quite
large. These large perturbations lead to the emergence of strong
nonlinear interactions between the oscillators. For the variety
of perturbation cases, we collect the oscillator fluctuation
data from DNS. To build an aggregate network model, we
concatenate the trajectories of all the perturbed cases obtained
from DNS instead of individually tracking perturbations and
monitoring the oscillator fluctuations in each perturbed case.

We then segregate the collection of data into training
and test sets to perform cross-validation and evaluate the
predictive capabilities of the network model. Varying fractions
of the combined input-output data are randomly chosen as
the training sets. For each training set, regression analysis is
performed to extract a corresponding network model. We then
examine the in-degree (km = ∑M

n=I[AG]mn) and out-degree
(kn = ∑M

m=I[AG]mn) of the network nodes for each model
extracted. The variation of the network degrees with respect to
the fraction of the chosen training set is shown in Fig. 5(a). We
observe that, as the fraction of the training data used increases,
convergence of the network degree is obtained. We also learn
that the average in-degree increases from low-order oscilla-
tors to higher-order oscillators and the average out-degree
decreases. Oscillators I and IV have maximum out-degree
and in-degree, respectively. Oscillator I influences the other
oscillators most, while oscillator IV is the most influenced.
Oscillators II and III have more balanced in- and out-degrees
indicating more balanced energy transfer for each mode.

We observe a convergence of network degree for a fraction
of training data, ftrain � 0.8. We randomly choose 80% of
the combined input-output data as the training set and use
the remaining 20% of the data to assess the performance of the
network model extracted. Using the training set, the adjacency
matrix for the aggregate network model extracted is shown
in Fig. 5(b). The magnitude of the network reveals that the
lower-order oscillators have more influence on the dynamics
of the higher-order oscillators. This follows from our earlier
discussion regarding the network node degrees and agrees with
our intuition that energy is passed from lower-order oscillators
to higher-order oscillators. Alternatively, we can construct the
aggregate network model by considering complete trajectories
of randomly chosen perturbed cases yielding a very similar
aggregate network model.

We also compare the aggregate network model with network
models built with selectively chosen training sets. In particular,
we consider trajectories of perturbed cases of individual
oscillators. Combining the perturbed trajectories for various
amplitude and phase perturbation sizes for each oscillator, we
build network models corresponding to oscillators I, II, III,
and IV. We use the same test data set as before to assess the
performance of each of these models along with the aggregate
model. We predict the time derivative of the normalized
fluctuation ζ̇m with each of the models on the test data set and
compare with DNS reference values. In Fig. 5(c), we assess
the prediction error through a normalized root mean square
deviation (
m), given by


m = 1

max(|ζ̇m|)

√∑nt

k=1 | ˆ̇ζm(k) − ζ̇m(k)|2
nt

, (14)
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FIG. 5. (a) Network degrees for varying fractions of training data.
(b) Adjacency matrix of the aggregate network model and (c) the
associated model performance. (d) Aggregate network structure of
oscillator interactions. The color and thickness of the edges in the
network represent the magnitude of the elements of AG .

where nt is the length of the test data set. Here, ζ̇m(k) is the
time derivative of oscillator m obtained from DNS and ˆ̇ζm(k)
is the predicted time derivative value based on the oscillator
network model for the kth test data point. The root mean square
deviation is normalized by the range of the measured data. We
can observe from Fig. 5(c) that the aggregate model achieves

Baseline mean

Shift mode
a CD

Drag coefficient

a1

a2

Unstable 
steady state

Parabolic inertial 
manifold

Baseline 
limit cycle

FIG. 6. Shift mode temporal coefficient (red) and drag coefficient
(blue) variation (indicated by arrows) with application of control.
Parabolic inertial manifold shown in gray.

the lowest error level in predicting the normalized fluctuation
time derivative. As the aggregate model contains more infor-
mation of the general interactions based on various oscillator
perturbations, it yields enhanced predictive capabilities for
energy transfer amongst all oscillators. Thus, the aggregate
network structure shown in Fig. 5(d) yields a global oscillator
interaction model. For the cylinder flow problem, the passage
of energy from lower-order oscillators to the higher-order ones
is highlighted. Based on the modal interactions characterized
using the aggregate network model, we design flow control
strategies to suppress modal fluctuations.

E. Feedback control

Suppression of modal oscillations is critical in reducing
the wake unsteadiness. Roshko [11] and Mao et al. [59]
reported the strong relationship between unsteadiness in the
wake and the drag force acting on the bluff body. As mentioned
previously, modal oscillations in the flow are reflected in
the temporal coefficients associated with the modes. If the
application of control forces the modal temporal coefficients to
zero, the flow will approach the mean flow. However, the mean
flow is not a steady solution to the Navier-Stokes equation in
general, and hence the flow diverges from the mean towards
the unstable steady state in this cylinder flow case.

In the seminal work of Noack et al. [24], it was shown that
the mean flow and the unstable steady state are connected by
a shift mode. The shift mode for the cylinder flow problem
is shown in Fig. 6 (top left). This shift mode captures the
transient dynamics between the onset of vortex shedding near
the unstable steady state shown in Fig. 6 (bottom left) and
the baseline mean flow of the periodic von Kármán vortex
street in the globally stable limit cycle. This evolution takes
place along the parabolic inertial manifold shown in gray. The
vertical axis represents the change in the temporal dynamics
associated with the shift mode with application of control. The
drag coefficient also varies between the mean baseline value
and the unstable fixed point value. A minimum drag coefficient
is attained at the unstable steady state C∗

D , which also gives zero
lift force on the cylinder. The kinetic energy associated with
the shift mode varies as a2


 and the drag force on the cylinder
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FIG. 7. (a) Pole trajectories with application of different control inputs to the aggregate network model for a range of σ . Stars indicate
λ(−LG). (b) Movement of max[Re(λ)] for the multiple oscillator input cases. (c) Network structure with control. The oscillators to which
control is added are indicated by red (filled) circles. The color and thickness of the network edges in the network represent the magnitude of
elements of (−LG − B K ).

in the mean shift regime scales as
√

C ′
D ∝ a
, as shown in

Fig. 6 where C ′
D = CD − C∗

D . Thus, a mean shift towards the
unstable steady state achieves a reduction in drag force.

We first develop a low-dimensional control framework
based on the networked-oscillator model to attenuate perturba-
tions in the flow. We then extend the formulation to suppress the
overall flow unsteadiness. As the networked-oscillator model
given by Eq. (9) is linear, we can exploit the use of the linear
quadratic regulator (LQR) to control the modal fluctuations.
Adding a forcing input to the networked-oscillator model (in
vector form), we arrive at

ζ̇ = −LGζ + Bv, (15)

where ζ = [ζI,ζII, . . . ,ζM ]T , v ∈ CM×1 is the forcing input,
and B ∈ RM×1 is the actuation input matrix. The mth entry of
B corresponds to forcing being added to oscillator m.

We implement an optimal full-state control with v = −Kζ

such that

ζ̇ = (−LG − B K )ζ , (16)

where the gain matrix K is determined from the Riccati
equation for LQR. Here, we assume that the POD mode pairs
can be used as forcing inputs. While this viewpoint may appear
as naive, it provides tremendous insights and guidance in
designing localized actuation techniques. An optimal control
strategy using LQR minimizes the quadratic cost function of
the form

J =
∫ ∞

0
[ζ (t)T Qζ (t) + v(t)T Sv(t)]dt, (17)

where Q and S are the state deviation and input usage weights,
respectively. Here, we set Q = I and S = σ I and consider a
range of values for σ .

We can force the individual oscillators or a combination of
oscillators. To aid the selection of which oscillators to force, we
examine the movement of the eigenvalues of LG with control
for different combinations of input matrix B as shown in Fig. 7.
Eigenvalues of Laplacian matrix λ(−LG) reveal the dynamical
characteristics of the system. As four oscillators are considered
in this paper, we obtain four eigenvalues (λI, . . . ,λIV) for
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varying σ in Fig. 7. Note that λm � 0 for all eigenvalues which
is a characteristic feature of Laplacian-based systems.

We compare the response for input matrix B for both
single oscillator input and some multiple oscillator input cases.
For each input case, we determine the LQR gain matrix
K for values of σ ranging from 0.1 to 1000 and examine
the movement of eigenvalues of the operator, (−LG − B K ),
which govern the behavior of the controlled system. For the
single-oscillator input cases, we observe large movement of
the eigenvalue corresponding to the forced oscillator as σ

is decreased, i.e., the real part of λm decreases when more
forcing input is provided to oscillator m. We also notice that
an input in oscillator I affects all eigenvalues while inputs to
the higher-order oscillators do not move the λI eigenvalue.
This is expected as oscillator I has maximum out-degree and
correspondingly has the highest influence in the network.

As an input to oscillator I is required to affect the λI

eigenvalue, we consider multiple oscillator input cases includ-
ing oscillator I. A noticeable movement in the eigenvalues is
observed with inputs on oscillators I and IV. For forcing inputs
added to all oscillators, only the λI eigenvalue is affected with
no influence on the other system eigenvalues. To summarize
the effectiveness of forcing input on controlling the system
behavior, we track max[Re(λ)] for multiple oscillator input
cases in Fig. 7(b). We observe that for small σ oscillator
input combinations of I and IV outperform the other input
combinations.

We consider the LQR controller such that system eigenval-
ues move towards the left side of the complex plane as much
as possible. Thus, we select the input matrix B = [1001]T

which adds forcing input to oscillators I and IV. Considering
full-state feedback control with this choice of B, we compute
the control gain matrix K using LQR for a particular σ . Intro-
ducing control modifies the interaction between oscillators.
We extract this modified network structure of interactions
for σ = 0.1 from the controlled Laplacian (−LG − B K ) as
shown in Fig. 7(c). We can clearly notice that control added
to oscillators I and IV results in self-loops which attenuate
their fluctuations. Strong interactions are observed between
oscillators I and IV. In addition, we also observe interactions
corresponding to transfer of energy from oscillators II and III to
oscillators I and IV. The incoming interactions to oscillators II
and III are weakened considerably. Thus, energy transfers are
concentrated to the oscillators where control is added which are
ultimately attenuated due to the forcing resulting in self-loops.
In the following discussion, we examine two control scenarios.
First, we attenuate modal perturbations introduced in the flow.
Then, we apply the LQR-based feedback control to suppress
all modal amplitudes altogether.

We first illustrate the control of modal disturbances intro-
duced to the cylinder flow. This entails the control of fluctua-
tions in the modal temporal coefficients (z′

m). To demonstrate
the control, we consider random amplitude perturbations added
to all oscillators about 2% of respective baseline fluctuations.
The temporal coefficients of the oscillators for this perturbed
case obtained from DNS are shown in Fig. 8 (left). The
networked-oscillator control system given by Eq. (16) de-
scribes control of temporal coefficients associated with the
modes. To implement control design in DNS, a body force
corresponding to −B Kζ is added to the momentum equation
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FIG. 8. Oscillator dynamics without control and with control
implemented in DNS for suppressing perturbations to the limit cycle.

with the spatial modal information incorporated along with
the temporal coefficients. The results with the application
of control in DNS for σ = 0.1 are shown in Fig. 8 (right).
We can drive the oscillators to the natural limit cycle much
faster with control. We notice that as control is introduced
in oscillators I and IV the effectiveness of control is more
pronounced with these oscillators. This also follows from Fig. 7
where the correspondence between the Laplacian eigenvalues
and oscillator inputs was discussed. Similar analysis can be
performed for controlling a variety of modal perturbations
introduced.

We then consider the control of total modal oscillations in
the flow associated with wake unsteadiness. This requires the
control of the temporal coefficients associated with the oscil-
lators (zm). Though the oscillator interactions characterized in
this paper are based on fluctuations with respect to the natural
limit cycle (baseline) state, we consider these interactions to
be characteristic of the modal oscillations in the flow. In fact,
the energy transfer mechanism should be similar for z′

m and
z′
m + zb

m. We realize that by suppressing zm the flow is attracted
towards the unstable steady state. Since we can assume that the
above networked-oscillator-based LQR control is applicable
near the baseline limit cycle, we expect that there is some region
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FIG. 9. Oscillator dynamics without control and with control
implemented in DNS for suppressing modal oscillations.

of validity of control to achieve drag reduction. Inhibiting
nonlinear energy transfer should remove the energy input to
sustain wake oscillations. Hence, we expect to use the same
aggregate model extracted to suppress the limit cycle along
with fluctuations of the modes to some degree.

Our objective is to control the temporal coefficients asso-
ciated with the modes, yielding a control system of the form

żm = −
M∑

n=I

[LG − B K ]mnzn. (18)

In DNS, this amounts to adding a body force corresponding
to −B K z. This control input steers the modal amplitudes
corresponding to the baseline limit cycle to zero as shown in
Fig. 9(a). Here, we show the control performance for σ = 0.1
and 1. With control, the temporal coefficient associated with
oscillator I first decays to zero followed by the higher-order
oscillators. The energy lost by oscillator I is compensated
with an initial increase in energy associated with oscillator
IV. This is expected as oscillator IV is the most influenced
node in the network. This highlights the energy transfers from
lower-order to higher-order oscillators. As control input is
added to oscillator IV, we suppress the corresponding modal
oscillations. Once the modal amplitudes are forced to zero,
the flow returns to the mean flow. This is expected as the

FIG. 10. (a) Shift mode temporal dynamics on the parabolic
inertial manifold for a range of σ and (b) shift mode temporal
dynamics in the time domain. (c) Drag force compared to the baseline.

unsteady flow field is decomposed into mean flow and modal
components, so that forcing the modal components to zero
reduces the flow to the mean. However, the mean flow is not
an equilibrium and a shift in the mean flow is observed as
time progresses. This mean flow deformation is attributed to
the Reynolds stress generated by the modal fluctuations which
modifies the base flow [27]. The change in the base flow leads
to a corresponding decrease in modal energy until equilibrium
is achieved. In the case of the cylinder flow problem, the flow
tends towards the unstable steady state.

The mean shift between the mean flow and the unstable
steady state can be described by the shift mode. The tem-
poral coefficient (a
) corresponding to the shift mode (u
)
can be obtained by projection as a
 = 〈u − ū,u
〉. We also
perform control considering σ = 10 and 100. The variation
of shift mode temporal coefficients with respect to temporal
coefficients of the dominant POD modes for the range of σ

considered is shown in Fig. 10(a). For reference, the evolution
of the flow from unstable steady state to the mean flow that
follows a parabolic inertial manifold is shown in gray [24].
The darker gray region of the manifold indicates the region of
effective control using the networked-oscillator model. In this
region, the nonlinear energy transfers are inhibited to reduce
wake oscillations. Thus, in suppressing the modal oscillations,
we achieve a mean shift in the flow resulting in drag reduction.
For the case corresponding to σ = 1, we collect velocity
snapshots in the time interval between t = 19.3 and 80 and
perform POD analysis on the controlled data. Considering
the first ten additional POD modes for control, we construct
a linearized model by curve-fitting the temporal coefficients.
Designing an additional controller (patch controller) based on
these coefficients, we can force the flow to the bottom of the
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manifold corresponding to the unstable steady state shown in
magenta (σ = 1 with patch) in Fig. 10(a).

The temporal dynamics associated with the shift mode is
shown in Fig. 10(b). It can be observed that initially a
 = 0
in the limit cycle and as control is applied the shift mode
temporal coefficient decreases and approaches the unstable
steady state. As σ decreases, we achieve a steeper decrease in
a
. Examining the long time history of the temporal variation
of the shift mode, the choice of lower σ results in low
frequency oscillations in a
. These low frequency oscillations
are attributed to the exchange of energy between the low and
moderate drag states [60]. For control effort corresponding to
σ = 100, a steady state with application of control is achieved
more rapidly.

The unsteady forces on the cylinder with application of
control compared to the baseline drag variation are shown
in Fig. 10(c). The variation in the drag coefficient is similar
to the shift mode variation as discussed previously. Almost
a 12% reduction in drag is achieved with the application
of control. With the addition of the patch controller, the
minimum drag state is achieved. The networked-oscillator
control framework considered here is based on interactive
dynamics of the baseline POD modes and does not include
any other modes. We, however, note that the shift mode itself
can be incorporated into the controller [47,61].

The unsteady forces on the cylinder can be reduced by
suppressing modal oscillations in the flow and inhibiting
energy transfers therein. Using a networked-oscillator model
in conjunction with optimal control, we can control energy
transfer dynamics effectively for unsteady wake flows.

IV. CONCLUDING REMARKS

In summary, we constructed a networked-oscillator model
to describe modal interactions in unsteady wake flows. The
modal oscillators composed of POD conjugate mode pairs
constitute the modal network nodes. The interactions between
the oscillators form edges of the network, which were char-
acterized by analyzing impulse responses to the fluid flow.
Small perturbations were introduced in the modal oscillators
and their transfer of perturbation energy over the network
was studied. In the weakly nonlinear limit, the amplitude and
phase perturbations introduced in the Navier-Stokes equations
were tracked using linear regression to develop the networked-
oscillator framework. The networked-oscillator model is a
linear approximation to the nonlinear modal interactions in
unsteady fluid flows.

Using a canonical example of unsteady flow over a cylinder,
the energy transfer dynamics were analyzed. Agreement of
the model with DNS was observed for both amplitude and
phase perturbation cases. The modal perturbation dynamics
is more faithfully captured using the networked-oscillator
model compared to the empirical Galerkin formulation. A
system identification of impulse responses over a collection
of perturbed cases leads to an aggregate network model
that captures general oscillator interactions in the flow. The
aggregate network model is attributed with the least error in
terms of prediction of the temporal dynamics of the modal
oscillators. The degree of the nodes corresponding to the aggre-
gate network structure provides insights on the importance of

individual oscillators to energy transfers and the overall system
dynamics.

With the knowledge of network interactions between os-
cillators, an optimal feedback control strategy was designed
to suppress oscillator fluctuations with respect to the natural
limit cycle faster. A judicious choice of the forcing input was
made by examining the movement of the poles of the graph
Laplacian with LQR. Upon the control of modal disturbances,
faster return of modal coefficients to the baseline limit cy-
cle was achieved. Controlling the overall fluctuations of the
oscillators resulted in inhibiting energy transfers that sustain
wake oscillations and a mean shift towards the (lower energy)
unstable steady state. The mean shift correspondingly led to a
reduction in the unsteady forces on the cylinder.

The networked-oscillator modeling and control approach
shown here leverages the knowledge of modal interactions,
providing insights beyond traditional approaches. The embed-
ding of nonlinear dynamics in the linear framework has enabled
the design of control strategies based on network structure. The
data-driven approach can be extended to more complex flows
with broadband modal fluctuations incorporating network
models with uncertainty quantification. A stochastic compo-
nent can also be added to the networked-oscillator model to
extend it to flows of increasing complexity involving systems
with chaotic limit cycles. Controlling the modal interactions
at a fundamental level paves the path for analogous studies
using localized actuators and limited sensors for modeling and
controlling unsteady fluid flows.
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APPENDIX: MODAL INTERACTIONS

The networked-oscillator model of M linearly coupled
oscillators is given by Eq. (9). Here, the graph Laplacian is

[LG]mn = diag

⎛
⎝[

M∑
n=I

wmn

]M

m=I

⎞
⎠ − wmn, (A1)

where edge weights are wmn = |wmn| exp (i∠wmn) =
|wmn|[cos(∠wmn) + i sin(∠wmn)]. The interactions between
oscillators correspond to the off-diagonal terms of the
Laplacian wmn. The normalized oscillator fluctuations can be
decomposed into modal fluctuations as

ζm = β2j−1 + iβ2j . (A2)

Here, β2j−1 and β2j are the normalized fluctuations of the odd
modes (φu

2j−1) and even modes (φu
2j ), respectively. The time

evolution of the normalized fluctuation of oscillator m is given
by

ζ̇m = β̇2j−1 + iβ̇2j . (A3)
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Substituting Eqs. (A1) and (A2) in Eq. (9), the modal dynamics corresponding to oscillator m is given as

ζ̇m = −
[

M∑
n=I

wmn

]
(β2j−1 + iβ2j ) +

M∑
n=I

|wmn|[cos(∠wmn) + i sin(∠wmn)](β2k−1 + iβ2k),

where k = 1,2, . . . ,N/2 corresponds to the respective conjugate mode pairs of oscillator n = I,II, . . . ,M .
Thus,

ζ̇m = −
[

M∑
n=I

wmn

]
(β2j−1 + iβ2j ) +

M∑
n=I

|wmn|[cos(∠wmn)β2k−1 − sin(∠wmn)β2k]

+ i{|wmn|[sin(∠wmn)β2k−1 + cos(∠wmn)β2k]}. (A4)

Comparing Eqs. (A3) and (A4), the effect of the odd mode φu
2k−1 on the dynamics of mode φu

2j−1 is determined to be the coupling
interaction term |wmn| cos(∠wmn), the odd-odd mode interaction. Similarly, we see that the even-even mode interactions are given
by |wmn| cos∠wmn while the odd-even and even-odd mode interactions are provided by |wmn| sin∠wmn and −|wmn| sin∠wmn,
respectively, as illustrated in Fig. 1.
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