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Spreading of a granular droplet under horizontal vibrations
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By means of three-dimensional discrete element simulations, we study the spreading of a granular droplet on
a horizontally vibrated plate. Apart from a short transient with a parabolic shape, the droplet adopts a triangular
profile during the spreading. The dynamics of the spreading is governed by two distinct regimes: a superdiffusive
regime in the early stages driven by surface flow followed by a second one which is subdiffusive and governed
by bulk flow. The plate bumpiness is found to alter only the spreading rate but plays a minor role on the shape
of the granular droplet and on the scaling laws of the spreading. Importantly, we show that in the subdiffusive
regime, the effective friction between the plate and the granular droplet can be interpreted in the framework of
the μ(I )-rheology.
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I. INTRODUCTION

The spreading dynamics of a granular material subjected to
external horizontal agitations may be crucial in some industries
like coatings. But unlike the spreading of a liquid on a solid,
vibrated granular films have not been given great attention. As
a reminder, extensive experimental, theoretical, and numerical
studies have shown that the spreading dynamics of a liquid
droplet goes through two stages, an early capillary slow regime
governed by Tanner’s law r ∼ t1/10, when the droplet radius r

is smaller than the capillary length, followed by a gravitational
faster regime r ∼ t1/7, when the droplet has a pancake shape
[1]. However, when the viscous dissipation is neglected and
a balance between inertia and surface tension is invoked, the
power law of the spreading dynamics become r ∼ t1/2 at early
stages and r ∼ t2/3 for later ones [2,3]. In other studies, it has
also been shown that the spreading of polymer nanodroplets in
cylindrical geometry scales as r(t) ∼ t1/7 for the earlier times
and as r(t) ∼ t1/5 for the asymptotic stages [4–6].

The spreading of a granular system requires in general
external mechanical excitation to overcome solid friction. A
large number of studies have been conducted on vibrated
granular systems but in confined geometries (see, for example,
the review by Nadler et al. [7]). A pioneering work by Sanchez
et al. [8] has been conducted to investigate the spreading
dynamics of a free granular deposit on a controlled wiggling
surface. They show that the transverse width W of the granular
film follows a single spreading scaling law W (t) ∼ t1/3 and
that the droplet morphology obeys a scale invariant parabolic
profile. They also proposed a nonlinear diffusion model for
the spreading dynamics that reproduces reasonably well the
experimental outcomes. From a simple Coulomb frictional
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model, they were able to identify two different rheological
behaviors of the granular droplet: shear thickening at low vi-
bration energies and shear thinning at high energies, leading to
a nonmonotonous behavior of the effective friction coefficient
μ as a function of the inertial number I of the μ(I )-rheology,
in contrast with the previously observed shear-rate dependent
behavior in a granular inertial regime [9].

One major limitation to this specific experiment is that
the spreading process and the droplet rheology are inferred
only from the temporal evolution of the droplet shape but
not from bulk properties. In order to overcome this limitation
and get a better understanding of the underlying physical
mechanisms, we perform extensive discrete element method
(DEM) simulations of the spreading of a granular droplet on
a horizontally vibrated plate. We investigate the spreading
dynamics as well as the friction between the droplet and the
basal substrate for a wide range of vibration energies and
various plate bumpiness. We also analyze the bulk properties
of the granular droplet during the spreading process, including
the velocity field and solid packing fraction.

The paper is organized as follows. In Sec. II we briefly
recall the basic elements of the DEM and describe the physical
simulated system. Results are presented in Sec. III, which
includes the morphodynamics of the granular droplet, the
scaling laws of the spreading, the influence of the plate
bumpiness on the spreading process, and the effective rheology
of the granular droplet. Our onclusion and outlook are given
in Sec. IV.

II. SIMULATION PROCEDURE

A. Simulated system

We perform three-dimensional discrete element method
(DEM) simulations on model systems of polydisperse (±20%),
cohesionless spheres of diameters uniformly distributed
around the mean value d and of uniform material density ρ.
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FIG. 1. Sketch of the DEM simulated granular droplet laid on
a rough base driven by horizontal vibrations and mimicking the
experiment in Ref. [8].

The simulation box is rectangular (900d × 10d × 30d) with
periodic boundary conditions along the y dimension; it has free
boundaries in the x dimension and is limited in the vertical
z dimension by a base and an open top as is depicted in
Fig. 1. The base is made either bumpy or smooth. We employ
four different bases: three that are bumpy and a smooth one.
The bumpy bases are made of spherical grains placed at the
nodes of a square lattice. The average diameter of the basal
spheres is ds = λd, with λ = 0.25,0.5 and 1. The smooth base
corresponds to λ = 0. The substrate is vibrated horizontally
by imposing a sinusoidal movement x(t) = a sin(ωt), where a

and ω are, respectively, the amplitude and the pulsation of the
vibration. On the basis of the experiments from Sanchez et al.
[8], we set a = d and investigate a set of pulsations ranging
from 0.5

√
g/d to 2.5

√
g/d, where g is the gravity acceleration.

In terms of the reduced acceleration � = aω2/g, we thus probe
values from 0.4g to 6g for the latter. We undertook a few
simulations with thicker systems (20d). We did not notice any
major variations in the spreading dynamics in comparison with
small systems (10d). We thus assume that 10d is large enough
to avoid the effects of the periodic boundary conditions.

In the presence of a gravitational field g, the grains have
translational and rotational accelerations determined by nu-
merically integrating Newton’s second law using the Velocity
Verlet algorithm [10]. The total forces and torques acting on a
particle i are

Ftotal
i = mi g +

∑
j

Fn
ij + Ft

ij , (1)

τ total
i = −1

2

∑
j

rn
ij × Ft

ij , (2)

where index j goes over all the grains in mechanical contact
with the grain i, and the superscripts n and t stand for normal
and tangential components of the contact force. The forces Fn

and Ft are functions of the relative position of the particles and
of their relative velocity; they are composed of conservative
(elastic) and dissipative (viscous) parts, which can be referred

TABLE I. Interaction values used in the simulations. The particle
mass m, its diameter d , and gravitation constant g are used to rescale
all the material parameters and hence are set to unity. A polydispersity
in the particle size of ±20% is introduced to hinder crystallization.

Parameter Symbol Grain/grain Grain/base Units

Elastic constant kn 2 × 105 2 × 105 mg/d
Normal restitution en 0.972 0.8
Tangential restitution et 0.25 0.35
Particle friction μp 0.5 0.5

to as a spring-dashpot model. The normal and tangential
contact forces are written as [11]

Fn = (knδ + γnvn)un, (3)

Ft = (ktξ + γtvt )ut , (4)

where δ is the overlap distance, and kn,t and γn,t are the elastic
and the viscoelastic constants and are defined below. The unit
vector of the normal direction is un = (r i − rj )/|r i − rj | and
ut is its tangential counterpart. vn and vt are, respectively, the
moduli of the normal and the tangential components of the
relative velocity at contact:

vn = (vi − vj ) · unun, (5)

vt = vi − vj − vn + 1
2 (diωi + djωj ) × un, (6)

where the parameters di, vi , and ωi represent, respectively, the
diameter, velocity, and angular velocity of the particle i. We can
thus define a tangential unit vector by ut ≡ vt /vt . We denote
by ξ the relative elastic tangential displacement between two
particles in contact; it is computed by integrating the tangential
relative velocity during the lifetime of a contact that started at
time t0: ξ = ∫

t0
vt (t ′) dt ′. The tangential elongation ξ has to be

truncated whenever necessary to satisfy the Coulomb’s friction
law locally Ft � μpFn, where μp is the interparticle friction
coefficient and Fn ≡ ‖Fn‖ and Ft ≡ ‖Ft‖. This force scheme
is identically applied to the particle-substrate interactions but
with a different set of model parameters. In Table I we give a
set of interaction parameters used in the simulations.

Solid mechanics provides relations between the model
parameters. When two grains enter into collision, the linear
spring-dashpot model of the forces keep the two grains in
contact for a finite duration before they separate again. The
ratio of the relative normal velocities before and after the
collision defines a normal restitution coefficient en which is
directly related to γn by [11]

en = exp

(
− γn

2meff
tn

)
, (7)

with

tn = π

[
kn

meff
−

(
γn

2meff

)2
]−1/2

(8)

the duration of the collision and meff = mimj/(mi + mj ) the
effective mass. Similarly, we can define a restitution coefficient
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FIG. 2. Profiles of a granular droplet while spreading at acceleration � = 1.10 on a substrate of bumpiness λ = 1. The chronological
sequences have been recorded at times represented in units of the vibration period: t/T = 1/8 (top), t/T = 3 (middle), and t/T = 12 (bottom).
The color gradient codes the z position of the grains in the droplet. These simulation snapshots have been rendered by the open visualization
tool OVITO [18].

et for the tangential relative velocities. The restitution coeffi-
cients en and et set the values of the model parameters γn and
γt . We choose for en and et values corresponding to spent glass
beads [12] as reported in Table I.

The value of the spring stiffness should in principle be
related to material properties. A link to the Young modulus
and Poisson ratio is possible for Hertzian contacts. For linear
models, we have to rely on an ad hoc approximation [13].
In the linear spring-dashpot model, taking equal normal and
tangential contact durations leads to a relation between the
elastic constants kn and kt that reads 7kt [π2 + (ln en)2] =
2kn[π2 + (ln et )2]. This is different from the usual kt/kn = 2/7
for equal restitution coefficients en and et . We employ a clas-
sical value used in the literature [13,14]: kn = 2 × 105mg/d

(see Table I). This value corresponds to softer particles than
real glass particles but allows faster simulations. We pick the
particle-particle and particle-wall friction coefficients to be
both μp = 0.5, which corresponds to standard values found
in the literature based on static rather than dynamic values
[15–17]. Finally, it is noteworthy that all the simulation results
are given in dimensionless units obtained by setting the particle
diameter d, its mass m, and gravity acceleration g equal to
unity.

B. Preparation of the droplet

We conduct numerical simulations to mimic the spreading
experiments of a granular droplet reported in Ref. [8]. In
order to build up the initial configuration, we add inside the
simulation box two transverse walls at symmetric y positions
from the middle of the simulation box and are placed 150d

apart. We then fill the inner box by pouring 47 000 grains
from a randomly diluted simple cubic lattice. Once the grains
have sedimented, we vigorously shake the whole simulation
box horizontally with a dimensionless acceleration � = 4.38
during a time span t = 130T where T = 2π/ω is the vibration
period. After turning off the vibrations and letting the system
relax, we slowly move apart the transverse lateral walls until
they reach the limits of the simulation box. At the end of the
process, the transverse walls are no more in contact with the
granular droplet so that they can be removed safely. By doing

so, we obtain a granular pile with two slip faces and a flat
top which is 220 × d wide, 29 × d high and 10 × d deep (see
Fig. 1). In the experiment in Ref. [8], the top surface of the
initial pile preparation has the shape of a chalet roof. This is due
to a different preparation scheme in the experiment in which
a bottomless box is first filled with grains, then horizontally
vibrated to level out the deposit before it is lifted up. Our
procedure is employed for generating initial configurations of
all simulations. The generated granular piles may slightly differ
according to the basal bumpiness. For every basal bumpiness
corresponding to different values of the parameter λ, we run
the same set of simulations for the set of dimensionless acceler-
ations � = {0.39,0.49,0.62,0.80,1.10,1.58,2.47,4.39,6.32}.

III. RESULTS

We present first the simulation results in the case where the
basal bumpiness parameter is λ = 1 and then investigate the
influence of the bumpiness on the spreading dynamics. Finally,
we analyze the rheological property of the granular droplet in
course of the spreading process.

A. Droplet morphology

As already described in the previous section, the initial state
is a granular heap with two slip faces and a nearly flat top.
When turning on the vibrations, and after a short transient
regime of about t = 3T , the free surface of the droplet rounds
out. The granular droplet profile is shown in Fig. 2 at different
times while spreading over a substrate driven by horizontal
vibrations. After this transient, we record the droplet profile at
regularly spaced time intervals measured in terms of multiples
of of the vibration period T . The vibrations are turned off
when the toe of the granular droplet reaches the limits of the
simulation box.

Due to the invariance in the y direction, we focus our atten-
tion on the morphological properties of the one-dimensional
profile z(x) of the granular droplet. From the profile, it is easy
to extract the maximum height H and lateral width W and
study their temporal evolution in course of time.
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FIG. 3. Mean two-dimensional profiles (open symbols) of a
granular droplet at different instants along with their corresponding
best parabolic fits (solid lines) for � = 0.39 and substrate bumpiness
λ = 1. Note the large discrepancy between the horizontal and the
vertical scales.

In Fig. 3 we present the time evolution of the one-
dimensional profile of the free surface obtained at the ac-
celeration � = 0.39. The solid lines correspond to the best
parabolic fits of the numerical data. At the very beginning
of the spreading process, while still in the transient regime
(t/T = 1/8), we clearly see that the heap has a nearly flat top
which is progressively smoothed out. The heap then adopts
a shape that can be pretty well approximated by a parabolic
profile at time t/T = 3.

At later times, the droplet profile deviates significantly from
the parabolic shape and exhibits a triangular morphology. This
is the first notable discrepancy with the experiments in Ref. [8]
where the heap keeps a parabolic shape during the entire
spreading process. It is noteworthy to mention that the scale
of the vertical dimension in Fig. 3 has been magnified by a
factor of 10 in comparison with the horizontal scale, so that
the deviations from the parabolic plots are visually amplified.
The profiles rescaled by their respective maximum height H (t)
and width W (t) are shown in Fig. 4. In the rescaled plot, we
clearly see the transition from a parabolic shape at the initial
stages to a triangular one at the final stages.
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FIG. 4. The granular droplet profiles of Fig. 3 are normalized here
by their instantaneous maximum width W (t) and height H (t) (open
symbols). The black solid line represents a normalized parabolic
function z(x) = 1 − (2x)2 added to the plot as a guide to the eye.
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FIG. 5. Time evolution of a granular droplet height H (t) and its
width W (t) while horizontally vibrating a rough substrate (λ = 1) at
different acceleration rates �.

B. Spreading dynamics

A key feature to understand the spreading dynamics of a
granular droplet is to quantify the rate of the spreading process
as a function of the intensity of the vibrations. In Fig. 5
we present the time evolution of the height H (t) and width
W (t) of the granular droplet versus the reduced acceleration
�. As expected, the height is decreasing in course of time
while the width is increasing. We also find that the spreading
rate increases with an increasing acceleration �. The strong
correlation between the height and width of the granular
droplet indicates that its volume keeps roughly constant. In
other words, the compaction or decompaction process remains
marginal. We will come back to that issue later in the paper.

It is noteworthy to mention that in the first stages of the
spreading process (i.e., t � 5T ), the curves H (t) and W (t)
obtained for different values of � all collapse in a unique
trend. This transient regime thus seems to be independent
of the amount of vibrational energy injected in the system.
These earlier stages correspond in fact to a slight decompaction
process as discussed later. After this transient, the higher the
acceleration rate, the more effective the spreading, except for
extreme acceleration values (� = 4.39 and 6.32) for which the
spreading rate saturates or even slows down.

The experiments of Sanchez et al. [8] reveal that the
spreading dynamics is subdiffusive and obeys the following
scaling law:

W 3(t) − W 3(0) ∼ t. (9)

To check whether this scaling law holds or not, we replot our
data to represent the temporal evolution of the relative width
W 3(t) − W 3(t0) as represented in Fig. 6. We discard the initial
transient and set the initial time to t0 = 5T . Definitely, the
numerical data do not show a linear trend as would be expected
if the experimental scaling law held. In Fig. 7 a log-log
plot reveals instead that the spreading dynamics exhibits two
distinct power-law regimes of the form

W (t) − W (t0) ∼ tm,n, (10)
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FIG. 6. Spreading dynamics of a granular droplet on a rough
substrate (λ = 1) following the model proposed in Ref. [8] [Fig. 3(d)
therein] at different acceleration rates �.

where m and n are two distinct exponents relative to the two
observed spreading behaviors.

The first regime [i.e., (t − t0)/T � 16] is superdiffusive: the
scaling m is of order of 0.8. The second regime is characterized
by a scaling exponent n < 0.5, thus corresponding to a slower
dynamics and to a subdiffusive spreading. The respective
values of m and n obtained for the different acceleration rates
� are listed in Table II. We observe a slight variation of the
scaling exponents with the acceleration rate: m ranges from
0.61 to 0.81, while n takes values from 0.34 to 0.48. There is no
clear variation trends in m and n with increasing acceleration.

At this stage, it is important to emphasize that the second
subdiffusive regime found in the simulation is compatible with
that observed in the experiments by Sanchez et al. [8]. We
indeed obtain a scaling exponent close to 1/3.

We analyze another important parameter, the solid volume
fraction φ, which may vary during the spreading due to the
vibrations. Since this system is invariant along the y direction,
φ is computed as the ratio of two surfaces φ = Ss/Sr , where Ss

is the intersection surface of a vertical (x,z) plane at a given y

position with the three-dimensional assembly of spheres, and
Sr is the reference surface area below the droplet profile. The
value of the packing fraction φ is averaged through the droplet
width along the y direction. In Fig. 8 we plot the temporal
evolution of the mean solid fraction of the granular droplet. In
the transient stage (i.e., t < 5T ), we observe a decompaction
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FIG. 7. A log-log plot of the granular droplet contact width on
a rough substrate (λ = 1) for acceleration rates � = 0.39 and 1.10.
Two different spreading regimes are evidenced.

TABLE II. Critical exponents m (superdiffusive) and n (subdif-
fusive to diffusive) of the log-log spreading scaling laws for substrate
bumpiness λ = 1 at different acceleration rates �.

� 0.39 0.49 0.62 0.80 1.10 1.58 2.47 4.39 6.32
m 0.81 0.70 0.76 0.78 0.82 0.72 0.71 0.73 0.61
n 0.34 0.40 0.42 0.44 0.46 0.47 0.48 0.40 0.43

process which increases in intensity for increasing accelera-
tion: the higher �, the more effective the decompaction. After
this transient, the packing fraction φ keeps roughly constant in
course of time. We can note, however, a slight recompaction
of the granular droplet in the case of the smallest acceleration
rates (� = 0.39 and 0.49).

C. Bumpiness influence

We now examine the influence of the basal bumpiness
on the spreading dynamics. Figure 9 presents the temporal
evolution of the width W and height H of a granular droplet
on four different substrates with respective bumpiness values
λ = 0, 0.25, 0.5, and 1, obtained at a vibration acceleration
� = 1.10. As expected, the spreading rate increases with
decreasing bumpiness values. The increase of the spreading
rate is spectacular when we go from λ = 1 to λ = 0.5 but is
much weaker for lower values of λ.

It is important to note that we do not observe significant
variation of the exponents m and n of the scaling laws with
the substrate bumpiness (see Table III). We still have a first
superdiffusive regime followed by a subdiffusive one.

Additionally, we analyze the influence of the basal bumpi-
ness on the temporal evolution of the solid volume fraction of
the droplet during the spreading (see Fig. 10). Interestingly,
lowering the bumpiness results in a greater recompaction. For
the smooth case (λ = 0) the packing fraction of the droplet
at the end of the spreading process (i.e., t/T = 120) is 7%
greater than that in the roughest case (λ = 1). The compaction
phenomenon observed for low bumpiness is interpreted as an
ordering process of the granular packing induced by the smooth
base.

Finally, we shall say a few words about the combined effect
of the bumpiness and the vibration acceleration. For finite
bumpiness (i.e., λ �= 0), the spreading rate is found to have a
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FIG. 8. Evolution of the mean packing fraction φ averaged over
the granular droplet width in the case of rough substrate λ = 1 at
different acceleration rates �.
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nonlinear dependence with the vibration period T (see Fig. 5).
In contrast, the smooth case is peculiar in the sense that the
spreading becomes linearly dependent of the period T . As
seen in Fig. 11, the curves H (t/T ) and W (t/T ) obtained for
different accelerations surprisingly all collapse on each other.

D. Velocity field within the droplet

We looked into the velocity field map obtained by a spatial
averaging through the droplet width and a temporal one over
a time span of two vibration periods. We observe a marked
difference in the velocity field for the two spreading regimes.
In the first spreading regime (t/T = 5) (see the upper map in
Fig. 12 and the vertical velocity profiles in Fig. 13). The flowing
phase is localized close to the free surface: it spans from the top
of the droplet down to the toe and penetrates the droplet interior
over a thickness of about 10 grain diameters. The spreading
dynamics at this stage corresponds to the superdiffusive regime
in which the flow appears to be controlled by superficial
processes similar to avalanches on a granular pile. In contrast,
the flow in the second subdiffusive spreading regime (see
Figs. 12 and 13) is no longer localized at the free surface but
spans more uniformly through the droplet depth. As a result,
the spreading process is essentially governed by a bulk flow
spanning through the droplet depth rather than a surface flow.

E. Basal friction

The spreading process can be figured out in terms of
momentum transfer between the granular droplet and the base.
One way to understand how momentum is transferred from the
base to the heap is that the whole granular droplet can be seen,
in a first approximation, as a solid mass sliding on a substrate

TABLE III. Critical exponents m (superdiffusive) and n (subdif-
fusive to diffusive) of the spreading scaling laws for different basal
bumpiness λ at the same acceleration rate � = 1.10.

λ 0 0.25 0.5 1
m 0.81 0.85 0.78 0.82
n 0.47 0.50 0.49 0.46
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FIG. 10. Normalized solid packing fraction comparison for dif-
ferent substrate bumpiness at the same acceleration rate � = 1.10. φ0

is the packing fraction before activating the vibrations.

with an effective friction coefficient μ which is defined as the
ratio of the shear stress τ to the pressure P .

In Fig. 14 we present the time evolution of the effective
friction. We observe a first phase during which μ increases
monotonously. This increasing phase corresponds to the su-
perdiffusive spreading regime. In a second phase, μ goes
towards a stabilization of the friction coefficient This second
phase matches up with the subdiffusive regime identified by a
spreading scaling law approaching t1/3 as reported in Ref. [8].
In this latter study, a nonlinear diffusion model was developed
to explain the 1/3 exponent. It is based on two assumptions:
(1) a constant effective friction coefficient μ and (2) a shallow
flow approximation. The latter is justified as long as the vertical
velocity are much smaller than their horizontal counterparts.
These two assumptions are evidenced in our simulations during
the subdiffusive regime. While we have seen that the effective
friction is indeed constant (see Fig. 14); the vertical profiles
of the horizontal and vertical velocity in Fig. 13 indicate
clearly that at t = 30T the vertical velocities are much smaller
than the horizontal ones: vz ∼ −0.02

√
gd and vx � 0.1

√
gd.

The question that naturally arises is Why is the subdiffusive
spreading regime not observed in the initial phase of the
spreading? In the first regime, the friction coefficient is not
constant, but most importantly the hypothesis of shallow flow
does not hold anymore. Indeed, we clearly see on the velocity
field map (see Fig. 12) that in the first regime, the flow is
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FIG. 11. Normalized width and height comparison for different
accelerations at the same bumpiness λ = 0. W0 and H0 are, respec-
tively, the initial width and height.
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FIG. 12. Profiles of the coarse-grained vector and scalar velocity fields averaged over two vibration periods. All the velocities are normalized
by the maximum velocity in both configuration t/T = 5 (top) and at t/T = 30 (bottom). The substrate bumpiness is λ = 1 and acceleration
� = 1.10. We show only the half of the droplet since the spreading is symmetrical.

localized at the free surface, contrarily to the second regime,
in which the flow affects the whole granular droplet. In the
first regime, the spreading is thus governed by a surface flow
similar to avalanches on a granular pile. This surface flow is
more efficient in spreading the droplet and leads to a spreading
scaling law with a higher exponent. A more quantitative
analysis work remains to be done to be able to derive the
value of the exponent. This is what we aim to develop in the

near future using a two-dimensional continuum model with an
appropriate rheological law.

F. Effective rheology

We look at the effective rheology in the second asymptotic
subdiffusive regime where μ is nearly constant during the
spreading. The recent models concerning the rheology of
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FIG. 13. Vertical profiles of the horizontal and vertical velocity (vx and vz) calculated at t = 5T (a, c) and t = 30T (b, d) respectively.
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FIG. 14. Time evolution of the effective friction coefficient μ for
different acceleration rates � at constant bumpiness λ = 1.

granular matter [9,19–23] show that dense unidirectional gran-
ular flows can be fairly well described using a single friction
coefficient that varies with an inertial dimensionless parameter
I , defined as the ratio of a microscopic grain rearrangement
timescale to a macroscopic flow timescale. This rheology
which may be seen as a generalization of the basic Coulomb
friction model, with a friction coefficient that varies according
to the local shear rate τ and confinement pressure P , is usually
written as

μ(I ) = τ/P = μs + μ∞ − μs

1 + I0/I
. (11)

The constants μs and μ∞ correspond, respectively, to a
minimum friction coefficient at low I and to an asymptotic
friction coefficient at high I values. In the case of the spreading
of a granular droplet, the macroscopic time is associated with
the duration for a grain to travel a distance d under the shear
velocityaω, while the microscopic time is given by the duration
of a free grain to fall over a distance d under gravity. This
thus gives I = tmicro/tmacro = (d/

√
gd)/(d/aω) = aω/

√
gd,

which is simply the ratio of two velocity scales.
In our numerical study, this inertial number I is varied from

0.6 to 2.5. The magnitude of the inertial number I gives usually
an indication about the nature of the granular flow [24]. In the
limit of vanishing I (I � 10−3), the flow can be considered
as shear independent (μ is constant and equal to μs). For
intermediate values of I (i.e., 10−2 � I � 10−1), this is the
so-called dense inertial regime with a rate-dependent flow. At
higher inertial number I � 1, the flow gets faster and more
dilute and quits the frictional regime governed by Eq. (11) to

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.5 1 1.5 2 2.5 3

μ

I

λ = 0
0.25
0.5

1

FIG. 15. Effective friction coefficient μ for different bumpiness
values λ. Straight lines are the best fits.

enter a collisional regime which is well described by the kinetic
theory for dissipative granular gas [25].

The frictional μ(I )-rheology is usually complemented by
an additional relationship which states that the solid fraction
φ is a decreasing function of the sole parameter I . During
the last decade, a large number of experimental and numerical
studies confirm the relevance of the frictional μ(I )-rheology
for unidirectional dense granular flows as we report in Table IV.

In the present work, we analyze the asymptotic spreading
regime in the framework of the frictional μ(I )-rheology. As
there is one-to-one correspondence between the inertial num-
ber and the reduced vibration acceleration, it is relatively easy
to compute the variation of the effective friction coefficient μ

of the granular droplet with the base and the mean solid volume
fraction φ as a function of the inertial number. The computed
values of μ and φ in our study are both averaged over two
vibration periods during the second regime of the spreading.

In Figs. 15 and 16, we present the resulting curves μ(I )
and φ(I ) obtained for the four different basal bumpiness.
Concerning the effective friction, we can first note that the
obtained values never exceed the microscopic friction used
in the simulation (i.e., μ < μp = 0.5). Second, we observe a
nice linear behavior up to high inertial numbers. The effective
friction coefficient μ can therefore be well approximated by
an affine function of I

μ(I ) = μ0 + a I . (12)

The fit coefficients μ0 and a are given in Table V. μ0 shows
a slight dependence with the base bumpiness: it increases
from 0.13 to 0.17 when λ goes from 0 to 1. In contrast, the

TABLE IV. Nonexhaustive summary of the μ(I ) rheology laws found in the literature. The μ̃(I ) equation in Ref. [32] represents a unified
rheological model based on a modified Pouliquen law in addition to other corrections due to Bernoulli pressure and Bagnold rheology.

Flow Study I μ(I ) law References

Plane shear 2D-DEM �0.3 μ0 + aI [19]
Plane shear 2D-DEM �0.1 μ0 + aIα [26,27]
Plane shear 3D-DEM ∼1 μ0 + aI [28]
Annular shear 2D-DEM �0.1 μ0 + aI + be−(I/C) [29]
Annular plane shear Experimental �0.1 μ0 + aI [30,31]
Pile between rough sidewalls Experimental �0.5 Eq. (11) [23]
Vibro-fluidized granular film Experimental ∼1 a − b(I − Ic)2 [8]
Vibro-fluidized and vane shear Experimental [10−5,10] μ̃(I ) [32]
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FIG. 16. Mean packing fraction for different bumpiness values λ.
Straight lines are the best fits.

slope a exhibits a strong dependence of the base bumpiness
since it rises from 0.03 to 0.11. Third, our results differ from
those predicted by the model developed in Ref. [8], where
the effective friction coefficient reveals a nonmonotonous
behavior. It presents a maximum seen as a transition from a
shear thickening regime at low I and a shear thinning at higher
values.

The solid packing fraction φ also exhibits a linear variation
with the inertial number I that can be approximated by

φ(I ) = φ0 − b I. (13)

The fit coefficients φ0 and b are given in Table V. The depen-
dence of these coefficients on the basal bumpiness contrasts
with that obtained for μ0 and a. We find that the slope b is
weakly dependent on the basal bumpiness, while φ0 decreases
significantly with an increasing bumpiness parameter λ. It is
noteworthy that the value of the slope b of order of 0.01 is
smaller than the standard value of 0.2 usually reported in the
literature. We also note that the behavior of the effective friction
coefficient μ and the packing fraction φ law is akin to those
seen in the case of cohesive granular dense flows. The basal
bumpiness λ induces similar effects to those of the intensity of
cohesion on the variations of μ(I ) and φ(I ) [33].

IV. CONCLUSION AND OUTLOOK

Using discrete element method simulations, we studied the
spreading of a granular droplet on a horizontally vibrated
substrate. We used a variety of substrates with different
bumpiness. We show that during a short transient, the granular
droplet takes a parabolic shape as observed experimentally and
then adopts a triangular shape for later times up to the end of
the simulation. We also find that the spreading dynamics is
governed by two distinct regimes: a superdiffusive at the early
stages, followed by an asymptotic subdiffusive regime. These
results contrast with the experiment where we observe only
the second subdiffusive regime [8]. We have identified that

TABLE V. Fitting parameters of the effective friction μ = μ0 +
aI and the packing fraction φ = φ0 − bI corresponding to different
basal bumpiness λ.

λ 0 0.25 0.5 1
μ0,a 0.13, 0.03 0.15, 0.04 0.16, 0.07 0.17, 0.11
φ0,b 0.62, 0.01 0.61, 0.01 0.60, 0.01 0.59, 0.01

the superdiffusive regime is driven by surface flows similar to
avalanches on a granular pile, while the subdiffusive regime is
governed by a bulk flow that can be modeled by a nonlinear
diffusion equation leading to a 1/3 scaling exponent as shown
in Ref. [8]. The surface flows are found to be much more effi-
cient to spread the droplet and lead to a superdiffusive regime.
The transition is also marked by a change in the evolution
of the basal friction. Indeed, in the first regime, the effective
friction coefficient increases during the spreading, while in the
second regime, the friction reaches a plateau.

Varying the basal bumpiness has no strong impact on the
droplet morphology or on the scaling laws of the spreading: the
triangular shape of the profiles is persistent, and the spreading
is still characterized by two distinct regimes with scaling
exponents weakly dependent of the bumpiness.

Finally, we observe in the asymptotic subdiffusive regime
that the basal friction coefficient is a linear function of the
inertial number. We also show that the packing fraction is a
decreasing linear function of the inertial number in accordance
with the frictional μ(I )-rheology. Importantly, our simulation
reveals that the effective friction coefficient and the droplet
packing fraction are strongly dependent on the base bumpiness.

As further work, it would be worthwhile to develop a
quantitative analysis based on continuum model in order to
derive the value of the exponent in the superdiffusive regime.
The key issue is to use an appropriate rheological law. The
first attempt would be the use of the classical μ(I )-rheology or
nonlocal rheological laws as such proposed in Refs. [26,34].
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