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Orientation of plastic rearrangements in two-dimensional model glasses under shear
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The plastic deformation of amorphous solids is mediated by localized shear transformations involving small
groups of particles rearranging irreversibly in an elastic background. We introduce and compare three different
computational methods to extract the size and orientation of these shear transformations in simulations of a
two-dimensional athermal model glass under simple shear. We find that the shear angles are broadly distributed
around the macroscopic shear direction, with a more or less Gaussian distribution with a standard deviation of
around 20◦. The distributions of sizes and orientations of shear transformations display no substantial sensitivity
to the shear rate. These results can notably be used to refine the description of rearrangements in elastoplastic
models.
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I. INTRODUCTION

Polydisperse foams, highly concentrated emulsions, molec-
ular glasses, and bulk metallic glasses exhibit microscopically
heterogeneous mechanical properties. As a result, these disor-
dered solids do not deform affinely under shear. Instead, their
deformation features bursty rearrangements of small groups
of particles embedded in an otherwise elastically deforming
medium. It is now well accepted that these microscopically lo-
calized shear transformations (ST) are the elementary carriers
of plastic deformation in sheared amorphous solids [1,2]. By
straining its surroundings, each ST gives rise to a characteristic
long-range deformation halo around it [3,4], which mediates
most collective effects in the material, such as cascades of
rearrangements [5,6].

Based on this picture at the particle scale, mesoscale elasto-
plastic models of amorphous plasticity have been formulated,
which divide the material into small regions (blocks) that are
loaded elastically until they fail plastically [7]. The failure of
a block is described as an ideal ST which partly dissipates the
local stress and partly redistributes it to the other blocks. For
an ST in d-dimensional space, the Green’s function G for the
nonlocal redistribution of the shear stress satisfies

G(r,θ ) � C cos[4θ + 2θpl]/rd (1)

in the plane of the transformation, with a dimension-dependent
prefactor C, where (r,θ ) are the polar coordinates in the frame
centered on the plastic block and θpl [defined precisely
in Eq. (3)] refers to the orientation of the individual
ST. The far-field limit of this expression for G matches
Eshelby’s solution for a spherical inclusion endowed with a
spontaneous strain [8] and was shown to suitably describe the
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disorder-averaged response of an amorphous solid to an ideal
ST in atomistic simulations [9].

Mesoscale models, however, rest on several assumptions
concerning the STs, including their idealized “Eshelby” nature,
their equal size, and their orientation along the direction of
maximal local shear [10,11] or even along the macroscopic
shear direction in scalar models [12,13] (in this regard,
Ref. [14] is an exception). To give them stronger footing,
experimental and numerical efforts have been made to char-
acterize plastic rearrangements, as exposed in Sec. II. In
particular, much attention has been paid to their shape and
their size [1,15–17], while the question of their orientation
has remained largely unexplored, despite its obvious relevance
for the buildup of spatial correlations between individual STs
[18,19]. In this contribution, we simulate the shear deformation
of a two-dimensional (2D) athermal model glass (described
in Sec. III) with molecular dynamics in order to study the
statistical properties of actual rearrangements for different
shear rates. Strong emphasis is placed on their angles of failure.
To this end, we propose (in Sec. III) and compare (in Sec. V)
several numerical methods to extract these angles. We find that
these angles are broadly distributed around the macroscopic
shear direction, with a more or less Gaussian distribution with
a standard deviation of around 20◦. Overall, the sizes and ori-
entations of the detected rearrangements are fairly insensitive
to the shear rate, but many of them actually differ from ideal
STs. Even when the ideal ST description works reasonably
well, local methods relying exclusively on the displacements
(or forces) of the most active rearranging particles give poor
estimates of the ST orientation; the latter is recovered if a
broader selection of particles near the ST is considered.

II. PREVIOUS ENDEAVORS TO CHARACTERIZE
PLASTIC REARRANGEMENTS

Leaving aside Schwarz’s early attempts to classify rear-
rangements in a 3D foam at rest [20], Argon and Kuo were
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the first to report localized rearrangements in a disordered
system, more precisely a 2D foam (“bubble raft”) that was
used as a model system for metallic glasses [1]. Interestingly,
they mentioned two types of STs: sharp slips of rows of
about five bubbles in length and more diffuse cooperative
rearrangements of regions of five bubbles in diameter. In the
1980s, Princen studied the swap of neighbors between four
bubbles (in 2D) to account for some rheological properties of
foams and concentrated emulsions [21]; the detailed dynamics
of this swap process were investigated much later in clusters of
four bubbles [22]. In slowly sheared colloidal glasses, STs were
directly visualized using confocal microscopy and their core
was observed to be around three particle diameters in linear
size [15]. In metallic glasses, direct visualization of STs cannot
be achieved experimentally but estimates for their volumes
can be obtained indirectly (e.g., via nanoindentation tests and
their sensitivity to the shear rate) and typically correspond to
a few dozen atoms (∼30 in the Zr-based glass studied with
nanoindentation tests in Ref. [23]), with a possible dependence
on the sample morphology (for instance, for a Ni-Nb metallic
glass, the ST size was reported to decrease from 83 atoms to
36 atoms when the material was cast into a μm-thin film [16]).

Numerically, the most comprehensive characterization of
rearrangements to date was performed by Albaret et al. [17]
on a 3D atomistic model for amorphous bulk silicon under
quasistatic shear. Rearrangements were detected by artificially
reverting the applied strain increments at every step and
deducing the irreversible changes that took place; the detected
rearrangements were then modeled as a collection of Eshelby
inclusions, whose sizes (or volumes V0) and eigenstrains ε�

were fitted to best reproduce the displacement field measured
during the actual strain increment. These inclusions were
shown to account for all plastic effects visible in the stress-
strain curves of these materials and the effective volume γ �V0

(where γ � is the maximal shear component of ε�) was found
to be exponentially distributed, with a typical size of 70 Å3,
while both dilational and contractional volumetric strains were
observed. The evolution of the effective volume γ �V0 during
the transformation was computed in Ref. [24] by detecting the
saddle point; the value of the effective volume at this saddle
point, called activation volume, was found to amount to around
20% of the final γ �V0.

III. NUMERICAL MODEL AND METHODS

A. Model and simulation protocol

In order to get information on the morphology and orien-
tation of STs, we perfom molecular dynamics simulations of
an amorphous material (a glass) under simple shear, in 2D
and in the athermal limit. The model glass is a binary mixture
of A and B particles, with NA = 32500 and NB = 17500, of
respective diameters σAA = 1.0 and σBB = 0.88, confined in
a square box of dimensions 205σAA × 205σAA, with periodic
boundary conditions. The system, at density 1.2, was prepared
by quenching an equilibrated configuration at temperature
T = 1 with a fast quenching rate Ṫ = 2 × 10−3, at constant
volume. The particles, of mass m = 1, interact via a pairwise
Lennard-Jones potential,

Vαβ(r) = 4εαβ

[(σαβ

r

)12
−

(σαβ

r

)6
]
,

where α,β = A,B, σAB = 0.8,εAA = 1.0, εAB = 1.5, and
εBB = 0.5. The potential is truncated at r = 2.5σAA and shifted
for continuity. Simple shear γ is imposed at rate γ̇ by
deforming the (initially square) box into a parallelogram and
remapping the particle positions. After an initial transient (20%
strain), the system reaches a steady state, which is the focus of
the present study.

In the athermal limit, the equations of motion read

dri

dt
= vi ; m

dvi

dt
= −

∑
i �=j

∂V (rij )

∂rij

+ f D
i .

The dissipative force f D
i experienced by particle i is computed

with a dissipative particle dynamics scheme, viz.,

f D
i = −

∑
j �=i

ζw2(rij )
vij · rij

r2
ij

rij

where w(r) ≡
{

1 − r
rc

if r < rc ≡ 3σAA,

0 otherwise.
(2)

Here vij ≡ vi − vj denotes the relative velocity of particle i

with respect to j , rij ≡ ri − rj , and ζ = 1/τLJ controls the
damping intensity (the effect of the damping was studied in
Ref. [25]). Equations (2) are integrated with the velocity Verlet
algorithm with a time step dt = 0.005. In all the following, we

use τLJ ≡
√

mσ 2
AA/ε as the unit of time and σAA as the unit of

length.

B. Detection of rearrangements

As expected, the simulations display fast localized rear-
rangements. Several measures are available to identify them
and are known to yield comparable results [26]. In Fig. 1,
we compute three of these diagnostics of nonaffinity on a
typical snapshot of a simulation at shear rate γ̇ = 10−4. These
diagnostics are based on the displacements δuj of particles j

during a short time interval [t, t + δt], with δt = 2. Figure 1(a)
shows the amplitude of the minimized mean-square difference

d2
min = min

G

∑
rj ∈C

[δuj − δu0 − G · (rj − r0)]2

between the actual displacements δuj of particles j in a circular
region C around a given particle r0 and any set of affine
displacements, i.e., displacements resulting from a uniform
displacement gradient G during δt [2]. This measure of the
nonaffine residual strain has become a quasi gold standard
for identifying plastic rearrangements in amorphous solids.
Figure 1(b) shows a simpler measure, namely the amplitude of
the average kinetic energy of a particle averaged over δt . The
motivation is that in an athermal system, only particles under-
going a rearrangement are expected to have large marginal
velocities. Lastly, in Fig. 1(c) we consider the magnitudes
of the (linearized) forces f

(H)
i = −∑

j Hij (t) · δuj , where

Hij (t) = ∂2V
∂ri rj

is the Hessian matrix at time t . These are
the forces that effectively drive plastic rearrangements. As
discussed by Lemaître [19], they also localize in regions of
high nonaffine strain.

Figure 1 confirms that the three methods give very similar
results. Accordingly, for convenience, we choose to use a
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FIG. 1. Detection of plastic events via (a) the d2
min criterion,

(b) by the average kinetic energy of a particle, and (c) the magnitude of
the linearized “Hessian” forces (see text). The scale bar is 10 particle
diameter.

criterion based on kinetic energies to detect rearrangements.
More precisely, particles with a kinetic energy larger than
an arbitrary threshold emin are considered to be rearranging;
the threshold value is lowered to 3/4 emin for the neighbors

FIG. 2. Representation of the angle of failure θpl. The orange
arrows indicate the elongational and contractional directions of an
ideal ST, while the dashed line represents the elongational direction
of the macroscopic shear.

of rearranging particles, in order to obtain more compact ST
shapes, where two particles are defined as neighbors if they
are separated by a distance smaller than 2. Finally, rearranging
particles are partitioned into clusters of neighbors, each corre-
sponding to an individual ST (clusters with fewer than three
particles were discarded). The distributions p(S) of sizes of
the resulting clusters for distinct thresholds emin and distinct
shear rates γ̇ are represented in Fig. 3; neither the threshold
nor the shear rate seem to considerably alter the seemingly
slower-than-exponential (but faster-than-power-law) decay of
p(S). In the following, we shall see that all our results are
fairly insensitive to these parameters emin and γ̇ . We have
also checked (though inexhaustively) that the distributions of
orientations of rearrangements detected on the basis of the
linearized forces f

(H)
i are compatible with those shown below.

C. Methods to measure ST orientations

In order to study ST orientations, a rearrangement is likened
to a circular Eshelby inclusion with an eigenstrain ε�, i.e., a
region whose stress-free state is not reached for a deformation
ε(r) = 0 but for ε(r) = ε� (if it were unconstrained). The
eigenstrain ε� can be split into a deviatoric part, associated
with shape change, and a volumetric part, associated with local
dilation, viz.,

ε� = ε�

(
sin 2θpl cos 2θpl

cos 2θpl − sin 2θpl

)
+ εv

(
1 0
0 1

)
(3)

with ε� � 0. We define the ST orientation as the angle of failure
θpl ∈]−90◦,90◦]; it is thus the angle between the elongational
principal direction of the ST and that of the macroscopic shear,
as sketched in Fig. 2.

1. Fit to an Eshelby inclusion

We are now left with the problem of determining ε� in
practice. Drawing inspiration from Albaret et al. [17], we
exploit the elastic field induced by an inclusion à la Eshelby.
For homogeneous isotropic elastic media, the deformation εin

within any embedded elliptical inclusion will be constant. It
naturally follows that, for a circular inclusion, the principal
directions of εin and ε� will be identical due to symmetry
arguments. Outside the circular inclusion (of radius a and
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centered at r = 0), the induced displacements δu are given by [27]

δu1(r) = x1

8(1 − ν)
ã2{[2(1 − 2ν) + ã2](ε11 − ε22) + 2ã2(ε11 + ε22) + 4(1 − ã2)

(
x̃2

1ε11 + x̃2
2ε22

)}

+ x2

8(1 − ν)
ã22ε12

[
2(1 − 2ν) + ã2 + 4(1 − ã2)x̃2

1

]

δu2(r) = x2

8(1 − ν)
ã2

{
[2(1 − 2ν) + ã2](ε22 − ε11) + 2ã2(ε11 + ε22) + 4(1 − ã2)

(
x̃2

1ε11 + x̃2
2ε22

)}

+ x1

8(1 − ν)
ã22ε12

[
2(1 − 2ν) + ã2 + 4(1 − ã2)x̃2

2

]
, (4)

where r = (x1,x2) and tildes denote distances rescaled by the
norm of r (viz., x̃1 = x1/r).

For each rearranging cluster, the equivalent size a and
eigenstrain components ε�, εv , and θpl defined in Eq. (3)
are calculated as the parameters minimizing the squared
difference between the particle displacements δu′

i over δt = 2
and the theoretical expectations of Eq. (4), for all particles i

that are at a distance between 2a and a large distance dmax away
from the cluster center; the quality of the fit will be measured
by the relative squared difference χ2. (Note that the results
turned out to be insensitive to the value of dmax.) However,
unlike Ref. [17], the displacements δu′

i are not extracted from
the actual dynamical simulation. Instead, in order to avoid the
superposition of many STs, we run an auxiliary simulation

0 5 10 15 20
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)

emin = 0.08
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101
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10−1
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γ̇ = 10−4

γ̇ = 10−5

(b)

FIG. 3. Distribution of sizes S of the rearranging clusters detected
with the kinetic energy based criterion (a) for two different threshold
values emin at γ̇ = 10−5 and (b) for three different shear rates γ̇ with
emin = 0.11. The thin dashed line in the top panel is proportional to
exp(−S/S0) with S0 = 7.

for each rearranging cluster so as to measure the response
induced only by this cluster. Pragmatically, starting from the
configuration at t , we move particles j belonging to the cluster
by a fraction α 	 1 of their actual displacements δuj , pin them
to their new positions, and obtain the response αδu′

i of the
other particles to this local rearrangement by minimization.
This strategy, which we refer to as MD/Esh, will be our main
method to access the ST morphology. One should nevertheless
be aware that the results of the auxiliary simulations display a
slight sensitivity to the details of the minimization procedure,
but the consistency of our results will prove that this sensitivity
can be overlooked.

2. Azimuthal modes of the displacements induced by the STs

A variant of this method may save us the cost of the fitting
step. As mentioned in the introduction, the strain field δε

induced by the shear part (ε�) of an ST has a fourfold azimuthal
symmetry. Therefore, focusing on δεxy for instance, the m = 4
azimuthal mode of δεxy(r) contains all information pertaining
to the ST orientation (whereas the m = 2 component results
from the dilational part εv). In practice, using the auxiliary
simulations described above, we compute the local strain
around each particle (i.e., the tensor δεi which minimizes
the local nonaffine deviations d2

min introduced in Sec. III B),
coarse-grain the xy-shear strain field into boxes of linear size
rc = 3 (see Fig. 4), and compute the azimuthal Fourier modes
cm of the resulting coarse-grained field δεc

xy along a circle of
radius r (much larger than the cluster size), viz.,

cm =
∫ 2π

0
e−imθδεc

xy(r,θ )dθ. (5)

Calculating c4 for the quadrupolar strain field and writing it as
c4 = |c4|eiφ4 , we find that the angle of failure is related to φ4

via θpl = φ4/2. We call this method MD/azi.

3. Methods exclusively based on the forces or displacements
of rearranging particles

The two methods described above involve minimization
steps and/or additional (auxiliary) simulations and are there-
fore numerically costly. To bypass this cost, we will try
to get information on the ST by using only the observed
displacements δui of the particles i within the rearranging
cluster. A first idea is to compute the internal part σ of the local
stress tensor: σ = −V −1 ∑

i fi ⊗ ri , where V is the cluster
size, the sum runs over all particles i in the cluster, each
subjected to an average force fi and undergoing a displacement
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FIG. 4. Elastic reponse computed in the auxiliary MD simulations (see text) to a selection of three STs exhibiting a quadrupolar response. In
the left column, particles in the ST are colored in orange, while the colors of the other particles depend on the norms of their displacements δui

(warmer colors denote larger displacements). The arrows with wide shafts represent the directions of δui for a random subset of particles, while
the (directions of) displacements represented by narrower arrows are the response to the best-fitting Eshelby inclusion. The figures shown are
zooms on a 50 × 50 portion of the global system (of size 205 × 205). The right column presents the coarse-grained strain field δεc

xy computed
from the associated auxiliary simulations, in a 100 × 100 square around the cluster.
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ε = εv

ε = ε�

FIG. 5. Distribution of the dilational strengths πa2εv (circles) and
the shear strengths πa2ε� (squares) of the STs detected at γ̇ = 10−5

(with threshold emin = 0.11). The dashed blue line is proportional to
exp(−x/0.3).

δui between t and t + δt . The analog for the displacements is
the tensorM = −V −1 ∑

i δui ⊗ ri . Positions ri are expressed
relative to the cluster centers of gravity, and the mean force (or
displacement) among the ST particles is drawn off the fi (or
ui). A yield angle θpl can be extracted from these tensors by
symmetrising them and writing their deviatoric (traceless) part
sdev as

sdev = −α

(
sin 2θpl cos 2θpl

cos 2θpl − sin 2θpl

)
, (6)

with a coefficient α > 0 (the minus sign comes from the
sign convention used to define the Cauchy stress). These
methods will be referred to as Loc. We have checked that
they yield the same result as the inspection of the azimuthal
mode c4 of the response of an isotropic homogeneous elastic
continuum to the set of pointwise forces Fi = fi , or Fi ∝ δui

for the displacement-based version, as computed by means
of the Oseen-Burgers tensor. (We have underlined the word
continuum to insist on the difference with the MD/azi method).

IV. CHARACTERISTICS OF STS

In this section, we employ the method based on fitting
rearranging clusters to Eshelby inclusions in order to unveil
key characteristics of the rearrangements. Although STs are
often idealized as pure shear transformations, the volumetric
deformations are found not to be negligible in practice. In
Fig. 5, we report the distributions of the dilational strengths
πa2εv and the shear strengths πa2ε� of the STs detected
at γ̇ = 10−5, where πa2 is the surface of the inclusion and
εv and ε� were defined in Eq. (3). The corresponding plots
at γ̇ = 10−4, 10−3 are very similar. As in Ref. [17], we
observe an exponential distribution of shear strengths, with a
typical value around 0.3 here. One should, however, note that,
since the present simulations are not quasistatic, the detected
rearrangements (computed over δt = 2) often do not cover the
whole transformation, which lasts for several time units.

Moving on to the ST orientations, we plot the distribution
p(θpl) of angles of failure obtained at the three shear rates in
Fig. 6(a). We observe no significant sensitivity to the shear
rate. Besides, the central part of p(θpl) can be approximated

−90 −45 0 45 90

θpl

0

p(
θp

l )

γ̇ = 10−5

γ̇ = 10−4

γ̇ = 10−3

(a)

−90 −45 0 45 90

θpl

0

p(
θp

l )

(b)

FIG. 6. Distributions of angles of failure θpl obtained with the
MD/Esh method. (a) Comparison of p(θpl) between distinct shear
rates γ̇ . The dashed line represents a normal distribution with standard
deviation δθpl = 23◦. (b) Distribution p(θpl) at γ̇ = 10−5 before
(filled blue) and after (red) removing the STs which substantially
deviate from their Eshelby fits (χ 2 > 0.5).

by a normal distribution with standard deviation δθpl = 23◦,
but p(θpl) has heavier tails. If we discard the STs for which
the elastic response significantly deviates from the Eshelby fit
[Fig. 6(b)], the peak of p(θpl) sharpens slightly, but this does
not strongly affect its shape.

It is interesting to compare these results with those predicted
by a mainstream tensorial elastoplastic model in simple shear
[28]. The latter also showed a Gaussian-like distribution p(θpl)
which was virtually insensitive to the shear rate, but which was
by far narrower than the present ones, with standard deviations
of 3–4◦ that could increase up to ≈7◦ if cooperativity in the flow
was enhanced by increasing the duration of plastic events or if
elasto-plastic blocks were advected along the flow, instead of
being static (see chap. 9.2, p. 111, of Ref. [28]). In these models,
angular deviations from the macroscopic shear direction θpl =
0 are exclusively due to cooperative effects, whereby the stress
redistributed during an ST [Eq. (1)] may load other blocks
along a direction θpl �= 0, depending on their relative positions.
The much broader distribution p(θpl) measured in the present
atomistic simulations hints at the impact of the granularity of
the local medium, which may favor failure along a direction
distinct from that of the local loading.
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FIG. 7. Scatter plot of angles of failure θpl measured at γ̇ = 10−5

with (a) the MD/Esh method vs. the MD/azi method and (b) the
MD/Esh method vs. the displacement-based Loc method. Large
(orange) crosses refer to STs with good Eshelby fits, while small (blue)
crosses indicate poor fits; more precisely, the sizes of the crosses are
inversely proportional to the χ 2 deviation from the fit.

V. COMPARISON BETWEEN DISTINCT METHODS
TO MEASURE ST ORIENTATIONS

Having characterized the strengths and orientations of STs,
we now discuss to what extent the ST characteristics can be
extracted from methods that do not rely on fits to Eshelby
inclusions.

A. Azimuthal mode of the induced strain

We start by considering the MD/azi method introduced in
Sec. III C 2, which extracts the quadrupolar azimuthal mode
of the xy strain (from the auxiliary MD simulations) on a
circle of radius r to determine θpl. The angles of failure θpl

measured at distinct r (r = 17 and r = 23) are typically within
±10◦ of one another (data not shown); there are outliers, but
these very generally correspond to STs that strongly deviate
from the Eshelby fits. Hereafter, we fix the radius at r = 17.
Figure 7(a) shows that the individual MD/azi angles of failure
agree relatively well with those determined with the MD/Esh
method used so far, with absolute differences smaller than 20◦
for STs with reasonable Eshelby fits.

B. Methods based on local forces or displacements

Turning to the results obtained with local methods
(Sec. III C 3), we report that we have not found any correlation

−75 −50 −25 0 25 50 75

θpl
MD/Esh

−150

−100

−50

0

50

100

θp
l

L
o
c

FIG. 8. Comparison between the angles of failure θ
pl
MD/Esh and

θ
pl
Loc measured with the MD/Esh method and the displacement-based

local method, respectively. The STs have been binned into 10◦-wide
angular windows, according to the value of θ

pl
MD/Esh.

between the MD/Esh angles of failure and those determined
with force-based local methods, whether it be the total force fi

or the “linearized” forces f
(H)
i (both being averaged over δt).

On the other hand, displacement-based local methods broadly
agree with MD/Esh, even though this does not immediately
transpire from the scatter plot of Fig. 7(b). To prove the overall
consistency of the methods despite this large noise, we split the
detected STs into 10◦-wide bins depending on their orientation
θ

pl
MD/Esh and, for each bin, plot the average angle θ

pl
Loc (measured

with the displacement-based local method) in Fig. 8. On a
technical note, one should mention that, to average over angles
θ1, . . . ,θn, we computed the circular average arg(

∑
j eiθj ).

With these averaged data, the two methods are found to be
in good accordance [29].

0 5 10 15 20

R

0

10

20
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40

50

Δ
θp

l

FIG. 9. Differences �θpl between the angles of failure found with
the local method based on the displacements of all particles within
a distance R of the ST center of gravity (in the auxiliary simulation)
and the MD/Esh method for four STs that displayed good Eshelby fits
(χ 2 < 1) but large discrepancies with the Loc method. For R = 0, the
local method makes only use of the rearranging particles as identified
by the kinetic energy threshold.
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To shed light on the discrepancies in the one-to-one
comparison, we extend the local method by including the
displacements (measured in the auxiliary simulation) of all
particles within a distance R of the center of gravity of the ST,
instead of only the rearranging particles, with the expectation
that both methods converge when R → ∞. In Fig. 9, we apply
this method to STs detected at γ̇ = 10−5 for which a mismatch
between θ

pl
Loc and θ

pl
MD/Esh was observed, despite fairly good fits

to Eshelby inclusions. The figure suggests a reasonably quick
convergence between the two methods, although the radii R

at which convergence is reached strongly depend on the ST.
This implies that the deficiency of the pristine Loc method
stems from its biased selection of too few particles for the
computation of the local tensor.

VI. CONCLUSION

This paper has introduced and compared three approaches
to extract the size and orientation of STs in sheared amorphous
solids. Rearranging particles were grouped into clusters based
on a threshold criterion for the kinetic energy, which is reliable
for athermal solids, and their displacements over a small time
interval were recorded. Once these clusters are extracted, aux-
iliary simulations are performed in which the particles taking
part in a given ST are displaced and the remainder is relaxed via
energy minimization. In the first approach, which we consider
to be the most general one, the resulting displacment field is
then analyzed by fitting to the ideal “Eshelby” solution for the
far-field displacements. In the second method, this fitting is
avoided by instead computing the azimutal mode of the (coarse

grained) strain field resulting from the ST. Angles of failure
obtained from these two methods agree well with each other
as long as the Eshelby fit itself is reasonable.

A third and purely local method that avoids auxiliary
simulations altogether consists in computing the deviatoric
part of the displacement (inertia) tensor after the rearranging
clusters have been identified. These angles of failure agree
less well with those from Eshelby fits in a point by point
comparison, but can be shown to be overall consistent after
the noise is reduced through averaging. The inclusion of a
larger number of particles improves the agreement between the
methods considerably. In practice, this extended local method
is the most efficient one as long as the STs do not overlap.

It will be interesting to compare the angles of failure of
STs to the local configurations prior to failure, in particular
the direction of the maximal shear stress and the directional
dependence of the local yield stress, which can be measured
by deforming a small region embedded in a purely affinely
deforming region [30,31]. Moreover, our results suggest that
mesoscopic elastoplastic models [7] should be refined to better
describe the deviations from the idealized Eshelby picture
observed at the particle scale, and the sensitivity of their
predictions to such microscopic details should be examined.
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