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Rheological transition in simple shear of moderately dense assemblies of dry cohesive granules
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The rheology of homogeneous cohesive granular assemblies under shear at moderate volume fractions is
investigated using the discrete element method for both frictionless and frictional granules. A transition in rheology
from inertial to quasistatic scaling is observed at volume fractions below the jamming point of noncohesive
systems, which is a function of the granular temperature, energy dissipation, and cohesive potential. The transition
is found to be the result of growing clusters, which eventually percolate the domain, and change the mode of
momentum transport in the system. Differences in the behavior of the shear stress normalized by the pressure
are observed when frictionless and frictional cases are compared. These differences are explained through
contact anisotropy after percolation occurs. Both frictionless and frictional systems are found to be vulnerable to
instabilities after full system percolation has occurred, where the former becomes thermodynamically unstable
and the latter may form shear bands. Finally, implications for constitutive modeling are discussed.
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I. INTRODUCTION

As the size of particles in a granular flow is decreased, reach-
ing the μm size range, a number of phenomena appear that
are otherwise unimportant for larger particles, e.g., millimeter
sized. Cohesion in the form of van der Waals forces, liquid
bridging, and long-ranged electrostatics become important.
Repulsive electrostatics may also be present. The cohesive
mechanisms cause a number of interesting differences in the
characteristic flow behavior when compared to noncohesive
systems. For example, a marked increase in yield stresses
is observed in the presence of cohesion [1–5]. Additionally,
in numerical experiments a quasistatic stress scaling, where
shear stress does not depend on shear rate [6], is observed at
volume fractions well below volume fractions characteristic of
jamming for noncohesive systems [1,3]. Both of these effects
have been observed to cause plug flows in gravity-driven chute
flows of granular media, where the size of the plug grows
with cohesion strength [7]. On the other hand, in split cell
rheometers, cohesion is observed to increase the size of the
shear band, decreasing the size of the static areas of the flow
[8]. In this paper we attempt to explore some of the origins of
these behaviors from a physics-based microscopic viewpoint,
and elucidate some of the challenges in constitutive modeling
of cohesive materials.

We focus primarily on dry cohesive systems with van der
Waals cohesion. Systems where the effect of short-ranged
cohesion is important are widespread, though the focus in this
study is drawn to rheology of moderately dense systems, φs =
0.55. On the industrial side, accurate models for μm-sized
powder rheology are vital for the simulation and modeling
of Geldart C powders in fluidized bed processes [9–13]. In
processes that depend intimately on the resultant flow field
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kinematics, such as in powder mixing [14] and materials
processing [15], rheological models of dry cohesive powders
must predict the correct yield stress behavior in order to achieve
success. In extraterrestrial settings, rheology is of importance
for understanding the transport of and contamination by Mar-
tian and lunar regolith [16] as well as for asteroid mining
[17,18]. The discrete element method (DEM) will be used
to extract rheological scalings that are relevant to constitutive
modeling in these many different contexts.

The most unique phenomenon brought on by cohesion
is a transition from fluidlike behavior to solidlike behavior,
which directly depends on both shear rate and cohesive
strength [1,3,19]. This transition is observed to occur both
in the presence [1,3] and absence of friction [19,20]. Several
generic characteristic features also accompany this transition,
which are observed in different combinations of frictional and
frictionless systems, two and three dimensions, and at constant
volume or constant pressure. An increase in particle contacts is
observed as the shear rate is decreased or cohesion is increased
near the transition for frictional systems [3], reminiscent of
the transition with volume fraction in noncohesive systems.
Shear banding [3–5,8,21] and more elaborate instabilities [20]
have also been observed as cohesion is increased in very
large systems. However, as cohesion is increased beyond some
critical value, shear banding may disappear [3]. An increase
in a correlation length scale for correlated nonaffine particle
velocities is also observed [22].

Some noteworthy differences from noncohesive systems
have also been reported in the study of cohesive granular
systems. For frictionless systems below a certain shear rate
or strength of cohesion, homogeneous macroscopic systems
become thermodynamically unstable [20] and can exhibit
negative pressures [5]. Most puzzling is that the transition
in frictionless systems is considered energetic in nature, de-
pending only on collisional energy dissipation, van der Waals
potential, and shear rates. The rheological behavior of frictional
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systems, on the other hand, has often been collapsed by a
dynamic scaling, i.e., using the cohesive force at contact
[1,3,22]. Whether both scalings are correct and how the
transition between scalings happens for vanishing interparticle
friction remain unanswered.

Moreover, a clear microscopic and mechanistic picture of
why this transition occurs, and an explanation for the differ-
ences between frictional and nonfrictional cases, is lacking. It is
known from the standpoint of the kinetic theory of frictionless
cohesive spheres that aggregation of particles is sensitive to
granular temperature, which scales with the macroscopic shear
rate squared [10,19,23,24]. How this aggregation mechanism
fully connects to the observed rheological transition remains
an unanswered question.

In our DEM studies, we find an important connection for
both frictional and frictionless systems between the fluid to
solidlike transition and the ratio of the cohesion energy to the
granular temperature and explore this connection in detail. For
frictionless systems the scaling is robust for all coefficients of
restitution. Microstructural measures are introduced, such as a
cluster length scale, which clearly shows that the mechanism
behind the rheological transition in frictionless systems is
percolation of the domain by particle contact networks. Addi-
tionally, nontrivial trends in the shear stress ratio with varying
friction are explored and connected to contact anisotropy.

The results obtained herein hint at some difficulties in
the constitutive modeling of cohesive granular flows. It is
now understood that in ordinary granular flows, nonlocal
rheological behavior is tied to the granular temperature both
through interaction with boundaries [25,26] and increase in
local nonaffine velocity correlations that determine collisional
energy dissipation [27,28]. The temperature in these cases is
not slaved to the local shear rate and pressure, as is the case in
the so-called μ(I ) rheology [29]. We expect that the sensitive
dependence of the rheology on granular temperature will also
mean that additional transport models for variables, namely
temperature, will need to be considered in addition to flow
kinematics. Lastly, the emergence of new diverging cluster
length scales must also be accounted for in any proposed
rheological model.

II. METHODS

In this paper we aim to examine the physical basis for
the transition in rheological scaling in simple shear, from
inertial to quasistatic scaling, for moderately dense assemblies
of cohesive granules. To accomplish this analysis we have per-
formed DEM simulations of simple shear using the molecular
dynamics code LAMMPS [30]. Particles in this methodology
interact not only due to the ordinary elastic and dissipative
models that are active when particles are in contact, but also
due to an attractive potential well, which extends beyond
contact [19,23]. A generic form of the normal component of
the combined contact force law and cohesive force law are
given by

F(ij )
n =

⎧⎪⎨
⎪⎩

(Reff |δ|)p
( − bnv(ij )

n − knδn̂(ij )
) + Fc,vdW

− AReff

6(δ + d0)2n̂(ij )

: δ � 0

: δ > 0
,

(1)

where bn and kn are the normal damping and spring constants
of the force law. These forces depend on n(ij ), the normal sepa-
ration vector from particle i to particle j , the surface separation
or overlap δ = |n(ij )| − (R(i) + R(j )), and pair normal velocity
v(ij )

n . Lastly, a caret indicates a unit vector. The van der Waals
force is the source of cohesion in this model and is determined
by the Hamaker constant A, effective radius at contact Reff =
R(i)R(j )/(R(i) + R(j )), which may differ from the radius of the
particle, and the interatomic separation distance d0, typically
taken to be anywhere from 0.167–0.4 nm [1,12,19,31]. In this
model, the van der Waals force saturates at contact and hence
the cohesive force between a pair of particles in contact is given
by Fc,vdW = −n̂(ij )AReff/(6d2

0 ). This model is consistent with
approaches for nearly rigid particles where the Tabor parameter
is sufficiently small μT < 0.1 [32] and the radius of contact
is sufficiently large Reff � d0 [31]. Finally, the exponent p is
used to select between contact force models such as the linear
spring dash pot [33], p = 0, and the Kuwabara-Kono model
p = 1/2 [34,35].

The tangential forces are governed by similar models given
by

F(ij )
t =

⎧⎪⎨
⎪⎩

(Reff |δ|)p
(
−btvt − ktu

(ij )
t

)
−μf |Fn|û(ij )

t

0

: δ < 0,|Ft | � |μf Fn|
: δ < 0,|Ft | � |μf Fn|

: δ > 0

,

(2)
where a subscript t is used to indicate the tangential counterpart
of the normal definitions. Additionally, ut is the elastic surface
displacement. The tangential force saturates as well, when
a yield criterion is met, see Eq. (2). Thereafter, a Coulomb
friction law is used, where μf is the coefficient of friction.
The tangential spring stiffness is taken to be kt = 2kn/7 [36],
when friction is present. The tangential damping is set to zero
and not considered in our treatment.

The parameter space of interest for these systems is best dis-
cussed in nondimensional terms. The normal force law given
in Eq. (1) produces four independent nondimensional groups
[19]. The groups for the linear spring dash-pot variant that we
will choose to use are the ratio of the attractive potential at con-
tact to the kinetic energy in the relative normal direction Hap =
2AReff/(6meffv

2
refd0), the modified Bond number [1] Bo� =

AReff/(6d2
0 kD), the coefficient of restitution ε, and the scaled

particle stiffness k� = k/(ρDv2
ref ). Note that the coefficient

of restitution is given by ε = exp (−π/
√

(4knmeff )/b2 − 1).
The tangential force law also produces the important nondi-
mensional group already introduced μf . Here the effective
mass is given by meff = m(i)m(j )/(m(i) + m(j )) and ρ is the
particle density. Since we are considering simple shear flows
of granular particles the reference velocity vref can be chosen
to be one of two macroscopic velocity scales: the granular

temperature vref = √
Tg =

√
〈v′(i)

k v
′(i)
k 〉/3 or the velocity scale

defined by the shear rate vref = γ̇ D. Both of these reference
velocity scales will be used to define a macroscopic Haα

parameter, where α is a placeholder for the shear rate γ̇

or temperature T . Additional macroscopic nondimensional
groups are then T/(γ̇ D)2, the solid volume fraction φ, inertial
scaling of pressure related to the so-called inertial number
[29,37] by P/(ρ(γ̇ D)2) = I (−2), and of course any number
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FIG. 1. The behavior of εeff the effective coefficient of restitution
is plotted for several values of ε. Systems with higher intrinsic
inelasticity require weaker potential wells to lead to sticking.

of ratios between combinations of entries in the stress tensor,
e.g., shear stress ratio μ = σxy/P .

Aarons and Sundaresan [1] and Gu et al. [3] investigated
a transition in stress behavior in sheared cohesive assemblies
that occurs at volume fractions below the jamming transition
for noncohesive particles. In this paper we are interested in
the physical underpinnings of the transition of assemblies of
cohesive particles with and without friction. Toward this end
we have chosen to simulate a solid volume fraction of φ =
0.55, while varying other relevant parameters such as ε, Haγ̇ ,
Bo�, and μf .

Previous studies on head-on collisions of cohesive particles
have revealed that for particles that are sufficiently hard,
e.g., with stiffnesses satisfying Bo� < 10−5 for ε = 0.9 and
D/d0 = 104, the restitution behavior is purely a function of
the parameter Hap and ε [12,19]. Here the reference velocity is
the initial relative velocity between a pair of particles separated
beyond the strong cohesive part of the well, at least 10d0. The
equation for the effective coefficient of restitution εeff is then
given by

εeff =
{

(ε2 − (1 − ε2)Hap)1/2

0

: vref ∈ (−∞,vcrit)

: vref ∈ [vcrit,0]
, (3)

where the critical initial velocity is vcrit =
−

√
2AReff (1 − ε2)/(6d0meffε2) and the corresponding

Hacrit = ε2/(1 − ε2). The plot of this restitution behavior can
be found in Fig. 1. This equation first appeared in a treatment
by Dahneke [38], who was investigating the restitution
behavior of μm-sized latex spheres impacting a wall. Figure 1
shows two important behaviors: (i) near the critical velocity
an increase in cohesion or decrease in velocity increases
dissipation in a particle collision; (ii) particles with lower
restitution coefficient stick together more easily. We expect
this change in restitution and sticking behavior brought on
by cohesion to play a significant role in the formation of
structure during the regime transitions observed in simple
shear, especially for frictionless particles.

X

Y

Z

FIG. 2. The appearance of clusters in a snapshot where Haγ̇ =
0.72, Bo� = 4.2 × 10−10, and D/d0 = 104.

DEM simulations of simple shear are carried out using a
triclinic deforming domain, equivalent to the Lees-Edwards
boundary conditions [39] at constant volume. In this setup
energy is added to the kinetic energy of the domain through the
usual mechanism of viscous heating Ėkin = σxyγ̇ . This heating
generates fluctuations in the particle velocities, which are
eventually dissipated by collisional and frictional dissipation
mechanisms. We expect that for frictionless systems if the
characteristic velocity set by the granular temperature is much
greater than the critical velocity, cohesion will play little to no
role.

As the temperature approaches its value corresponding to
the critical velocity, the formation of larger clusters is to be
expected (see Fig. 2). Eventually, we expect that clusters must
become large enough to span the computational domain. The
percolation of clusters changes the mechanism of momentum
transfer from collisional to yielding. The shear stress should
then become quasistatic in nature, i.e., σxy ∼ γ̇ 0, consistent
with dense flows near the jamming transition for noncohesive
particles [3,40]. How exactly this transition occurs and how
it affects the formation and breakup of aggregate structure
remains a mystery.

In the following section we first explore the behavior of
macroscopic quantities, such as shear stress, temperature, and
shear stress ratio, near the inertial to quasistatic transition.
The relevant nondimensional parameters used in the following
studies is given in Table I. We then look at microscopic
and cluster measures as a means to explain the emergence
of different scaling behaviors in the macroscopic variables.
Finally, we look at the contact anisotropy to explain differences
in shear stress ratios with and without friction.

III. RESULTS

Section III is divided into four subsections. The first section
explores the behavior of macroscopic observables, such as
shear stress, shear stress ratio, and granular temperature, at
shear rates both above and below the transition. Differences
that arise between frictionless and frictional systems are also
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TABLE I. Parameters used in simple shear simulations of cohe-
sive granules.

Parameter Values

φ 0.55
ε 0.7; 0.8; 0.9; 0.95; 0.99
Haγ̇ 7.2 × 10−5–7.2 × 102

Bo� 4.2 × 10−14–4.2 × 10−5

k� 2 × 108–1013

D/d0 104–105

μf 0; 10−5; 10−4; 10−3; 10−2; 10−1; 5 × 10−1;

discussed. The second section focuses on microscopic quan-
tities such as the local average potential and average cluster
length scales. Scaling of all these quantities is also discussed.
In the third section, a connection between contact anisotropy
and shear stress ratio behavior is discussed. Finally, challenges
in constitutive modeling are discussed.

A. Energetic collapse of stress

The shear studies presented here are all performed at a
volume fraction, φs = 0.55, below the jamming transition as
defined by Chialvo et al. [40]. For noncohesive particles,
momentum transport still occurs primarily due to collisional
transport, and Bagnold [41] or inertial scaling of the stress
is observed. Previous studies in the moderately dense regime,
i.e., φs = 0.45 − 0.6 at constant volume for cohesive frictional
particles have shown an additional transition in the rheology
due to the sticking and clumping of particles [1,3,42]. This
transition was shown to depend on the cohesive force scaled by
inertial terms, i.e., the product Bo�k�. Recent simulations [20]
and theory [43] for sheared systems of cohesive frictionless
particles, modeled through a Lennard-Jones potential, also
reveal a transition in the rheological behavior. When cohesion
is below some threshold value, dispersed particle assemblies
were obtained [20]. However, when the shear rate became
small enough or cohesion large enough, particle assemblies
became thermodynamically unstable [43] and formed various
patterns. The location of the thermodynamic instability was
shown to scale with both the inelasticity α = 1 − ε2 and a
term s analogous to Ha−1

γ̇ , in agreement with Eq. (3). We now
explore how this transition occurs using our force model in
Eq. (1), and how the introduction and variation of friction
changes this transition.

Figure 3(a) displays the results of shear simulations for
frictionless particles at different values of inelasticity, Haγ̇ ,
Bo�, and D/d0, i.e., varying the Hamaker constant, shear
rate, and particle size relative to the interatomic distance.
There is indeed a transition in the shear stress from inertial to
quasistatic scaling for all cases. The location of the transition
appears to depend only on the inelasticity of the equivalent
noncohesive model, with the more elastic systems requiring
lower shear rates to become fluidized and achieve inertial
scaling, as compared to less elastic granules. This is consistent
with expectations from Eq. (3) for εeff which determines the
critical velocity. We note that the critical value of Haγ̇ is not
identical to Hacrit . For example, for ε = 0.99 the critical value
of Hacrit ≈ 50 while Haγ̇ ,crit ≈ 10. Further, the scaled shear
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FIG. 3. (a) The collapse of shear stress for frictionless spheres
with squared inverse shear rate, i.e., Haγ̇ ∼ γ̇ −2. The collapse is also
energetic depending only on the coefficient of restitution. (b) The
same collapse is given for spheres with varying strengths of friction
and same coefficient of restitution. The collapse remains energetic.

stress in the quasistatic regime is practically identical for all
cases. The most important takeaway from this plot is that the
two values of D/d0, as used in the ε = 0.9 cases, yield the same
qualitative behavior (location of the transition) and quantitative
behavior (magnitude of the shear stress). In the model used,
two different values of D/d0 allow us to determine whether
a scaling is truly dynamic or energetic. A dynamic scaling
[1,3] is scaled by a characteristic cohesive force proportional
here to d2

0 , while an energetic scaling [19,23,43] utilizes a
cohesive potential �vdW at contact, proportional to d0. When
two different values of D/d0 are compared, a collapse of
the stress can be only energetic or dynamic, but not both.
The collapse here is clearly energetic. We may infer that it
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is the granular temperature, i.e., velocity fluctuations, that is
important in determining transition behavior here, rather than
a coherent forcing imposing the shear profile in the mean
velocity.

Cases with varying strengths of friction from quite small
μf = 10−5 to rather largeμf = 0.5 are also shown in Fig. 3(b),
all for a coefficient of restitution of ε = 0.9. A similar behavior
is found here in regard to the effect of friction. The critical value
of Haγ̇ decreases with increasing friction, meaning that as
friction is increased a higher shear rate is necessary to achieve
fluidization. We notice that for small enough friction, e.g.,
μf � 10−4, there is practically no difference between stress
scaling in frictionless and frictional systems. The two most
important observations are (i) the location of the transition
in stress scaling remains energetic in the presence of friction
for μf = 0.5 and differing D/d0 and (ii) the scaled stress in
all regimes scales energetically. The origin of this transition
with and without friction appears to be brought about primarily
by energy loss in collisions leading to sticking, which is only
affected by the coefficients of restitution and friction.

Finally, we note that the frictional cases saw many instabili-
ties emerge in the quasistatic regime, e.g., shear banding [3,43],
so-called flying ice cubes, and crystallization. Because those
instabilities are of little interest in the present study, data points
exhibiting the instabilities have been removed from the data
presented here. Nonetheless, all data in the inertial regime were
stable, and the critical value of Haγ̇ remained solely determined
by ε and μf .

Now we explore the transition in more detail, namely a
collapse using the granular temperature rather than shear rate
as a characteristic velocity scale. Figure 4 displays the shear
stress and temperature scaling for frictionless systems as a
function of HaT . The location of the transition in stress for
frictionless systems occurs at a unique HaT for all values of ε,
with HaT ,crit = 1. Minor differences in stress magnitudes occur
in the inertial regime for different ε due to differences in dash-
pot strength. Lastly, the frictional cases do not all transition at
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FIG. 4. An improved collapse of shear stress, with the character-
istic velocity scale based on temperature rather than shear rate.

HaT = 1. A more detailed characterization of the behavior of
the temperature, and an explanation as to why collapse occurs
at HaT = 1 can be found in Appendix A.

The often used μ(I ) rheology [29] focuses on the behavior
of the shear stress ratio μ = σxy/p or apparent friction co-
efficient of the granular assembly. Cohesion is observed to
increase the apparent friction, allowing for different values
of μ to be observed at the same volume fraction, as was
previously observed [3,21,22]. Here we are interested in how
the pressure might scale differently from the shear stress.
Figures 5(a) and 5(b) display the apparent friction for fric-
tionless and frictional systems, respectively. In the absence
of friction, we see that all cases more or less scale the same
in both the inertial and quasistatic regimes. The cases in the
quasistatic regime show much larger values for the apparent

μ
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FIG. 5. (a) The behavior of the apparent friction is compared
among frictionless assemblies with differing coefficients of restitu-
tion. (b) The apparent friction for cases with varying friction and
ε = 0.9.
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friction as compared to that in the inertial regime, i.e., low
HaT . Small differences are also observed in μ due to the
coefficient of restitution as well. Most interestingly here we
observe values of μ that exceed unity, consistent with previous
studies in the moderately dense regime [19,22]. The reason
for this is that the frictionless systems are observed to be
metastable for HaT > 10, with negative pressures developing.
Negative pressures have also been observed in frictionless
studies of two-dimensional (2D) attractive systems [5]. As the
pressure approaches zero, the apparent friction may become
large. In a large enough domain these systems should phase
separate into dense and dilute phases, consistent with prior
studies [4,20]. This phase separation is beyond the scope of
this work.

In frictional cases, it is seen that if the friction is small
enough, e.g., μf < 0.1, similar behavior in the apparent
friction is observed. With higher particle friction, the apparent
friction begins at μ ≈ 0.35 and saturates at a value of μ ≈ 0.5
in the quasistatic regime. For very low friction, μf < 10−4,
some values of μ are still greater than unity. Here again,
negative pressures are observed. The microstructural origin for
the differing behaviors in μ for large and infinitesimal friction
will be explored in Sec. III C.

B. A signature of transition in rheology

The physical underpinnings of the inertial to quasistatic
regime transition in granular flows are now explored. A
strong correlation has been observed between particle sticking
brought on by enhanced collisional dissipation due to cohesion,
and the location of the regime transition. This leads us to
believe that it is the formation of clusters that is ultimately
responsible for the regime transition. An average length scale
〈ξi〉 is now introduced in order to observe this transition

ξ l
i = max

n
(jk)
i

2
∀ j,k ∈ C l

〈ξi〉 = 1

Np

Nc∑
l=1

Np,lξ
l
i . (4)

Here n(j,k) is the normal separation vector between centers of
particles j and k, C l is the set of particle indexes in cluster l,
and Nc and Np,l denote the number of clusters and number
of particles in a cluster, respectively. Note that we consider
particles to be clustered with one another if they are in physical
contact, i.e., δ � 0. It has also been shown that the length
scale is not significantly affected by the stiffness of particles
once clusters begin to develop and if particles are hard enough
[19], i.e., Bo� < 10−5. The clustered contacts endure on much
longer time scales than collisional time scales. The coordinate
system that ξi is based on is aligned with the original box
dimensions. Note that this quantity is not a true vector because
it does not transform as one. This length scale represents the
farthest that a disturbance to a particle can travel on average
through an aggregate, or half the length of an aggregate in the
ith direction. If this length scale reaches half the size of the box
then the box is percolated in the ith direction, and a disturbance
can reach any location in that direction. The direction of interest
here is the shear direction, since shear is maintained through
momentum being imparted on particles crossing the boundary
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FIG. 6. (a) The scaling of the average cluster length-scale in the
shear direction is given for frictionless spheres, which scales as Ha2

T .
Percolation is observed for HaT > 1. (b) The cluster length scale is
given for varying coefficient of friction. Percolation does not correlate
with the transition for all cases.

in this direction. There are other measures of the length scale of
particle clusters that do not depend on the coordinate system,
such as the radius of gyration tensor. However, this measure is
also sensitive to the packing of particles (i.e., dimension of the
aggregates). While they behave similarly to the length scale
introduced here, they do not clearly demonstrate the physics
of the diverging length scale. Finally, we note that monomers
do not contribute to the length scale ξ l

i , but they do contribute
to the average length scale 〈ξi〉 due to the normalization.

We now look to the average cluster length scales in Figs. 6(a)
and 6(b). The reported length scale 〈ξ�

3 〉 = 2(〈ξ3〉 − 〈ξ3,0〉)/L
subtracts off the value observed for an equivalent case without
cohesion and is normalized by the height of the cubic domain.
The value of 〈ξ�

3 〉 at low HaT and Haγ̇ should be zero and the
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scatter is merely due to statistical variability. Impressively, if
we compare the average length scale for frictionless particles
in Fig. 6(a), we find that the length scale grows exactly as
Ha2

T , which is predicted from scaling arguments for population
balances in Appendix B. For the case of ε = 0.7 this occurs not
only for HaT � 1 but also until the length scale saturates at the
size of the box. Percolation of the contact network is the result
of the average length scale reaching the size of the box, and
coincides well with the inertial to quasistatic regime transition
at HaT = 1. Animations to demonstrate the percolation for a
few cases with varying Haγ̇ are provided in the Supplemental
Material [44]. There we observe that when Haγ̇ is small, few
aggregates are observed and are mostly dimers. As Haγ̇ is
increased, large fluctuations in aggregate size are observed,
which is consistent with phase transition phenomenology. At
the largest values of Haγ̇ only a single aggregate is observed
with small transient aggregates occasionally breaking off and
being reabsorbed. The variance in the cluster size distribution
(not shown for brevity) peaks during the stress transition.

For frictional cases, we observe that percolation does not
always coincide with the rheological transition. For cases
where μf = 0.5 and D/d0 = 104 with the same values of
Haγ̇ but different shear rates, differing values of 〈ξ�

3 〉 are
observed. All three contain an inflection point at the same
Haγ̇ , but percolation, as defined by this quantity, is observed at
different points. Note that all cases yield shear stresses that are
practically identical. The differences in length scales are likely
due to differences in the stiffness and thus contact duration.

For frictional cases, a better structural indicator of the stress
transition is a jump in the average local cohesive potential,
〈�loc〉/〈�vdw〉. This is the average total local potential of a
particle and all of its neighbors normalized by the potential
between two particles in contact, which has been used pre-
viously to characterize aggregates in shear flow of nanoscale
particles [45]. Due to the extremely short-ranged nature of
these potentials, this is a good surrogate for the coordination
number in these stiff systems. Figures 7(a) and 7(b) give
the scaled potential for both frictionless and frictional cases.
For strongly frictional cases μf � 0.1, the location of the
transition coincides with a marked rise in 〈�loc〉/〈�vdw〉
to 〈�loc〉/〈�vdw〉 ≈ 2 in agreement with Gu et al. [3]. For
cases with smaller friction, the jump is more extreme, to
〈�loc〉/〈�vdw〉 ≈ 4. Increasing Haγ̇ at larger μf generally
leads to smaller 〈�loc〉/〈�vdw〉. This seems to be in agreement
with the notion that chains of particles are more stable against
buckling as friction is increased, so that fewer redundant
contacts are needed to stabilize the local particle arrangement.
Finally, we note that all cases have 〈�loc〉/〈�vdw〉 < 6, the
coordination number for isostatic jamming of frictionless
spheres [46].

C. Contact anisotropy

Lastly, we examine the microscopic ordering that gives rise
to the observation that including friction leads to an increase
in shear stress in the quasistatic regime but a decrease in shear
stress ratio. Evidence has already been shown in Fig. 7(b)
that lower friction leads to more compact aggregates. The
virial components of the stress tensor σij = �k �=ln

(kl)
i F

(kl)
j /V

show us that the alignment between forces and lines of

Φ
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FIG. 7. (a) The scaled average local cohesive potential is given
for frictionless cases. A jump in the potential is shown for all cases at
HaT = 1. (b) The scaled average local cohesive potential for frictional
cases shows a marked increase that correlates well with the stress
transition.

center for particles in contact is important in determining
how the shear stress and shear stress ratio should scale. Here
V is the volume of the simulation domain. To that end we
extract the radial distribution function at contact in spherical
coordinates g(r = D,θ,φ) and decompose this function into
tesseral spherical harmonics. Here θ is the polar angle at
which particles are separated in relation to the axis of shear
in the counterclockwise direction, while φ = 0 is aligned with
the negative streaming direction. Spherical harmonics are an
extension of Fourier series with spherical periodicity rather
than circular periodicity. In this sense, spherical harmonics
are a natural extension to the Fourier decomposition used to
represent contact anisotropy in two dimensions [21].
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The first spherical harmonic mode is isotropic, and contains
information about the isotropic radial distribution function
at contact, i.e., gc = g(r = D). The next spherical harmonic
mode that we consider has both the reflective symmetry
required in g(r = D,θ,φ) and also aligns with the eigenvec-
tors (compression and extension) of the imposed shear flow,
while ignoring additional structure in the transverse direction.
Lower-order modes were also computed as discussed below
but yielded amplitudes close to zero. The decomposition in
orthonormalized tesseral spherical harmonics is as follows:

g(r = D,θ ′,φ′) = u0
0Y

0
0 + u1

2Y
1
2 + . . .

= 1

2
√

π

(
u0

0 +
√

15u1
2 cos φ′ cos θ ′ sin θ ′ + . . .

)
. (5)

The mode coefficients are given by um
l , while the mode is

given by Ym
l . The subscript l and the superscript m are indexes

for the series terms which go from (0,∞) and (0,l), respec-
tively. The magnitude of the mode is then found via the orthog-

onality condition as δlj δmk =
∫ π

0

∫ 2π

0
Ym

l Y k
j sin θ ′dφ′dθ ′. The

new coordinates {φ′,θ ′} are the result of performing a rotation
on the coordinate system {φ,θ} by −θshift about the transverse
axis. The angle −θshift is chosen such that the magnitude of the
first shear anisotropic mode is maximized. This is consistent
with a phase shift in Fourier analysis of two-dimensional flows
[21]. For reference, the anisotropic mode of interest is shown
in Fig. 8 for θshift = 0, where it is clear that a peak occurs
in the direction of maximal compression and a valley in the
direction of maximal expansion. In order to reduce the error in
integration in the orthogonality condition due to nonuniform
bin areas, the sphere is binned in recursively triangulated bins
from an initial octahedron with vertices aligned in the {x,y,z}
directions, rather than evenly distributed bins in φ′ and θ ′. This
method eliminates any sampling bias due to unequal areas,
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FIG. 8. A depiction of the spherical harmonic mode u1
2. The

sphere has been stretched according to the magnitude u1
2 at that

location. A peak occurs at (φ = 0,θ = pi/4) and a valley occurs at
(φ = 0,θ = 3pi/4).
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FIG. 9. (a) The first anisotropic mode for the frictionless cases
show a clearly the effects of temperature, shear rate, and cohesion
on the contact anisotropy as represented by u1

2. (b) The frictional
cases show that friction tends to enhance anisotropy in the presence
of cohesion.

proportional to sin θ ′, in the uniform φ′ and θ ′ sampling. The
inclusion of the phase shift in the polar angle θshift is intended
to capture the principal anisotropic mode in the case that the
principle directions of the fabric and shear flow are not aligned,
which has been observed in split bottom annular shear cell
simulations [8]. However, no significant phase shifting was
observed here.

Figures 9(a) and 9(b) display the interplay of shear, tem-
perature, cohesion, and friction on the contact anisotropy
through the inertial to quasistatic transition. If we focus on
the frictionless systems, we see that for all cases, the contact
anisotropy collapses above HaT >1. For HaT >1 the contact
anisotropy quickly plummets until above HaT >10, where
contacts in the system can be considered to be essentially
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isotropic. There contacts do not prefer any direction. The
isotropic behavior in the quasistatic regime is likely due to
unstable particle arrangements in the compression direction,
which quickly buckle and rearrange. At values of HaT <1, there
are differences in contact anisotropy u1

2 due to the coefficient
of restitution resulting in different temperatures. Each of
these different ε have differing scaled temperatures T/γ̇ 2. An
increase in scaled temperature, which serves to randomize local
velocities, is responsible for the decrease in contact anisotropy
brought on by imposed shear. Overall, in the case of frictionless
spheres the competition in contact anisotropy appears to be
between shear, which enhances anisotropy, and cohesion and
temperature, which decrease contact anisotropy.

For frictional cases, we see that friction tends to increase the
contact anisotropy in the quasistatic regime [cf. Fig. 9(b)]. Note
that these cases are on a log-log plot. For cases whereμf < 0.1,
friction increases the contact anisotropy from what is observed
in frictionless cases, though not substantially. For μf � 0.1,
we see that although the contact anisotropy is reduced in
the quasistatic regime compared to the inertial, consistent
with Berger et al. [21], the contact anisotropy remains in the
same order of magnitude. We attribute the enhancing effect of
friction on the contact anisotropy to the increased stability to
buckling and rearrangement due to compression. A reduction
in the number of sliding contacts was previously observed in
two-dimensional studies with cohesion and friction [22].

The origins of the phenomenology observed in the stress and
pressure become more obvious when accounting for contact
anisotropy. For example, the pressure for frictionless cases with
HaT > 10 is negative. The contacts in those cases are isotropic.
This means that there will be a larger population of particles
aligned in the extension direction of the flow, leading to
large cohesive tension forces. These forces eventually become
larger in magnitude on average than the compressive forces
in the spring-damper components. This reduction in pressure
due to isotropization of contacts is also responsible for the
greater-than-unity shear stress ratios for cases of HaT ≈ 10,
and the metastability for HaT > 10.

For frictional cases, the contact anisotropy is less affected
by cohesion in the quasistatic regime. There contacts remain
anisotropic, and are primarily aligned in the compression
direction. This in turn leads to larger pressures, as can be
seen in the definition of the pressure due to contacts via the
virial expression P = �k �=ln

(kl)
i F

(kl)
i /(df V ). There df are the

degrees of freedom. The only components of forces that con-
tribute to the pressure are those aligned with the lines of center
between the contacting particles. Here a greater population of
particles aligned in the compression direction implies a larger
pressure. By contributing to the contact anisotropy, friction
indirectly contributes to the smaller values of scaled stress μ

in the quasistatic regime. Undoubtedly, the above reasoning
also lends to arguments about anisotropy in normal stresses.
Though normal stress differences are of interest, they are
beyond the scope of the current study.

D. Implications for constitutive modeling

In this paper so far the effect of shear and particle properties,
such as the coefficients of restitution, friction, and strength of
cohesion, on rheology in a moderately dense system has been

considered. Although the effect of volume fraction is known to
have a substantial effect on the rheology of granular systems,
even without considering volume fraction, rich behavior is
observed that must be considered in continuum modeling of co-
hesive granular materials. The rheological transition between
quasistatic and inertial scaling was found to be energetic in
nature regardless of the strength or presence of friction at
moderate volume fractions. Moreover, the response of the
shear stress ratio intimately depends on the friction and volume
fraction of the material, through its affect on the fabric. It is
thus worth considering what general set of variables stress must
depend on for future work.

Many state-of-the-art cohesive rheological models that are
valid for all volume fractions make corrections to the μ(I )
rheology [3,21,22], which considers the stress to be slaved to
the local shear rate. Variables such as temperature and local
fabric, which transparently affect the stress through the virial
equation, must also be slaved. Moreover, these models have
chosen to use a dynamic rather than energetic scaling, which
has been shown here to be incorrect at moderate densities.
Recent work has also shown that there are a number of reasons,
such a rheology may be insufficient for describing granular
flows in general.

Several works have found that the temperature dynamics
are important in many flow setups using noncohesive granules,
and thus cannot be described by an unaltered μ(I ) rheology
[25,26,28]. There, temperature may be supplied to the sys-
tem from interactions with the boundaries and be eventually
dissipated elsewhere in the flow at large distances from the
boundaries. Moderately dense cohesive systems intimately
depend on the granular temperature, and hence, we expect
that the temperature dynamics will also be important for
cohesive granular systems. Additionally, we expect that the
cluster length scale should be intimately connected to the
correlation length affecting temperature dissipation due to
correlated collisions in the extended kinetic theory [27].

In fact, the study of the inertial-elastic transition in nonco-
hesive flows [27] gives tremendous insight as to how one might
begin to model cohesive systems, accounting for nonlocal
effects. In noncohesive systems there are at least three regimes,
which are determined by the volume fraction: inertial, corre-
lated collisional, and quasistatic. The inertial and quasistatic
regimes exhibit stress scalings with the shear rate that are
identical to those observed at low and high Haγ̇ , respectively.
The nice aspect of the extended kinetic theory approach is
the direct connection to kinetic theory, which allows one to
pose dependencies on temperature in addition to the shear
rate, and also includes a direct connection to enduring contacts
allowing for the treatment of soft spheres. The former aspect
enables the extended kinetic theory to treat inhomogeneous
problems, where temperature is not fully determined by the
local shear rate. An additional similarity is that in both the
noncohesive and cohesive transitions, viscosity would be seen
to increase with temperature as in a gas in the inertial regime
and decrease with temperature in the quasistatic regime as in a
liquid. However, there are a few notable differences introduced
by cohesion. A new variable becomes important in determining
regime boundaries, HaT . This ratio of cohesion energy to
fluctuation energy controls the transition from inertial to rate-
independent quasistatic at moderate densities, and makes the
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regime boundaries explicitly dependent on temperature, which
is not the case for noncohesive systems. The effects of enduring
contacts on the rheology is also evidently necessary once
percolation of the contact network has occurred.

Still, other works have found that during certain flow
protocols, such as shear reversal, that the microstructural
or fabric evolution must also be accounted for, and require
their own evolution equations [47,48]. We too found that the
orientation of contacts is vital for the correct prediction of
shear stress ratios in cohesive flows. How cohesion and its
interaction with friction affects the fabric dynamics at these
more moderate volume fractions is of interest. Lastly, how
the essential underlying nonlocal aspects of the rheology, i.e.,
percolation, should be accounted for remains a topic of interest.

IV. CONCLUSIONS

A regime transition in simple shear simulations of cohesive
granules from inertial to quasistatic scaling of the stress is
studied. This transition occurs at volume fractions much lower
than those where jamming occurs in repulsive systems. The
effects of both restitution and friction on the transition are
studied. For frictionless systems, the transition occurs at a ratio
of cohesive potential energy to fluctuating kinetic energy HaT

of unity, for any coefficient of restitution less than unity. A
unique yield stress is also observed for all frictionless systems.
Friction, on the other hand, is observed to increase both energy
dissipation and yield stress and yields nonunique locations for
the transition and yield stress. Nonetheless, the transition in the
stress only collapses with an energetic scaling of the stress and
shear rate, rather than a force or dynamic scaling. The scaled
shear stress behavior for all systems is also discussed.

The microscopic origin of the transition is further inves-
tigated. For systems without friction, percolation is solely
responsible for the transition in stress, correlating well with
the location of the stress transition at HaT = 1. Frictional
systems do not necessarily need to percolate at any time
step, but correlate well with a large increase in the local
cohesive potential energy. The average cluster length scale is
also observed to grow as T −2, near the transition in frictionless
systems. The scaling is accounted for by population balance
arguments for systems with large granular temperatures.

The microstructural origin of nontrivial variation in shear
stress ratio with shear rate and cohesive strength is explored.
In the quasistatic regime, friction tends to increase the yield
stress but decrease the shear stress ratio over a range of
coefficients of friction. Contact anisotropy is responsible for
this scaling, where friction may prevent the buckling of contact
chains in the direction of maximal compression. Without
friction, aggregates are easily compressed and contacts quickly
isotropize, leading to more contacts in tension and thereby
decreasing the pressure.

Lastly, some of the repercussions of the sensitivity of the
stress to fluctuating kinetic energy are discussed in light of
recent works in noncohesive systems. It is unlikely that the
temperature dynamics can be ignored in constitutive modeling
and continuum simulation of cohesive systems. Additionally,
differences in behavior between different sources of cohesion
such as liquid bridging and electrostatics also remain unclear
and merit further study.
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APPENDIX A: TEMPERATURE SCALING IN
HOMOGENEOUS SHEAR OF COHESIVE

GRANULAR PARTICLES

To understand the stress vs temperature scaling in Fig. 4
a little better, we look at the temperature response given in
Fig. 10. The trends for the temperature in the quasistatic
and inertial regimes here can easily be explained by an
energy balance. For small Haγ̇ , T/(γ̇ D)2 is constant, meaning
that T ∝ (γ̇ D)2, which one finds from simple dimensional
analysis. However, for large Haγ̇ , T/(γ̇ D)2 ∝ Ha1/2

γ̇ , which
translates to T ∝ γ̇ D. Note also that the transition between
these two scalings does not appear to be smooth and monotonic
in the chosen units shown.

The energy balance at steady state for these systems can be
seen as a competition between energy input from macroscopic
deformations and dissipation by the viscous dash-pot interac-
tion. The energy input into the temperature equation is equal
to viscous heating, i.e., Ėin = σxyγ̇ , while the dissipation of
energy is proportional to the energy dissipated by particles and
number of iterations. In the collisional or inertial regime the
rate of dissipation of granular temperature Ėdiss is proportional
to (1 − ε2)T 3/2 [49]. The extra T 1/2 arises from the collisional
frequency, which determines how often particles are in contact
within a given time period. The shear stress σxy is proportional
to (γ̇ D)2, and viscous heating Ėin is then proportional to
(γ̇ D)3. The end result yields the result that T ∝ (γ̇ D)2. The
dependence of T/(γ̇ D)2 on the coefficient of restitution in the
inertial regime is also explained by these arguments.

For quasistatic flows, particles are always interacting or in
contact and the stress does not depend on the shear rate. In
that case, one finds that the dissipation is directly proportional
to the temperature Ėdiss ∝ bT . The energy input also becomes
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FIG. 10. The scaling of temperature by shear rate for frictionless
particles.
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FIG. 11. (a) The temperature regions where the first-order terms
in the Taylor series expansions of Eq. (B1) are dominant. The orange
indicates the region for the breakup term, while the blue indicates the
region for the aggregation term. (b) The scalings of the steady-state
dimer population are compared showing that the population scales as
v4

crit,a/T 2
g in the area near the stress transition, using Eqs. (B1), (B2),

and a simple T −2.

Ėin ∝ γ̇ , since stress does not depend on the shear rate. Hence,
one finds that T ∝ γ̇ D for quasistatic cases. This makes
sense from the standpoint of physical intuition as well; in a
well-connected assemblage of spheres, fluctuating or nonaffine
velocities depend only on rearrangements that are caused by
the imposed deformation. Dissipation happens on a much faster
time scale (on the order of the collision duration) than particles
rearrangements caused by shear. This view is backed up by a
unique scaled temperature among differing ε in the quasistatic
regime. In a sense, each case with differing ε are kinematically
identical if particles are completely clustered.

Finally, in between these two scaling regimes we see a
dramatic drop in the scaled temperature, which is likely caused
by the sticking of particles and an essential loss of modes that
large fluctuating velocities can occupy [23]. This large drop in
T/(γ̇ D)2 is ultimately responsible for the collapse of the stress
transition at HaT = 1 for frictionless particle systems. We note
that frictional cases exhibit the same temperature scaling in
the inertial and quasistatic regimes, but as with the scaled
shear stress they do not transition at the same HaT irrespective
of μf .

APPENDIX B: SCALING OF THE CLUSTER LENGTH
SCALE IN HOMOGENEOUS SHEAR

OF MODERATELY DENSE COHESIVE SYSTEMS

Here we explore how the cluster length scale should grow
and eventually cause a regime transition in the rheological
scaling. The length scale 〈ξi〉 introduced in Sec. III B is
normalized by the number of particles in the system. This
view essentially considers monomers as clusters of zero length.
Incidentally, when only dimers and monomers are present,
as is the case for Haγ̇ � Haγ̇ ,crit , the average coordination
number 〈Z〉 will scale exactly the same with Haγ̇ as 〈ξi〉.
This is because the length scale for a dimer is essentially
constant. In this regime, where 〈ξi〉 ∝ 〈Z〉, we can predict how
the cluster length scale might scale with shear rate through the
use of population balance equations. The source of dimers due
to monomer collisions has been previously derived [23]. A
similar integration can be made to estimate the sink of dimers
due to collisions that result in breakup. Here we assume that
the critical velocity that leads to breakup is slightly larger
than the critical velocity under which monomers stick and
we assume that this critical velocity is constant. Here vcrit,b =
αvcrit,a, where α > 1. It is also assumed that the sink of dimers
must be proportional to the number of dimers present, such that
the rate of loss vanishes when dimers are not present. Sources
and sinks to larger aggregates are ignored. The resulting rate
equation for the number of dimers N (2) is given by

dN (2)

dt
= C1

√
Tg

[
1 − exp

(
−v2

crit,a

4Tg

)]

−C2N
(2)

√
Tg exp

(
−v2

crit,b

4Tg

)
. (B1)

Hereafter we drop the constants C1 and C2, since they do
not affect the steady-state scaling. To find the leading-order
power-law scaling these terms are expanded in Taylor series.
Terms in the power series in the temperature range of interest
must be less than unity to ensure that higher-order terms
are of decreasing importance. Due to the exponential term,
neither term can be expanded about Tg = 0. The rate of dimer
breakup term grows with the temperature, while the rate of
monomer aggregation decreases with increasing temperature.
We will expand each term around different points, but with
overlapping areas where terms up to first order are dominant.
The aggregation rate being expanded around 1/Tg = 0 and
the breakup rate around Tg = v2

crit,a. See Fig. 11(a) for a
depiction of the areas, where the first-order linear terms are the
leading-order terms in the expansion. The steady-state number
of dimers is then given to first order as

N
(2)
SS ∝

v2
crit,a

4Tg(
1 − α2

4
+ α2Tg

4v2
crit,a

)
exp

(
−α2

4

) . (B2)

The scaling of the steady-state dimer population is plot in
Fig. 11(b). There the raw scaling using Eq. (B1), expansion to
first order in Eq. (B2), and the power-law v4

crit,a/T 2
g term, with-

out the additive constants in the denominator, are compared for
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the case of α = 1.5 [50]. We see that the slope is quite accurate,
going as T −2. A power-law curve fit of Eq. (B1) also produces

an exponent of 2.03. Comparison of this scaling law is shown
in Sec. III B.
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