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Directional change of tracer trajectories in rotating Rayleigh-Bénard convection
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The angle of directional change of tracer trajectories in rotating Rayleigh-Bénard convection is studied as a
function of the time increment τ between two instants of time along the trajectories, both experimentally and with
direct numerical simulations. Our aim is to explore the geometrical characterization of flow structures in turbulent
convection in a wide range of timescales and how it is affected by background rotation. We find that probability
density functions (PDFs) of the angle of directional change θ (t,τ ) show similar behavior as found in homogeneous
isotropic turbulence, up to the timescale of the large-scale coherent flow structures. The scaling of the averaged
(over particles and time) angle of directional change �(τ ) = 〈|θ (t,τ )|〉 with τ shows a transition from the ballistic
regime [�(τ ) ∼ τ c with c = 1] for τ � τη, with τη the Kolmogorov timescale, to a scaling with smaller exponent
c for τη � τ � TL, with TL the Lagrangian integral timescale. This scaling exponent is approximately constant
in the weakly rotating regime (Rossby number Ro � 2.5) and is decreasing for increasing rotation rates when
Ro � 2.5. We show that this trend in the scaling exponent is related with the large-scale coherent structures in the
flow; the large-scale circulation for Ro � 2.5 and vertically aligned vortices emerging from the boundary layers
(BLs) near the top and bottom plates and penetrating into the bulk for Ro � 2.5. In the viscous BLs, the PDFs
of θ (t,τ ) and scaling properties of �(τ ) are in general different from those measured in the bulk and depend on
the type of boundary layer, in particular whether the BL is of Prandtl-Blasius type (Ro � 2.5) or of Ekman type
(Ro � 2.5). When it is of Ekman type, a stronger dynamic coupling exists between the BL and the bulk of the
flow, resulting in similar scaling exponents in BL and bulk.
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I. INTRODUCTION

Rotating turbulent nonisothermal flows are relevant for
many geophysical and astrophysical applications, such as
ocean currents [1,2] and solar convection [3], as well as for
industrial applications, such as convective cooling in turbo-
machinery [4,5]. In such turbulent flows, rotation changes the
typical flow structures and their typical length and timescales
[6,7]. We use a rotating Rayleigh-Bénard convection (RBC)
setup, a fluid layer heated from below and cooled from above,
where rotation is known to change the flow structures from
a large-scale circulation (LSC) to vertically aligned vortical
plumes [8–10]. Related to this transition, the boundary layer
(BL) dynamics changes from a Prandtl-Blasius type for smaller
rotation rates to the Ekman type for larger rotation rates [11].

The multiscale character of turbulence and the charac-
teristics of the large-scale coherent flow structures can be
studied by considering the geometry of tracer trajectories.
Instantaneous measures for this geometry are the curvature
and torsion of trajectories. Such curvature and torsion mea-
surements of tracer trajectories in rotating RBC have shown
that the predictions for the scaling of curvature and torsion
probability density functions (PDFs) derived for homogeneous
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isotropic turbulence (HIT) [12–15] are recovered, as long as
measurements are performed in the turbulent bulk [16]. In the
BLs, the PDFs scale differently consistent with the type of
BL, which is the Prandtl-Blasius type in the regime dominated
by the LSC and the Ekman type in the regime affected by
vertically aligned vortices. However, curvature and torsion of
trajectories are instantaneous measures and do not capture
the variety of timescales typical for turbulent flows. Due to
this multiscale dynamics, tracer trajectories in turbulent flows
change direction at every timescale. In RBC, trajectories are
additionally expected to be affected by the large-scale coherent
flow structures at larger timescales. We therefore extend the
previous study on instantaneous measurements of the geometry
of tracer trajectories [16] to scale-dependent measurements
of this geometry by computing the directional change of
tracer trajectories in (rotating) RBC up to the timescale of the
large-scale coherent flow structures.

In a previous study [17], the directional change of trajec-
tories at different timescales has been measured in (three-
dimensional) HIT on a periodic domain. A typical scaling of
the average angle of directional change with the time increment
τ was found in two different regimes: (i) in the regime of
timescales smaller than the Kolmogorov timescale a ballistic
scaling, proportional to τ , was identified and (ii) for timescales
larger than the Kolmogorov timescale but smaller than the
Lagrangian integral timescale an inertial range was identified
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where the scaling was predicted as τ 1/2, using Kolmogorov
phenomenology. In RBC, the geometrical statistics might
additionally give information on the typical coherent flow
structures, i.e., the LSC for rotation unaffected RBC and
vertically aligned plumes for rotating RBC. BLs with yet other
flow characteristics develop at the horizontal plates. In this
study, we will investigate whether a signature of these different
flow structures is visible in the multiscale geometrical statistics
of tracer trajectories.

The study on geometrical statistics in HIT [17] was extended
to inertial particles in [18] and to two-dimensional (2D)
turbulence in [19], where 2D turbulence forced at large scales,
was compared to 2D turbulence forced at small scales. Only in
the latter case the energy spectrum, that is then characterized by
an inverse energy cascade, recovers an inertial range according
to Kolmogorov phenomenology, with a scaling of k−5/3, with
k the forcing wave number. It was shown that the τ 1/2 scaling
for the average angle of directional change in the inertial range
is only recovered in the case of small-scale forcing, indicating
that the τ 1/2 scaling is clearly a flow-dependent phenomenon.
In [19] also the effect of confinement is investigated by compar-
ing 2D turbulence on a periodic domain to 2D turbulence on a
confined domain. The signature of confinement is visible in the
long-time convergence of the average angle; in an unbounded
domain, often represented by a periodic domain, the statistics
of the angle is equidistributed at large timescales and the angle
converges to π/2, while in a confined domain it goes to 2π/3.
This is shown not to be a result of modified velocity properties
at the walls, but rather of nonequidistributed angles when the
separation of subsequent points along a trajectory becomes of
the order of the domain size [19].

In this work, we first focus on the angle of directional change
in nonrotating RBC in a cylindrical domain. This setup poses
already many extra challenges compared to HIT on a periodic
domain. First, the setup is bounded with radial and horizontal
walls, resulting in an inhomogeneous and anisotropic flow [20–
22]. Although anisotropy and inhomogeneity were shown not
to affect the instantaneous curvature and torsion statistics in
the bulk of the RBC flow, it is not clear how they will affect the
geometry of tracer trajectories at longer timescales. Statistics
is moreover collected in finite measurement volumes in the
RBC cell, possibly imposing confinement and influencing the
convergence of the average angle at large timescales, like in
the 2D confined turbulence setup in [19], as also discussed
above. Also, the level of turbulence in the RBC setup studied
here is moderate and no clear inertial Kolmogorov range can
be identified in the energy spectrum [23]. Therefore, it is not
clear a priori what scaling to expect for the average angle of
directional change in the regime of time increments larger than
the Kolmogorov timescale.

When including rotation, the typical flow structures in RBC
change from an LSC to vertically aligned plumes. The level
of coherence of these structures is different, where vertically
aligned vortices have longer vertical coherence times than
the LSC [24]. Therefore, rotation is expected to have an
effect on the angle of directional change, especially at larger
timescales. Also, the level of turbulence [11,24] and the energy
spectrum [25–27] are influenced by rotation. Here, we want
to investigate whether a signature of the transition between
the rotation unaffected (LSC dominated) and weakly rotation

affected regime can be identified in the scaling of the average
angle of directional change with time increments at timescales
larger than the Kolmogorov timescale.

The BL dynamics is shown to be of importance for un-
derstanding the transitions between the different rotational
regimes in RBC [10,24,28,29]. In [16] it was shown that the
scaling of curvature and torsion PDFs was different in the BL
compared to the bulk, especially in the regime of lower rotation
rates where a strong mean horizontal flow is present in the BL.
We will extend the bulk measurements with measurements in
the BL region at different rotation rates, such that we can study
not only the effect of the different coherent flow structures in
the bulk, but also the effect of the different BL dynamics on
the angle of directional change at different timescales.

First, in Sec. II, we explain how the angles of directional
change are computed for tracer trajectories in turbulence and
we derive the scaling laws expected in HIT, based on [17].
Experimental and numerical methods for studying (rotating)
RBC are briefly explained in Sec. III. Results are discussed in
Sec. IV where angular statistics and the scaling of the average
angle of directional change are shown as a function of time
and for both nonrotating and rotating RBC and measurements
inside the bulk are compared to measurements in the BL
regions of the flows. A summary and conclusion are given
in Sec. V.

II. MULTISCALE ANGULAR STATISTICS

The geometry of a three-dimensional (3D) curve in space
is described by its curvature and torsion. Curvature and
torsion statistics of particle trajectories in turbulent flows give
useful information on the typical flow structures [12–14,16].
However, these are instantaneous measures, dominated by
the small-scale structures of the flow and therefore do not
capture the multiscale dynamics of a turbulent flow [17]. A
multiscale measurement related to the geometry of trajectories
is proposed in [17,30] as the directional change of fluid
tracer trajectories. Following the procedure proposed by Bos,
Kadoch, and Schneider in [17], we first define the spatial
increment of trajectories, sketched in Fig. 1(a), as

δx(t,τ ) = x(t) − x(t − τ ), (1)

where x(t) is the position of the tracer particle at time t and
τ is the time increment between subsequent positions. Next,
we introduce the cosine of the angle between these subsequent
points along trajectories as

cos θ (t,τ ) = δx(t,τ )δx(t + τ,τ )

|δx(t,τ )||δx(t + τ,τ )| . (2)

The curvature, denoted by κ , is related to the angle θ (t,τ ) in
the limit of τ → 0 as

κ = lim
τ→0

θ (t,τ )

2τ |u(t)| , (3)

with u(t) the velocity of the trajectory at time t .
In HIT, the average angle �(τ ) = 〈|θ (t,τ )|〉, with 〈. . . 〉 the

ensemble average over all tracer trajectories and over time t ,
displays a power-law scaling with τ in the limit of τ � TL,
with TL the Lagrangian integral timescale of the flow [17].
Again, we follow the procedure suggested in [17], where θ is
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(a) (b)

FIG. 1. (a) Sketch of the angle between subsequent time steps τ

of the particle trajectory, where x(t) is the position of the particle at
time t . (b) Sketch of the trajectory at a time increment shorter than
the Lagrangian integral timescale, where the length scales l‖ and l⊥
follow form fitting a right triangle through the three subsequent points.
(Reproduction of Fig. 1 in [17].)

approximated as

l⊥
l‖

≈
∣∣∣∣tan

(
θ

2

)∣∣∣∣ ≈
∣∣∣∣θ2

∣∣∣∣, (4)

using a Taylor expansion in the limit of small θ . This approx-
imation is expected to be valid for τ � TL [17]. However,
even for small values of τ , larger angles of directional change
can occur, for example, inside vortex tubes where a tracer
can change its direction in a time interval that is of the order
of the Kolmogorov timescale [13,31,32]. Since the scaling is
derived for the average angle of directional change we expect
that the influence of these kinds of rare events is minor. In
the equation above l⊥ corresponds to the distance traveled
perpendicular to the initial displacement over a time interval
2τ and l‖ corresponds to the distance traveled parallel to
the initial displacement in this time interval, as sketched in
Fig. 1(b). These distances can be estimated as l⊥ ≈ 2τ 2a⊥(t,τ )
and l‖ ≈ 2τU (t,τ ), respectively, where U (t,τ ) is the absolute
value of the velocity and a⊥(t,τ ) is the absolute value of the
acceleration component perpendicular to the velocity, both
coarse grained over a time interval τ . Without loss of generality,
velocity and acceleration can be written in terms of positive
random variables ξu(t,τ ) and ξa(t,τ ), with unit mean and
variance, such that

U (t,τ ) = σu(τ )ξu(t,τ ), a⊥ = σa(τ )ξa(t,τ ), (5)

where σ 2
u (τ ) and σ 2

a (τ ) are the variances of U (t,τ ) and a⊥(t,τ ),
respectively. Substituting Eq. (5) into Eq. (4) and assuming
that velocity and acceleration are uncorrelated (a reasonable
assumption in HIT [15,17]) results in

|θ (t,τ )| ≈ 2τ
σa(τ )

σu(τ )
. (6)

Now, two regimes are considered; in the first regime τ is much
smaller than the Kolmogorov timescale τ � τη, and in the
second regime τ is larger than the Kolmogorov timescale, but
still much smaller than the Lagrangian integral timescale τη <

τ � TL.

When τ � τη we can assume that velocity and acceleration
are constant over the time interval τ , such that

�(τ ) ≈ 2τ
σa

σu

. (7)

In other words, the average angle �(τ ) is expected to scale as τ 1

when τ � τη. In the inertial range, where τη < τ � TL, Eq. (6)
still holds, however, now σa(τ ) depends on the time increment
τ . Using Kolmogorov phenomenology in the inertial range,
dimensional analysis shows that σa(τ ) ∼ (ε/τ )1/2, with ε the
energy dissipation rate [17,33]. By combining this expression
for σa(τ ) with Eq. (6), the average angle now becomes

�(τ ) ∼ τ 1/2 ε1/2

σu

∼
(

τ

TL

)1/2

, (8)

using thatTL ∼ σ 2
u /ε. So, in the inertial range the average angle

�(τ ) is expected to scale as τ 1/2 in HIT. Note that in [17] this
scaling is recovered for timescales up to almost 10 times the
Kolmogorov timescale and for θ � 0.7. The τ 1/2 scaling, that
is derived in the limit of small θ [Eq. (4)], is thus quite robust.
For more details of the derivation above we refer the reader to
[17].

For even larger timescales, where τ approaches the La-
grangian integral timescale, the convergence of the average
angle �(τ ) depends on the domain configuration: the average
angle between two randomly placed vectors in a 3D unbounded
domain goes to π/2 due to symmetry, while in a bounded
domain this average angle approaches 2π/3 due to confinement
as explained in detail in [19].

The flow considered here, rotating RBC, is anisotropic and
inhomogeneous and therefore the assumptions of Gaussian
velocity and acceleration statistics and uncorrelated velocity
and acceleration are not obvious anymore. At small timescales
the predictions above are still expected to hold, however, at
large scales it is expected that inhomogeneity and anisotropy
play a role and it is not a priori clear how this will influence
the angular statistics.

III. NUMERICAL AND EXPERIMENTAL METHODS

A. Direct numerical simulations

The governing equations in the direct numerical simulations
(DNS) are the incompressible Navier-Stokes and energy equa-
tions (including rotation) in the Boussinesq approximation:

∇∇∇ · u = 0, (9)

∂u
∂t

+ (u · ∇∇∇)u + 1

Ro
ẑ × u = −∇∇∇p +

√
Pr

Ra
∇2u + T ẑ,

(10)

∂T

∂t
+ (u · ∇∇∇)T = 1√

Pr Ra
∇2T , (11)

with u the velocity vector, t time, p pressure, T temperature,
and ẑ the vertical unit vector. The equations are nondimen-
sionalized using the height of the cell H for length, the
temperature difference T for temperature, and tc = H/U

for time, based on the free-fall velocity U = √
gαT H ,

where g is the gravitational acceleration and α is the thermal
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expansion coefficient of the fluid. Now, the control parameters
of this rotating RBC setup are the Rayleigh number Ra =
gαT H 3/(νκ), the Prandtl number Pr = ν/κ , and the Rossby
number Ro = U/(2�H ), with ν and κ the kinematic viscosity
and thermal diffusivity of the fluid, respectively, and � the
rotation rate in rad s−1. The equations above are solved in
cylindrical coordinates with horizontal walls and a cylindrical
sidewall. At all walls no-slip boundary conditions are applied,
the temperature is fixed at the horizontal walls, and the
sidewalls are adiabatic. The resolution is 512 × 384 × 512
grid points in the azimuthal, radial, and axial directions,
respectively. To deal with the singularity at r = 0 (with r the
radius) the equations are solved in terms of (uφ,rur ,uz) on a
staggered grid, with uφ , ur , and uz the velocity components
in the radial, azimuthal, and axial directions, respectively. To
ensure at least 10 grid points in the BLs, grid refinement is
used in the axial and radial directions. For the discretization
of the equations, a second-order finite difference scheme is
used and for the time integration a third-order Runge-Kutta
method is applied. The above numerical procedure is described
in detail in [34,35]. In the RBC flow, 106 fluid tracers are
evolved, following the motion of the fluid with high accuracy.
A trilinear interpolation scheme is used to interpolate the fluid
velocity from the grid points to the position of the particle.
For the time integration of the particle motion, a second-order
Adams-Bashforth scheme is used. The Rayleigh and Prandtl
numbers are fixed to Ra = 1.3 × 109 and Pr = 6.7, while the
Rossby number range is 0.05 � Ro � ∞.

Lagrangian statistics of these tracer trajectories are col-
lected both in the center and near the top plate of the cell
in different measurement volumes. In the center, a measure-
ment volume of size 0.5H × 0.5H × 0.5H is considered
as sketched in Fig. 2 (gray cube). Inside this measurement
volume we have approximately 1.6 × 105 tracers, based on a
uniform distribution of tracers within the RBC cell. To give
an idea of the convergence of the statistics with the size of the
measurement volume, the average angle of directional change
computed in a volume of 0.2H × 0.2H × 0.2H deviates
about 30% from the values corresponding to the measurement
volume of 0.5H × 0.5H × 0.5H and for a volume of 0.4H ×
0.4H × 0.4H this deviation already reduced to about 7.5%,
when focusing on the same time range. Furthermore, in the
measurement volume of 0.5H × 0.5H × 0.5H , trajectories
are tracked long enough to investigate the convergence of
the average angle of directional change at large timescales.
A second measurement volume is placed close to the top plate.
In the DNS, the boundary layer is accessible, such that we can
explicitly measure the effect of BL dynamics on the geometry
of the tracer trajectories at different timescales. Therefore, the
numerical measurement volume near the top plate is subdi-
vided into a nonboundary layer region (non-BL, dark green
rectangular parallelepiped in Fig. 2) and the viscous boundary
layer region (BL, light green rectangular parallelepiped in
Fig. 2), where the sizes of these volumes are 0.5H × 0.5H ×
(0.25 − δu)H and 0.5H × 0.5H × δuH , respectively, with δu

the viscous BL thickness. δu is determined as the position
of the maximum horizontal root-mean-square velocity and
varies from δu = 0.0299H for Ro = ∞ to δu = 0.0058H for
Ro = 0.05. Given that tracers are distributed uniformly, the
number of tracers inside the non-BL and BL measurement

FIG. 2. Sketch of the measurement volumes. The gray cube in
the center represents the measurement volume in the DNS of size
0.5H × 0.5H × 0.5H , in the x, y, and z directions, respectively,
while the hatched part shows the measurement volume used in
the experiments of size 0.4H × 0.3H × 0.25H , with H = 200 mm
being the cell height. The green hatched rectangular parallelepiped
at the top represents the experimental measurement volume of size
0.4H × 0.3H × 0.25H . In the DNS this volume is subdivided in
the vertical direction into a nonboundary layer (non-BL) part of
size 0.5H × 0.5H × (0.25H − δuH ) (dark green upper part), and
a boundary layer (BL) part of size 0.5H × 0.5H × δuH (light green
lower part), with δu the dimensionless viscous boundary layer thick-
ness, which varies between δu = 0.0299H and 0.0058H , depending
on the rotation rate [11]. Note that this sketch is not in real scale,
particularly the BL size is enlarged for visibility reasons.

volumes is 7–8 × 104 and 1–9 × 103, respectively, depending
on δu. Trajectories are reconstructed such that they start and end
in the measurement volume: this means that each time a tracer
enters the measurement volume it starts a new trajectory and a
tracer leaving the measurement volume terminates a trajectory.

The Kolmogorov timescale τη and the Lagrangian integral
timescale TL of the trajectories are different in the center
compared to the volume close to the top plate and additionally
depend on the rotation rate. Their values are reported in
Table I, where τη = (ν/ε)1/2, based on the average energy
dissipation ε in the different measurement volumes and the
Lagrangian integral timescale is estimated as the time at
which the second-order Lagrangian velocity structure function
Si,2 = 〈[ui(t + τ ) − ui(t)]2〉, with i the horizontal or vertical
component of the velocity, has converged to its plateau value.
To compute the structure functions in the horizontal direction,
the components in the x and y directions are averaged, such that
Sxy,2 = (Sx,2 + Sy,2)/2. The error in the Lagrangian inertial
timescales reported in Table I is maximum 20%, based on
different thresholds used to determine the convergence. Except
for Ro = 0.05 and Ro = 10, the Kolmogorov timescales are
computed from previous DNS data [11,24] with a slightly
different grid resolution of 512 × 257 × 512 grid points. The
values are, however, expected to be the same for the resolution
used here.
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TABLE I. Kolmogorov timescales τη and Lagrangian integral
timescales TL of tracer particles in rotating Rayleigh-Bénard convec-
tion. Timescales are reported at different Rossby numbers and for both
the center measurement volume and the measurement volume close
to the top plate, excluding the BL. The Lagrangian integral timescale
is reported for both the horizontal and the vertical directions, given
by Txy and Tz, respectively. All timescales are nondimensionalized by
tc = H/U .

Ro 0.05 0.1 0.2 0.5 1 2.5 3 5 10 ∞
Center τη 0.41 0.36 0.35 0.36 0.36 0.39 0.43 0.51 0.46 0.52

Txy 14.3 6.2 23.1 15.3 4.7 7.1 5.7 4.9 7.4 3.5
Tz 18.4 7.7 10.9 9.1 8.6 8.1 7.0 5.5 6.1 4.9

Top τη 0.33 0.32 0.32 0.33 0.33 0.35 0.37 0.39 0.40 0.40
Txy 18 3.2 4.0 9.3 5.2 6.2 8.4 4.2 7.9 13.7
Tz 10.9 22.0 13.4 8.0 4.5 4.0 4.7 8.6 2.7 2.7

B. Experiments

The DNS results are compared to experiments of rotating
RBC, which are described in detail in [11,20]. In these
experiments a Plexiglas cylinder, filled with water and with
height H = 200 mm and diameter D = 200 mm, is heated
from below and cooled from above. The bottom plate is made
of copper and includes an electrical resistance heater, while the
cooling chamber at the top consists of a transparent sapphire
plate, assuring optical visibility and large thermal conductivity
(and thus a homogeneous temperature distribution in the
sapphire plate). Between the plates a temperature difference of
T = 10 K is applied. Neutrally buoyant particles, with a den-
sity of ρp = 1002 kg m−3 and a diameter of dp = 75–90 μm
(smaller than the Kolmogorov length that is of the order
of millimeters), are inserted in the carrier fluid that has a
mean density of ρf = 998 kg m−3. The Stokes number of the
particles is St = τp/τη ≈ 5 × 10−4, with τp = d2

pρp/(18νρf )
the particle response time, assuring that they behave as tracer
particles. Particles are tracked by four CCD cameras, with
a resolution of 1600 × 1200 pixels and a frequency of 30
Hz, placed above the RBC cell. From the recorded images,
trajectories are reconstructed using the 3D-Particle Tracking
Velocimetry algorithm developed at ETH Zürich [36,37]. The
complete setup, including the optical tracking system, is placed
on a rotating table in order to vary the rotation rate �. Like
in the DNS, the Rayleigh and Prandtl numbers are Ra =
1.3 × 109 and Pr = 6.7 (corresponding to water), respectively.
The rotation rate is varied between 0 (Ro = ∞) and 1.65
rad s−1 (Ro = 0.1).

Two different measurement volumes of size 80 × 60 × 50
mm3 are used in the experiments: one in the center of the cell
and one near the top plate, as shown in the sketch in Fig. 2
as the hatched rectangular parallelepipeds. These volumes
are smaller than those used in the DNS, resulting in smaller
statistical samples and shorter trajectories in the experimental
data compared to the DNS data. Due to the calibration method,
there is an offset between the plate and the top measurement
volume of about 1 mm, where 3D positioning of the tracer
particles is not possible. Compared to the viscous boundary
layer (BL) thickness δu the offset varies from 0.167δu for
Ro = ∞ to 0.617δu for Ro = 0.1 [11]. This offset, together

with the fact that particles have a higher density than the
water on average [and thus a positive settling velocity w =
(ρp − ρf )gd2

p/(18νρf ) ≈ 0.018 mm s−1], results in a scarcity
of data points inside the boundary layer. Therefore, we treat
experimental data collected in the measurement volume near
the top plate as if the BL is excluded.

Since experiments and DNS are performed with the same
parameters, the Kolmogorov timescales are similar. Also, the
Lagrangian integral timescales are expected to be similar given
that the Stokes number of the particles in the experiments is
small, i.e., St ≈ 5 × 10−4.

IV. RESULTS

A. NonRotating Rayleigh-Bénard convection

First, we will discuss the angle of directional change of
tracer trajectories in nonrotating RBC. The Kolmogorov times
and Lagrangian integral timescales of nonrotating RBC are as
reported in Table I.

1. Probability density functions of the angle of directional change

Probability density functions (PDFs) of the angle of direc-
tional change, measured in the center, are compared to PDFs
measured near the top plate. We start from the central mea-
surement volume, where the flow is closest to HIT [20,22,38].
In Fig. 3(a), a good agreement between DNS and experiments
is found for the PDFs of θ , indicated by Pθ . The PDFs show
a peak around θ = 0 for small τ and approach the distribution
Pθ,τ→∞ = 1

2 sin θ , corresponding to the angle between two
randomly chosen vectors in 3D space, for large τ . This trend
was also observed in [17] for HIT.

In the DNS, we also consider PDFs of Q = 1 − cos θ ,
which we will indicate by PQ. This quantity Q gives a
direct measure for the directional change, being zero for very
small angles (particles going straight) and two for a complete
reversion of the direction (corresponding to θ = π ). Given that
Pθ goes to Pθ,τ→∞(θ ) = 1

2 sin θ for large time increments, PQ

is expected to be equidistributed in that limit. In Fig. 3(c), PQ is
indeed converging to the uniform distributionPQ,τ→∞(Q) = 1

2
for larger τ . As shown in [17], an analytical prediction for the
shape of PQ in the limit of θ → 0 can be derived. First, a Taylor
expansion of 1 − cos θ gives

1 − cos θ (t,τ ) ≈ 1

2
θ2(t,τ ) ≈ 2τ 2 σ 2

a (τ )ξ 2
a

σ 2
u (τ )ξ 2

u

, (12)

where Eqs. (5) and (6) are used. Then, by assuming u and a

to be uncorrelated and to follow Gaussian statistics, ξ 2
u and ξ 2

a

are expected to follow a χ -squared distribution with three and
two components, respectively. As derived in [17] this means
that PQ can be described by a Fisher distribution Fn,m, with
n = 3 and m = 2. For HIT, PDFs for different values of τ

are shown to collapse when normalized by γ2,3(τ ) = �2(τ )/3
(following from the exact definition of F2,3 using the χ -squared
distributions), where �(τ ) = 〈|θ (t,τ )|〉. In Fig. 3(e) we show
the normalized PDFs of Q and find the curves to collapse onto
the analytical prediction of the Fisher distribution F2,3. The
agreement is particularly good for small values of τ , but even
for larger values of τ , where assumptions of Gaussian statistics
and small θ are violated, the agreement is still acceptable.
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FIG. 3. Top: PDFs of the angle θ , Pθ , for different (nondimensional) time increments τ measured in (a) the center and (b) the nonboundary
layer (non-BL) region near the top plate in both experiments (symbols) and direct numerical simulations (DNS, lines) of nonrotating Rayleigh-
Bénard convection. Focusing on the right part of the figures, τ is increasing from bottom to top. Center: PDFs of Q = 1 − cos θ , PQ, for the DNS
data now represented by lines with symbols in (c) the center and (d) the non-BL region. Bottom: PQ, but now normalized by γ2,3(τ ) = 2(τ )/3,
with the average angle of directional change, for (e) the center and (f) the non-BL region. The black dashed line shows a Fisher distribution
F2,3. For clarity, symbols are plotted in each 5 data points.

Near the top plate, inhomogeneity and anisotropy are ex-
pected to play a role. To investigate how this affects the angular
statistics we show Pθ , measured near the top plate in Fig. 3(b),
where in the DNS the boundary layer is excluded. We again find
a good agreement between DNS and experiments, given that in
the experiments very little measurement points are found inside
the viscous BL as mentioned before in Sec. III B. Distributions
of Pθ [Fig. 3(b)] and PQ [Fig. 3(d)] are similar as the corre-

sponding distributions measured in the center and again PQ re-
covers the Fisher distribution F2,3, when properly normalized.
So, statistics of the angle θ recovers the behavior found for HIT,
even in the anisotropic and inhomogeneous flow studied here.
This was already shown for the limit of τ → 0 in [16], where
curvature and torsion PDFs in RBC where shown to recover
the HIT predictions, as long as the BL was excluded from
the measurement volume. Our results suggest that for time-
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dependent quantities like θ this assumption can be extended to
larger timescales, even up to the Lagrangian integral timescale.

As in [16] we expect different behavior inside the viscous
BLs, where a strong mean flow is present in the regime with
presence of the LSC. In Figs. 4(a) and 4(b) we show that
both Pθ [Fig. 4(a)] and PQ [Fig. 4(b)] measured in the BL
using DNS, do not approach the uniform distributions (dashed
black lines) anymore like in the bulk. Instead, in Fig. 4(a),
a flat wide maximum develops around θ = 0 for larger τ ,
consistent with the expectation that trajectories are straighter
inside the BL due to the horizontal mean flow. The presence
of this strong mean horizontal flow can also be seen as a
reduction of the dimensionality, such that the velocity and
normal acceleration do not have three and two components,
but rather one and two components, respectively. Indeed, when
we now compute PQ, normalized by γ1,2(τ ) = �2(τ )/4, a
collapse on a Fisher distribution F1,2 is observed in Fig. 4(c),
supporting the proposition that the effective number of com-
ponents of velocity and acceleration has decreased. Note that
the definition of F1,2 results in a different normalization factor
for PQ [γ1,2(τ ) = �2(τ )/4] than the definition of F2,3 [where
γ2,3(τ ) = �(τ )2/3]. In Fig. 4(c), the steep peaks at the right-
hand-side end of the curves correspond to larger values of θ ,
where the Taylor expansion of Eq. (12) does not hold anymore.

2. Average angle of directional change

The multiscale temporal behavior of the flow can be investi-
gated by measuring the average angle � as a function of τ . As
explained in Sec. II, � is expected to scale as � ∼ τ for τ � τη

and as � ∼ τ 1/2 for τη < τ � TL in HIT. In Fig. 5(a), a good
agreement between experiments and DNS is found for �(τ ),
provided that the BL is excluded in the DNS. The average angle
� converges to 2π/3 for large τ , consistent with the prediction
for confined domains in [19]. The confinement comes from
the sampling method, based on sampling trajectories such that
they are inside the measurement volume over their full life
span. Even though this measurement volume is not bounded
by physical walls, the angles at subsequent points along the
trajectories are not equidistributed when the corresponding
separation lengths between the points become of the order of
the measurement volume. In [19], the convergence to 2π/3
is reproduced by placing three random points in a confined
domain, using Monte Carlo simulations, and computing the
angle between the two line segments connecting these points.
These simulations only capture the geometrical effects of
confinement and disregard flow-dependent effects, like the
modification of the flow at the walls. The fact that the
convergence to 2π/3 is recovered thus indicates that it is a
purely geometrical effect, like in our data sampling.

When focusing on the scaling of � with τ in Fig. 5(a), we
recover the ballistic scaling of � ∼ τ in the viscous regime
where τ � τη, as long as the BL is excluded. For τ > τη, a
τ 1/2 scaling is predicted for HIT, linked to the Kolmogorov
scaling of the energy spectrum in the inertial range. In the
RBC setup studied here, the Taylor-based Reynolds number
is relatively low: Reλ ≈ 39, where Reλ = u′2√15/(εν), with
u′ = (urms

x + urms
y + urms

z )/3. Consequently, one cannot expect
a Kolmogorov scaling of the energy spectrum in the inertial
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FIG. 4. (a) PDFs of the angle θ , Pθ , for different (nondimensional)
time increments τ , measured in the viscous BL at the top plate for
direct numerical simulations (DNS) of nonrotating Rayleigh-Bénard
convection. (b) PDFs of Q = 1 − cos θ , PQ, for DNS. (c) PQ, but
now normalized by γ1,2(τ ) = �2(τ )/4, with � the average angle of
directional change, together with a Fisher distribution F1,2 (black
dashed line). For clarity, symbols are added to the lines each 5 data
points in panels (a) and (c) and each data point in panel (b).
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FIG. 5. (a) The average angle of directional change �(τ ) = 〈|θ (t,τ )|〉 as a function of the nondimensional time increment τ , for both DNS
(lines with closed symbols) and experiments (open symbols), measured in the center (red squares) and near the top plate (blue circles) of the
Rayleigh-Bénard cell. In the DNS the top measurement volume is subdivided in a nonboundary layer (non-BL) and boundary layer (BL) region,
indicated by the green lines with triangles. (b) �(τ ), normalized by τ 1/2, measured using DNS in the center (red lines with squares) and the
non-BL region (blue lines with circles). For the DNS symbols are added to the lines for visibility with an interval depending on τ .

range, possibly explaining why the τ 1/2 is not recovered very
well. We do, however, observe a transition in the scaling from
τ 1 for τ � τη to a lower scaling exponent in the regime of
τη < τ < TL. This is also clearly visible when focusing on
�(τ ), compensated by τ 1/2 in Fig. 5(b). Although the presence
of a plateau is lacking, especially in the center, there is clearly
a transition from one scaling regime to another at τ ≈ 1.

While the �(τ ) curves for the center and the non-BL volume
mostly overlap, the average angle in the Prandtl-Blasius BL
behaves completely different. For larger τ , the values of � are
lower as a result of the strong horizontal mean flow present
in the Prandtl-Blasius BL [11,39]. Since the measurement
volume used in the BL is rather small, it is important to
distinguish between the effect of the mean flow and the
effect of the confinement. Therefore, we measured �(τ ) in
a measurement volume of the size of the BL measurement
volume (0.5H × 0.5H × δuH ), but positioned in the center.
Without showing the figures here, we verified that the strong
decrease of �(τ ) for larger τ was only found in the BL and
not in the center (when using this BL measurement volume),
confirming that it is a flow-dependent feature.

B. Rotating Rayleigh-Bénard convection

Now, we include rotation and investigate how it affects the
geometry of the flow by measuring the angle of directional
change of tracer trajectories at different timescales and at
different Rossby numbers. Note that the Kolmogorov timescale
and the Lagrangian timescale depend on the rotation rate as
reported in Table I.

1. Probability density functions of the angle of directional change

First, we investigate the effect of rotation on the directional
change Q by analyzing PQ at different Rossby numbers and
different values of τ in Fig. 6, for both the center and the
top, non-BL, measurement volumes. The normalized curves
all collapse on the Fisher distribution F2,3, indicating that the
analytical prediction of Sec. IV A is still valid. This means

that the assumption of noncorrelated velocity and acceleration
and the assumption of Gaussian statistics remain valid in the
bulk of the rotating RBC flow. For instantaneous curvature and
torsion statistics, this was already shown in [16], however, here
we suggest that this also holds for larger timescales up to the
Lagrangian integral timescale of multitimescale processes.

The BL is of the Ekman type for Ro � 2.5 and Prandtl-
Blasius type for Ro � 2.5 [11]. Both types of BLs are charac-
terized by different flow structures and we want to understand
whether the BL transition is visible in the angular statistics
of tracer trajectories. Pθ , measured in the Prandtl-Blasius BL
where a strong mean horizontal flow is present, reveals a higher
probability of low values of θ in Fig. 4(a), while in the Ekman
BL the probability of larger θ for larger τ has increased in
Fig. 6(c). This is possibly a signature of the spiraling motions
of fluid [40], characterizing the Ekman BL flow. The described
trend is also directly visible in PQ; there is an enhanced
probability on larger values of Q inside the BL in the rotating
case, evident when comparing Figs. 4(b) and 6(d). In Figs. 6(c)
and 6(d) we only show PDFs for one rotation rate, Ro = 0.1,
but we verified that similar statistics are retrieved for other
rotation rates in the regime of Ro � 2.5. To understand the
effective dimensionality of the BL flows, we normalize PQ

and compare it to a Fisher distribution with either two and
three components F2,3 or one and two components F1,2. For
Ro = ∞, a reduction of the effective number of components
due to the mean horizontal flow in the BL was already observed
in Sec. IV A. The Ekman BL is not characterized by a strong
horizontal mean flow, but by spiraling motion of fluid. To
understand the effective dimensionality in the Ekman BL, we
compare PQ, normalized by �2(τ ), to both F2,3 and F1,2 in
Fig. 6(e), where τ is increased from right to left.1 For small

1For F1,2 the normalization factor is γ1,2 = �2(τ )/4, while for F2,3

the normalization factor is γ2,3 = �2(τ )/3. In order to account for
these different normalization factors in Fig. 6(e), we compare PQ,
normalized by �(τ )2, to 4F1,2(Q/4) and 3F2,3(Q/3), respectively.
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FIG. 6. Top: PDFs of Q = 1 − cos θ , PQ, for different Rossby numbers Ro, measured using direct numerical simulations (DNS) in (a) the
center and (b) the nonboundary layer (non-BL) region near the top plate of the Rayleigh-Bénard cell. PDFs are normalized by γ2,3(τ ) = �2(τ )/2,
with �(τ ) the average angle of directional change. The black dashed line represents the Fisher distribution F2,3. For each Ro time increments
τ = 0.3, 1, and 5 are shown. Center: (c) Pθ and (d) PQ, measured in the BL for Ro = 0.1. Bottom: (e) PQ, normalized by �2(τ ), measured in
the BL for Ro � 2.5 (blue lines with crosses) and Ro < 2.5 (red lines with circles). For each Ro, τ = 0.1, 1 and 5 are shown. The black solid
and black dashed lines represent 3F2,3 and 4F1,2, respectively. Symbols are added to lines each data point in panel (d) and each 5 data points in
all other panels for visibility.

τ we observe that PQ is closer to the Fisher distribution F2,3

in the Ekman BL (red curves) while PQ in the Prandtl-Blasius
BL (blue lines) starts to approach the Fisher distribution F1,2.
So, for small τ , the reduction in the dimensionality is only
found in the Prandtl-Blasius BL, characterized by the strong
mean horizontal flow. For larger τ , however, curves in both

the Prandtl-Blasius and the Ekman BL collapse on the Fisher
distribution F1,2. This is probably the result of trajectories
being reconstructed in a thin measurement volume with a small
vertical dimension (of the size of the BL thickness), compared
to the horizontal dimensions, reducing the components of
the normal acceleration and velocity of trajectories at large

063105-9



ALARDS, RAJAEI, KUNNEN, TOSCHI, AND CLERCX PHYSICAL REVIEW E 97, 063105 (2018)

Ro = ∞
Ro = 10

Ro = 5
Ro = 3

Ro = 2.5
Ro = 1

Ro = 0.5
Ro = 0.2
Ro = 0.1

Ro = 0.05

 0.1

 1

 0.1  1  10

τ1 τ1/2
2π/3

Θ
 (

τ)

τ
(a) center

Ro = ∞
Ro = 10

Ro = 5
Ro = 3

Ro = 2.5
Ro = 1

Ro = 0.5
Ro = 0.2
Ro = 0.1

Ro = 0.05

 0.1

 1

 0.1  1  10

τ1 τ1/2
2π/3

Θ
 (

τ)

τ
(b) top, non-BL

Ro = ∞
Ro = 10

Ro = 5
Ro = 3

Ro = 2.5
Ro = 1

Ro = 0.5
Ro = 0.2
Ro = 0.1

Ro = 0.05

 0.1

 1

 0.1  1  10

τ1 τ1/2
2π/3

Θ
 (

τ)

τ
(c) top, BL

 0.1

 1

0.1 1 10 ∞

~ ~

c

Ro

center
top, non-BL

top, BL

(d) scaling exponents

FIG. 7. The average angle �(τ ) = 〈|θ (t,τ )|〉 as a function of τ (in dimensionless time units), measured using DNS in (a) the center, (b) the
nonboundary layer (non-BL) region, and (c) the boundary layer (BL) region near the top plate of the Rayleigh-Bénard cell. Symbols are added
to the lines for visibility with an interval depending on τ . (d) The scaling exponents c, given by � ∼ τ c, for the curves of panels (a)–(c) in an
intermediate time range τη < τ � TL, with τη the Kolmogorov time scale and TL the Lagrangian integral timescale. The vertical black dashed
line corresponds to Ro = 2.5 and the solid horizontal black line is the HIT prediction c = 0.5.

time increments τ . Furthermore, especially in the regime of
Ro � 2.5, strong peaks are observed at the end of the curves in
Fig. 6(e). These peaks are related to large values of θ , where the
Taylor expansion of Eq. (12) is not valid anymore, explaining
why here the curves deviate from the Fisher distribution.

2. Average angle of directional change

Next, we want to understand whether rotation affects the
scaling of the average angle of directional change �(τ ) with
τ and in particular whether a signature of the transition in the
typical coherent flow structures can be found at timescales
larger than the Kolmogorov time. In Figs. 7(a) and 7(b), the
average angle �(τ ) is shown as a function of τ , for different
rotation rates in the center and near the top plate of the RBC
cell. For small values of τ a ballistic regime is recovered where
�(τ ) ∼ τ for all rotation rates. A second scaling range can
be identified for τη < τ � TL, where a transition has occurred
from the ballistic regime to a different, lower, scaling exponent.
This scaling exponent at intermediate timescales is moreover
decreasing with rotation, a trend we will discuss in more detail
later. Note that in the non-BL region and in the regime of
Ro � 2.5 [Fig. 7(b)], curves of � extend up to lower values

of τ compared to the center [Fig. 7(a)]. This is a result of the
smaller measurement volume used near the top plate, compared
to the center, resulting in shorter trajectories.

Inside the viscous BL, two clear regimes are distinguished in
Fig. 7(c) with a transition around Ro ≈ 2.5, in contrast to what
we observed in the bulk. In the regime of the LSC, where Ro �
2.5, curves deflect downwards for large τ .2 This is related to
the strong horizontal mean flow present in the Prandtl-Blasius
BL, giving rise to lower average angles along the trajectories.
When Ro � 2.5, the boundary layer is of the Ekman type and
there is interaction between the BL and the bulk, also known
as Ekman pumping or suction [9,29,41]. This might explain
why here the �(τ ) vs τ curve is again similar to that measured
in the non-BL [Fig. 7(b)] and in the center [Fig. 7(a)].

To quantify the change in the scaling exponent under
rotation in Figs. 7(a)–7(c), a linear fit of ln(�(τ )) as a function
of ln(τ ) is performed in the range of τη < τ < TL, measuring

2Note that for Ro = 2.5, where the transition from the LSC to
vertically aligned plumes occurs, the downward deflection of �(τ )
for large times is less prominent in Fig. 7(c), due to the breakdown of
the LSC at this Rossby number.
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the scaling exponent c as �(τ ) ∼ τ c. Computing the scaling
exponent c is very sensitive to the definition of the fitting range
and therefore the error is computed as the deviation between
exponents computed in five different fitting ranges: two shifted
towards lower and two shifted towards higher timescales
compared to the original fitting range. In Fig. 7(d), c is shown
as a function of Ro for DNS, showing all three measurement
volumes. Both in the center and the non-BL region two regimes
can be distinguished: in the regime of the LSC (Ro � 2.5)
the scaling exponent is a constant: c = 0.66 ± 0.03 in the
center and c = 0.49 ± 0.06 near the top plate, while in the
regime of vertically aligned plumes (Ro � 2.5) c is decreasing
with decreasing Ro and approaching c = 0.19 ± 0.04 (for
the highest rotation rates in our simulations). Inside the BL,
exponents are lower compared to the bulk and the deviation
between the bulk and BL measurements are especially large in
the regime where the LSC is the dominant flow structure.

3. Effect of large-scale coherent flow structures on the angle of
directional change

In (nonrotating) HIT, �(τ ) is expected to scale as τ 1/2, when
τη < τ < TL, based on Kolmogorov phenomenology. Since
the level of turbulence studied here is moderate (Reλ ≈ 39
for Ro = ∞ to Reλ ≈ 7 for Ro = 0.05), we do not expect the
energy spectrum to show a clear inertial range and it is therefore
not obvious whether we can apply these arguments, used in
HIT, to explain the scaling exponents measured in the RBC
flow. Instead, we focus on the influence of the confinement and
of the dominant flow structures in RBC, which are the LSC for
Ro � 2.5 and the vertically aligned plumes for Ro � 2.5, and
investigate how they affect the scaling exponent in the range
of τη < τ < TL.

A first factor that is expected to affect the scaling exponents
is the confinement, induced by the finite measurement volume.
In smaller measurement volumes, trajectories have to be more
“curved” in order to fit inside, while in larger measurement vol-
umes also longer, more stretched, trajectories are allowed. This
will result in smaller average angles at larger time increments,
for larger measurement volumes. We define the size of the
measurement volume relative to the total volume of the RBC
cell as V/Vtot , where Vtot = π/4 and V = x × y × z

with i the size of the measurement volume in the ith direction
(in dimensionless units). It is important to distinguish the effect
of the confinement from the effect of the typical flow structures
on the exponents c. Therefore, we show c as a function of Ro
for the original central measurement volume of V/Vtot = 0.16
and an enlarged measurement volume of V/Vtot = 0.65 in
Fig. 8(a). Values of c are lower for V/Vtot = 0.65, exactly for
the reason mentioned above; smaller measurement volumes
will result in more “curved” trajectories and therefore larger
values of � and larger values of c. However, the trend of
constant c for Ro � 2.5 and decreasing c with decreasing Ro
for Ro � 2.5 is still clearly visible, indicating that this is not an
effect of confinement but probably related to the coherent flow
structures. Moreover, for Ro � 2.5, exponents are still larger
than the HIT value of c = 0.5.

For Ro � 2.5 the LSC is expected to induce a vertical
shear flow upon trajectories in the center, expressed by an
up-going motion on one side of the measurement volume, and

~ ~
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V/Vtot =0.65, c

V/Vtot = 0.16, cs
V/Vtot = 0.65, cs
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~ ~

c
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 0.55

 0.6

 0.65
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 0.75

 0.8

 0.85

 0.01  0.1

c,
 c

s

V/Vtot

center, c
center, cs

(b) measurement volume

FIG. 8. (a) Scaling exponents without and with shear correction
(c and cs , open and closed symbols, respectively), measured in the
center of the Rayleigh-Bénard cell for τη < τ � TL, with τη the
Kolmogorov timescale and TL the Lagrangian integral timescale. Red
circles correspond to a relative volume of size V/Vtot = 0.16 and blue
squares correspond to V/Vtot = 0.65, where V = x × y × z

with i the size of the measurement volume in the ith direction.
The vertical black dashed line corresponds to Ro = 2.5 and the solid
horizontal black line is the HIT prediction c = 0.5. (b) c and cs for
Ro = ∞ as a function of V/Vtot . The measurement volume is always
centered in the middle of the RBC cell and has the same size in all
directions, such that x = y = z.

a down-going motion on the other side. Near the top plate,
the LSC already induces a mean horizontal flow, giving rise
to straighter trajectories and lower angles and therefore lower
values of c in Fig. 7(d). To correct for the LSC induced shear
flow in the center, we first compute the average vertical (shear)
flow, Us(x,y), by binning the measurement volume in the x

and y directions and computing the average vertical velocity
in each bin, averaged over time and over the z direction.
Then, the displacement caused by Us(x,y) is subtracted from
the trajectories and the average angle is computed for these
corrected trajectories as a function of τ , referred to as �s(τ ).
From �s(τ ) we compute the scaling exponent cs as �s(τ ) ∼
τ cs in the regime τη < τ < TL. The strength of the shear
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flow, induced by the LSC, is expected to depend on V/Vtot

since the closer the measurement volume is to the walls, the
more the LSC will penetrate the volume. To understand this,
we compute both �s(τ ) and �(τ ) (without shear correction)
in different measurement volumes V/Vtot , for Ro = ∞. In
Fig. 8(b), c and cs are shown to decrease with increasing
V/Vtot when V/Vtot � 0.08 and shear correction is decreasing
the exponent further where the difference between c and cs

is larger for larger V/Vtot . Indeed, for larger measurement
volumes the LSC is expected to be more dominant and shear
correction more important. Now, we moreover observe that
cs decreases up to c ≈ 0.49 ± 0.04, so to the HIT scaling
exponent, for V/Vtot = 0.65. We now include cs measured
for V/Vtot = 0.65 for the other Rossby numbers in the regime
of the LSC (Ro � 2.5) in Fig. 8(a). These exponents are now
actually identical to the HIT prediction, suggesting that, in
the center, it is indeed the vertical shear induced by the LSC
and the confinement of the measurement volume causing the
exponents to be larger than the HIT prediction.

In the weakly rotation-affected regime, where Ro � 2.5,
the scaling exponent is found to decrease with decreasing
Ro, or increasing rotation rate. To understand this trend, we
consider the coherence time of the dominant large-scale flow
structures in the two rotational regimes. In particular, the
vertical coherence of the vortical structures is larger than that
of the LSC, as also evident from Table I. This implies that
trajectories are correlated for a longer time when Ro � 2.5.
Considering that the convergence to 2π/3 is reached when
the three subsequent points along the trajectories (see sketch
in Fig. 1) are randomly placed in the (confined) domain,
it is expected that this convergence is reached at a later
time for Ro � 2.5 as confirmed in Figs. 7(a) and 7(b). In
these figures we also observe that, just before reaching the
convergence to 2π/3, �(τ ) is lower for Ro � 2.5, compared
to Ro � 2.5, in the center. To understand this, we consider
the example of spiral-like trajectories, which are much more
common in the weakly rotation-affected regime, compared to
the rotation-unaffected regime. Such a spiral-shaped trajectory
is characterized by circular motions, resulting in a “return”
point each time a circle is completed. This is expected to have
two main effects: (i) For τ < τη, these circular motions are
expected to increase the angle of directional change, explaining
why �(τ ) is larger for Ro � 2.5 in the ballistic regime in
Figs. 7(a) and 7(b). (ii) For τη < τ < TL, the spiral-like
trajectories reveal lower angles of directional change due to the
returning points. This suggests that for Ro � 2.5 lower angles
are measured even for larger τ . We verify above arguments
by computing Pθ for a low time increment, τ = 0.1, and a
large time increment, τ = 10. Indeed, in Fig. 9, for small τ

there is a higher probability on larger angles for Ro � 2.5 and,
oppositely, for larger τ there is a higher probability on lower
angles when Ro � 2.5, compared to Ro � 2.5. All together,
in the rotation-affected regime, the longer convergence time
in combination with an enhanced probability on lower angles
at larger τ is expected to cause the decrease in the scaling
exponent with increasing rotation rate found in Fig. 7(d). Inside
the BL the scaling exponents deviate from those measured
in the bulk, especially in the regime dominated by the LSC.
This deviation is expected to be a result of the Prandtl-Blasius
BL being passive and not interacting with the bulk flow. In
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FIG. 9. PDFs of the angle of directional change θ , Pθ , for different
Rossby numbers and for a time increment of (a) τ = 0.1 and (b)
τ = 10, measured numerically in the center of the Rayleigh-Bénard
cell. For clarity, symbols are plotted each 5 data points.

particular, the scaling exponents are found to be lower than
those measured in the bulk in this range of rotation rates. This
is related to the strong mean horizontal flow present in the
Prandtl-Blasius BL, decreasing �(τ ) even for larger timescales
as also evident from Fig. 7(c). For Ro � 2.5, the BL is of
the Ekman type and is actively interacting with the bulk flow,
causing the scaling exponents to be closer to those measured
in the bulk in this rotational regime.

V. CONCLUSIONS

The geometry of tracer trajectories is measured in (rotating)
RBC at different timescales, as the angle of directional change.
The focus is on the multiscale character of this angle and in
particular it is studied how the angular statistics are affected
by background rotation and coherent flow structures.

For both nonrotating and rotating RBC geometrical statis-
tics, measured in the bulk, show a similar trend as found in
HIT. Like in HIT, PDFs of 1 − cos θ collapse on a Fisher
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distribution F2,3 when normalized by �2(τ )/3 with �(τ ) the
average angle of directional change. This collapse is found for
all rotation rates and for time increments up to the Lagrangian
integral timescale, as long as the BL is excluded. It was already
found that for the instantaneous measures for the geometry
of tracer trajectories, curvature, and torsion, HIT predictions
are representative for RBC. Here, we study the multiscale
character of this geometry and find that the HIT predictions
are very robust and work even for longer timescales up to
the timescale of the large-scale coherent structures, where
anisotropy and inhomogeneity definitely play a role in the
weakly turbulent RBC flow studied here.

Inside the viscous BL, statistics of the angle of directional
change reveal a different behavior. For small values of τ , PDFs
of 1 − cos θ in the Ekman BL recover a Fisher distribution F2,3,
while PDFs of 1 − cos θ in the Prandtl-Blasius BL approach
a Fisher distribution F1,2. This is expected to be related
to the strong mean horizontal flow present in the Prandtl-
Blasius BL for weakly rotating RBC, effectively reducing the
dimensionality of the flow and therefore the number of active
independent components for the (normal) acceleration and the
velocity at lower time increments τ .

Previous studies have shown that, at timescales larger than
the Kolmogorov timescale but smaller than the Lagrangian in-
tegral timescale, �(τ ) scales as τ 1/2, which can be explained by
invoking Kolmogorov phenomenology for the inertial range. In
the RBC flow studied here, the level of turbulence is moderate
(i.e., no clear inertial range develops) and the scaling in this
intermediate range of timescales is not expected to display scal-
ing in line with Kolmogorov phenomenology. Indeed, we do
not see the � ∼ τ 1/2 scaling, however, a transition is observed
from the ballistic regime at small timescales, where � ∼ τ ,
to a scaling with a lower exponent at intermediate timescales.
This scaling exponent is found to be constant for Ro � 2.5 and
to decrease with increasing rotation rate for Ro � 2.5. In the
center of the RBC cell, the constant scaling is larger than the
HIT prediction. In this regime of rotation rates, the dominant
flow structure is the LSC, inducing a vertical shear flow
upon the trajectories. It is found that this shear flow, together
with the confinement of the measurement volume, is causing
the scaling exponent to be larger than the HIT prediction.
When the measurement volume is large enough (more than
65% of the total cell size) and trajectories are corrected for

the shear flow, the HIT scaling is actually recovered. In the
weakly rotation-affected regime, the dominant flow structures
are vertically aligned vortices. Now, the range of timescales
in which the scaling can be identified is extended due to the
longer vertical coherence of these vertically aligned plumes.
Furthermore, the presence of more spiral-like trajectories is
resulting in lower average angles of directional change at larger
time increments. This is resulting in a decrease of the scaling
exponent with increasing rotation rate when Ro � 2.5. Again,
different behavior is found in the viscous BLs at the plates;
in the passive Prandtl-Blasius BL exponents are much lower
than those measured in the bulk, while in the Ekman BL, that
actively interacts with the bulk, exponents are closer to those
measured in the bulk.

So, the scaling of the average angle �(τ ) with τ provides
useful information on the coherent flow structures in rotating
RBC at different timescales and both in the bulk and in the
BL. To distinguish between the effect of the coherent flow
structures and the typical characteristics of turbulence, such as
the Kolmogorov scaling of the energy spectrum, simulations
at larger Rayleigh numbers should be performed in future
research. A wider inertial range is expected to develop allowing
for a further comparison to the results of HIT. Furthermore, the
coherent structures are expected to change again at even lower
Rossby numbers; here, the vertically aligned vortices start to
form columnar structures of the size of the cell height. The
transition to this third regime is much less explored since it
requires a high level of turbulence in a rotationally constrained
flow. Since the scaling of the average angle with time has shown
to provide useful information on the coherent flow structures,
this transition can be studied in more detail by extending the
range of Rossby numbers studied here to lower values in future
work.
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