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Equilibrium and dynamics of strained islands
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We focus in this work on the effect of the surface energy anisotropy on an elastically strained semiconductor
film and in particular on its role on the coarsening dynamics of elastically strained islands. To study the dynamics
of a strained film, we establish a one-dimensional nonlinear and nonlocal partial differential equation which takes
into account the elastic, capillary, wetting, and anisotropic effects. We first construct an approximate stationary
solution of our model using a variational method and an appropriate ansatz. This stationary solution is used to
compute the chemical potential dependence on the island height. In particular, we find that the surface energy
anisotropy increases the convexity of the chemical potential and this is shown to have an effect on the driving
force for the coarsening. Second, we study the coarsening dynamics of an islands pair by means of numerical
simulations. We find that the presence of the surface energy anisotropy may increase or decrease the coarsening
time of the system. We show that this phenomenon depends on the initial heights of island pairs. We thus highlight
that the driving force for the coarsening is due to the variation of the chemical potential with respect to the islands
height and that two different regimes are possible.
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I. INTRODUCTION

The study of elastically strained semiconductor thin films is
a challenging task from both theoretical and applied points of
view [1–3]. The observation of self-organized strained islands
appearing on semiconductor films has attracted a lot of interest
due to their optoelectronic properties for light emitting diode
and quantum dots laser [4–6]. The development of a model
that explains the shape and the dynamics of strained islands
(quantum dots) is a demanding and stimulating task, since it
involves the dynamical interplay of elastic, capillary, wetting,
and alloying effects [7–15].

As a semiconductor film is deposited on a substrate by
heteroepitaxy, an elastic stress builds, because of the atomic
lattice difference between the two semiconductors. The result-
ing mechanical stress can lead to a morphological instability
[11,16–24]. This instability, known as the Asaro-Tiller-
Grinfeld (ATG) instability [25,26], leads to the formation of
parabolic-shaped islands (prepyramid) [27], which have been
observed [20,21]. The prepyramids later evolve in pyramids as
more material is deposited [27]. The control of these objects
is of fundamental importance for applications, and the size
selection of quantum dots is still under active research, mainly
because the coarsening dynamics is complex to predict at
nanoscales [10].

As shown in Refs. [10,11,28–30], self-organized strained
islands display a coarsening dynamics which slows down and
even lead to an interruption of the coarsening because of the
surface energy anisotropy. In Ref. [29], the authors have ex-
hibited a phenomenological model using an islands pair which
permits to explain phenomenologically the slowing down of
the coarsening induced by the presence of the surface energy
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anisotropy. This work [29] makes use of an energetic model,
which describes an energetic pathway along which ripening
can indeed be frozen. However, there still remains several open
questions such as the influence of the shape of the surface en-
ergy anisotropy on the rate of coarsening. Here we build on our
previous work [32] in which we have proposed a simple ansatz
for predicting the shape of an island under elastic strain, in
quantitative agreement with numerical simulations. However,
in Ref. [32], the surface energy anisotropy was not included and
therefore no effect of its influences could be predicted. Further-
more, the model was isotropic, a limitation, since cristalline
semiconductors are intrinsically anisotropic. Here we have
improved our model [32], to take into account the effect of the
surface energy anisotropy on the shape of an island and on the
dynamics of an islands pair. We show that the coarsening time
may increase or decrease when the surface energy anisotropy
increases. This phenomenon depends on the islands pair height.
We explain this effect by demonstrating that the surface energy
anisotropy changes the convexity of the chemical potential,
which plays an important role on the coarsening rate. The cause
of the freezing of the coarsening induced by the surface energy
anisotropy, as found in Ref. [29], remains an open question.

This article is constructed as follows: in Sec. II, we present
a one-dimensional partial differential equation, nonlinear and
nonlocal, which takes into account the anisotropy of surface
energy, the elastic energy and the wetting effect. We then
propose in Sec. III a parametric ansatz which minimises the
energy of the system. This approach links the shape and the size
of a single strained island to its height. We use this stationary
solution to compute the variation of the chemical potential with
respect to the island height. We find that the chemical potential
convexity increases with the presence of the surface energy
anisotropy. In Sec. IV, we study the coarsening dynamics of
two islands under elastic strain. We find that the coarsening
time depends on the surface anisotropy strength and on the
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FIG. 1. Sketch of the system: h(x,t) is the height of the free
surface of the film with respect to the substrate.

initial islands heights, the coarsening time being accelerated
for small islands and slowed down for large ones. This effect
is displayed in Fig. 14.

II. CONTINUUM MODEL

Semiconductors film dynamics can be modeled by a mass
conservation equation which takes into account the surface
diffusion. The surface diffusion current is proportional to the
gradient of the surface chemical potential μ. In the absence
of evaporation, the 1D equation for the top surface of the film
h(x,t) reads

∂h

∂t
= D

√
1 + h2

x

∂2μ

∂s2
, (1)

where D is the diffusion coefficient, hx(x,t) = ∂xh(x,t) is the
slope of the surface height, and ∂s is the surface gradient [31,32]
as shown in Fig. 1.

The chemical potential μ at the surface is defined by

μ = δF/δh. (2)

Here F is the free energy of the system, which takes into
account the surface and the elastic contribution, noted Fs and
Fel, respectively:

F = Fs + Fel. (3)

The chemical potential μ = μs + μel = δFs/δh + δFel/δh

has thus a contribution from the surface energy and from the
elastic energy. The surface energy per unit length reads

Fs =
∫

γ (h,hx)
√

1 + h2
xdx, (4)

where γ (h,hx) is the surface energy. It includes both wetting
effects and surface energy anisotropy. As a first approximation,
we examine a decomposition of the surface energy γ (h,hx),
where the wetting and anisotropic effects are independent and
may be written as

γ (h,hx) = γf [1 + γw(h) + γa(hx)]. (5)

Here γf is the amplitude of the surface energy, γw(h) is the
wetting layer potential, and γa(hx) is a measure of the surface
energy anisotropy. The wetting effects are linked to the film
thickness h through the relation γw(h) = cw exp(−h/δ). The
two parameters cw and δ are, respectively, the amplitude and
the range of the wetting potential [33].

FIG. 2. Plot of the surface energy anisotropy γ (h,hx)/γf given
in Eqs. (5) and (6) as a function of the slope hx . The wetting layer
potential γw(h) having no dependance on hx is not represented here.
The anisotropy parameters are α = 0.01 and θe = π/9. The minimum
of the surface energy is chosen at a value of hx = ± tan(θe). The
anisotropy strength α represents the amplitude of the perturbation.
The vertical axis is in unit of γf .

We now assume for simplicity that the anisotropy term
γa(hx) has only a single shallow minimum at a value hx =
± tan(θe) and is an even function of hx . The surface slope hx

is expected to be smaller than unity to be consistent with the
small slope approximation [29]. The anisotropic contribution
to surface energy is thus chosen to have the following form:

γa(hx) = − 2αh2
x

tan2(θe)

[
1 − h2

x

2 tan2(θe)

]
. (6)

As shown in Fig. 2, this type of anisotropy weakly favors
an orientation with a slope hx = ± tan(θe). Here α, which is
a dimensionless quantity, represents the anisotropy strength as
it measures the depth of the minimum as shown in Fig. 2. We
plot in Fig. 3 the surface stiffness defined as γ̃ = γ (h,hx) +
γ ′′(h,hx) for the isotropic (α = 0) and anisotropic case (α �=
0); here the prime represents the derivatives with respect to hx .
The surface stiffness is always positive so this prevents any
facetinglike instabillity. However, for small value of hx the
surface stiffness in the anisotropic case is smaller than the one
in the isotropic case, while the opposite is true for large slope.
As we will show later, this has a consequence on the dynamics
of the coarsening.

To simplify Eq. (4), we can make use of the small slope
approximation hx � 1 and obtain the following equation for
the surface energy:

Fs = γf

∫ L

−L

[
1 + γh(h) + 1

2
A(α,θe)h2

x

+ 1

12
B(α,θe)h4

x + 1

30
C(α,θe)h6

x

]
dx. (7)

Here L represents the system size and the parameters A(α,θe),
B(α,θe), and C(α,θe) are found to be

A(α,θe) = 1 − 4α cot2(θe), (8)

B(α,θe) = 12α cot2(θe)[cot2(θe) − 1] − 3
2 , (9)

C(α,θe) = 15
8 [8α cot4(θe) + 4α cot2(θe) + 1]. (10)

062805-2



EQUILIBRIUM AND DYNAMICS OF STRAINED ISLANDS PHYSICAL REVIEW E 97, 062805 (2018)

FIG. 3. Surface stiffness γ̃ = [γ (h,hx) + γ ′′(h,hx)]//γf ob-
tained using Eqs. (5) and (6) as a function of hx . The wetting layer
potential γw(h) having no dependance on hx is not represented here.
For hx < 0 the surface stiffness is an even function of the slope hx . The
horizontal (blue color online) curve represents the surface stiffness for
the isotropic case (α = 0). The (orange color online) curve represents
the stiffness for the anisotropic case (α = 0.01 and θe = π/9). The
surface stiffness is always positive so that no missing orientations
takes place. The vertical axis is in unit of γf .

Using Eqs. (2), (5), and (7), μs = δFs/δh reads

μs =γf

{[
A(α,θe)+B(α,θe)h2

x+C(α,θe)h4
x

]
hxx−cw

δ
e−h/δ

}
.

(11)

The elastic energy per unit length is given by

Fel = E0

∫ L

−L

−h(x)H[hx(x)]

2
dx. (12)

Here the elastic energy density reads E0 = Y η2/(1 − ν). The
parameter η = (af − as)/as is the misfit parameter where af

(respectively, as) is the film (respectively, substrate) lattice
spacing, Y is the Young’s modulus of the film and of the
substrate, and ν the Poisson’s coefficient. H[hx(x)] is the
Hilbert transform of the spatial derivative of h(x,t). It can
be defined as H[hx] = F−1[|k|F(h)], where F is the Fourier
transform and k is the wave number [34]. In real space, the
Hilbert transform reads

H[hx] = 1

π

∫ L

−L

− hy(y)

x − y
dy. (13)

The elastic chemical potential reads

μel = −E0H[hx]. (14)

The evolution equation for the surface h(x,t) merely follows
from Eq. (1). With the small slope approximation, it reads

∂h

∂t
= D ∂2(μs + μel)

∂x2
, (15)

where μs and μel are given in Eqs. (11) and (14).
In the following, we choose l0 for the unit of length of

h(x,t) and x, and t0 for the unit of time. These are usual units
(Refs. [29,32]). The length scale l0 reads

l0 = γf /E0. (16)

It results from the balance of the typical surface energy γf with
the elastic energy E0 density. The timescale t0 reads

t0 = l4
0/(Dγf ), (17)

where D is the surface diffusion coefficient [35]. From now
on, all the variables will be written in dimensionless form.

Equation (15) is a nonlinear equation due to the presence of
the nonlinear form of the wetting potential and of the surface
energy ansitropy. Its dynamical evolution is dominated by a
coarsening phenomenon, in which small islands disappear for
the benefit of larger islands. As we will show in Sec. IV, when
the system reaches equilibrium, only one island remains above
the wetting layer. This island will be thus characterized by the
parameters of the system, which are the two wetting constants
cw and δ, the two anisotropy constants α and θe, and the total
surface of the system ST , defined as

ST =
∫ L

−L

h(x,t)dx. (18)

The quantity ST can be easily shown to be constant in time as
a simple consequence of the conservative form of Eq. (15).
The numerical integration of Eq. (15) is performed with a
pseudospectral method on a periodic domain of size L which
permits a simple implementation of the Hilbert transform
[29,34].

III. EQUILIBRIUM CASE: ISLAND MORPHOLOGY

In this section, we first study the equilibrium shape of
a single island. The island shape results from the balance
between different effects such as the elastic stress field, the
capillary effects (surface energy anisotropy), and the wetting
effect. Moreover, the parameter ST plays an important role
since it is directly related to the spatial mean of the surface
height by the relation ST = 〈h〉L. We investigate the shape
of an island for different values of the control parameters ST

and α.
Using a variational method, we determine the characteristic

parameters of the island, such as its size and chemical potential,
as a function of the island height and of the anisotropy
parameter α. Our approach consists in the minimization of the
total energy of the system using a simple ansatz which takes
into account the constraint of constant surface ST .

An approximation of the stationary island solution h(x) can
be obtained by the minimisation of the energy given in Eq. (3)
using a simple ansatz. This ansatz for the surface h(x) is

h(x) =
⎧⎨
⎩

hw −L < x < −x1,

hin(x) =h0 + bx2 + cx4 + dx6 −x1 � x � x1,

hw x1 < x < L.

(19)

This ansatz is composed of two parts. A center part, hin(x) of
horizontal extent x1, which is described by a polynomial that
presents a maximum height h0 at x = 0 (see Fig. 4). An outer
part, for |x| > x1, which describes the wetting layer of constant
height hw. The center part hin(x) requires the determination
of five parameters x1,h0,b,c,d. Therefore, we will need five
conditions to determine the five unknown parameters.
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FIG. 4. Stationary solutions obtained by the numerical simulation
of Eq. (15) (dots) compared to the ansatz proposed in Eq. (23)
(continuous curve) for the isotropic case α = 0. The height of
the island is represented by h0, the height of the wetting layer is
represented by hw and x1 is the half-width of the island. The initial
condition is given by a small random perturbation around a constant
value of h = 0.1. The value of the surface is ST = 3.25. We use
as wetting parameters cw = 0.05 and δ = 0.005. The system size is
L = 16. The horizontal and vertical axes are in units of l0.

First of all, the chemical potential depends on the first and
second derivatives of the free surface h(x,t), therefore we
impose the continuity of h(x,t), ∂xh(x,t), and ∂xxh(x,t) at
x = x1. This leads to the following three conditions:

hin(x1) = hw, (20)

∂xhin(x)|x=x1 = 0, (21)

∂xxhin(x)|x=x1 = 0. (22)

The three unknown parameters b, c, and d can be found by
solving the linear system of Eqs. (20), (21), and (22). We thus
obtain

h(x) =

⎧⎪⎨
⎪⎩

hw −L < x < −x1,

hin(x) = (h0 − hw) (x2
1 −x2)3

x6
1

+ hw −x1 � x � x1,

hw x1 < x < L.

(23)

Finally there remains only two unknowns which are the
island width x1 and the island height h0 as described in Fig 4.
These two parameters can be found by the minimization of
the energy F = Fs + Fel defined in Eqs. (7) and (12). This
minimization is done by taking into account the constraint of
fixed surface ST .

A simple analysis of Eqs. (18) and (23) shows that the
surface ST reads

ST = 32h0x1

35
+ 2hw(L − x1) + 38hwx1

35
. (24)

We can easily invert Eq. (24) and express hw as a function of
ST , it reads

hw = 35ST − 32h0x1

2(35L − 16x1)
. (25)

Using Eq. (23), we find that the elastic energy given in
Eq. (12) reads

Fel = −32(8h0 − 3hw)(h0 − hw)

150π
+ 2hw(h0 − hw)

[ − 15L5x1 + 40L3x3
1 + 15

(
L2 − x2

1

)3
tanh−1

(
x1
L

) − 33Lx5
1 + 8x6

1

]
15πx6

1

. (26)

Here Fel is also a dimensionless quantity and is expressed in

units of
γ 2

f

E0
= E0l

2
0 .

Similarly, it can be shown using Eq. (23) that the surface
energy contributions Fs reads

Fs = as(h0 − hw)6(8α cot4(θe) + 4α cot2(θe) + 1)

x5
1

+ bs(h0 − hw)4(8α cot4(θe) − 8α cot2(θe) − 1)

x3
1

− cs(h0 − hw)2(4α cot2(θe) − 1)

x1

+ 2(L − x1)
(
1 + cwe− hw

δ

) + 2x1, (27)

where as , bs , and cs have the value defined in Ref. [36].
Here Fs is also a dimensionless quantity and is expressed in

units of
γ 2

f

E0
= γf l0. We have neglected the contribution of the

wetting effect in the island region (−x1 < x < x1) because of
the exponential decay of the wetting potential with the height
h(x,t).

The total energy F = Fel + Fs is thus a function of h0 and
of x1. The value of h0 and x1 are now determined by the two
minimizing conditions:

∂F
∂h0

= 0, (28)

∂F
∂x1

= 0. (29)

Equations (28) and (29) are two nonlinear transcendental
equations for the unknowns h0 and x1. These equations can
be numerically solved using a simple root finding algorithm
and yield the island height h0 and the island width x1 as a
function of the total surface ST . As shown in Fig. 5, the energy
landscape of F as a function of h0 and x1 displays a well
defined minimum.

To validate our assumptions and predictions, we have
performed numerical simulation of Eq. (15) using a pseudo-
spectral method as used in Ref. [32]. Our predictions, com-
pared to our numerical simulations, are shown in Figs. 6–10.
The numerical simulations are performed with an initial
constant mean height 〈h〉 perturbed by a small random initial
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FIG. 5. Energy of the system given in Eq. (3) as a function of
the island height h0 and the island width x1. The wetting parameters
are cw = 0.05 and δ = 0.005, and the anisotropic parameters are α =
0.01 and θe = π/9. The system size is L = 16 and the total surface is
ST = 3. The horizontal and vertical axes are in units of l0. The energy
is in unit of γ 2

f /E0.

noise. The mean height 〈h〉 is related to the total surface (mass)
given in Eq. (18) by the relation ST = 〈h〉L. In our numerical
simulation, we vary the initial mean height 〈h〉 (or ST ) and the
anisotropy strength α.

First, we study the isotropic case, α = 0. We plot in Fig. 6
various islands profiles obtained by numerical simulation of
Eq. (15) for different values of the surface ST . We find a good
agreement between the numerical simulation and our analytical
predictions given by the solution of Eqs. (28) and (29) for
the island half-width x1 as a function of the island height h0.
Moreover for α = 0, as shown in the Fig. 6 inset, we have
found that for small island height h0, the island half-width x1

is nearly constant around the value x1 = 9π/8, as found in
Ref. [32].

We now analyze the effect of the anisotropy α on the island
shape. We choose a value of α = 0.01 and a preferential angle
θe = π/9. We plot in Fig. 7 various islands profiles obtained
by numerical simulation for different values of surface ST . We
first observe that for small island height h0, the half-width x1

in the anisotropic case is smaller than in the isotropic case.
This is due to the fact that the surface stiffness γ̃ = γ + γ ′′
is smaller for the anisotropic case (see Fig. 3). The behavior
of the anisotropic island half-width x1 as a function of the
island height h0 is shown in the Fig. 7 inset. The island width
x1 increases with respect to the island height h0. This is a
consequence of the surface energy anisotropy which favors
an island slope hx = tan(θe). We obtain a good agreement
between the analytical solution given in Eqs. (28) and (29)
and our numerical simulations.

Moreover, we determine numerically the chemical potential
of an island as a function of the island height h0 for the
isotropic case (α = 0) and anisotropic case (α = 0.01), using
the equilibrium numerical solution of Eq. (15). For a stationary

−15 −10 −5 0 5 10 15
0.0
0.2
0.4
0.6
0.8
1.0
1.2

x

h(
x)

isotropic

0.0 0.5 1.0 1.5 2.0 2.5
0

1

2

3

4

5

FIG. 6. Isotropic case: α = 0, x1 is the half-width of the island
is almost constant with respect to h0. Blue-curve bottom (ST =
1.5), orange (ST = 3.9), color online. The islandlike solutions (dots)
resulting from the numerical simulations of Eq. (15) are compared to
the ansatz proposed in Eq. (23) represented by the continuous curve.
The wetting parameters are cw = 0.05 and δ = 0.005, the system
size is L = 16. The horizontal and vertical axes are in units of l0.
Inset: Island half-width x1 as a function of the island height h0 for
the isotropic case (α = 0). The blue dots represents the numerical
results of Eq. (15) surface value between ST = 1.45 and ST = 8.21.
The solid blue curve is the prediction obtained using Eqs. (28) and
(29) for the island half-width x1. The straight line x1 = 9π

8 is the
value obtained in Ref. [32] in which we have used a linear approxi-
mation of the film curvature. The horizontal and vertical axes are in
units of l0.

profile of Eq. (15), the chemical potential μ is equal to

μ = −cw

δ
e−hw/δ, (30)

where we have assumed that far from the island the film is
flat, and the wetting layer height is equal to hw, as shown
in Fig. 4. As a consequence, the terms hx and hxx can
be neglected and only the wetting potential term remains
dominant in Eqs. (11) and (14). As shown in Fig. 8, the
chemical potential μ decays as a function of the island height
h0 and its convexity increases with the anisotropy strength α.
The decay of the chemical potential μ as a function of the
height is mostly due to the relaxation effect of elasticity. The
increase of the convexity of the chemical potential with the
anisotropy strength α is explained by the dominance of the
surface energy anisotropy which favors the slope of the island
tan(θe) = π/9. As a consequence of this convexity, we can
foresee that the coarsening rate will decrease when the island
height is large enough. As we have shown previously [32], the
coarsening rate is proportional to the mass transfer between
the islands. This mass transfer is driven by the difference of
the chemical potential between the islands. As the convexity
increases, the slope of the chemical potential μ decreases, and
therefore the difference in the chemical potential between the
island decreases. However, for small island height, the slope
of the chemical potential μ with respect to h0 is larger when
the anisotropy strength is increased, and we thus expect an
acceleration of the coarsening.
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FIG. 7. Anisotropic case: x1 increases with respect to h0. Is-
landlike solutions resulting from the time evolution of Eq. (15).
Numerical simulations of Eq. (15) represented by dots, compared
to the ansatz proposed in Eq. (23) represented by the continuous
curve. We use as wetting parameters cw = 0.05 and δ = 0.005. The
anisotropic strength is α = 0.01 and θe = π/9. The system size is
L = 16. From bottom to top: blue-curve bottom (ST = 1.5), orange
(ST = 3.9), color online. The horizontal and vertical axes are in units
of l0. Inset: Island half-width x1 as a function of the island height
h0 for the anisotropic case (α = 0.01 and θe = π/9). The results of
the numerical results of Eq. (15) are represented by dots for different
values of the surface. The surface varies from a value of ST = 1.45
to a value of ST = 8.21. The solid curve is the prediction obtained
using Eqs. (28) and (29) for the island half-width x1. The horizontal
and vertical axes are in units of l0.

As shown in Fig. 9, the derivative of the chemical potential
with respect to the island height, which represents the driving
force for coarsening, is larger for island height value which
are smaller than a critical value hc. This critical value of hc

depends on α. This will have a consequence on the coarsening
dynamics as we will show in the next section. We compare the
island height h0 for the isotropic case (α = 0) and anisotropic
case (α = 0.01) as a function of the surface ST . In Fig. 10, we
observe that in the anisotropic case, for small amount of surface
ST , the island height h0 is larger than in the isotropic case.
However, for large surface ST , the island height h0 is larger
in the isotropic case. The agreement between the numerical
simulation and the variational method is again satisfactory.

IV. COARSENING DYNAMICS OF TWO ISLANDS

In this section, we characterize the coarsening of two islands
and we study the influence of the anisotropy on the coarsening
time. We define the coarsening time tc to be the characteristic
time for the system to reach equilibrium. After this time, the
system is in equilibrium and only one island remains in the
system. For practical matter, we choose to define tc as the time
at which the height of the remaining island has reached 99% of
its final value. To study the coarsening dynamics, we choose
for simplicity to start with an initial condition composed of
two equilibrium islands with slightly different heights h1(0)
and h2(0). The islands are separated by a distance d, which for
simplicity is half of the system size d = L/2.

FIG. 8. Chemical potential μ as a function of the island height h0

for the isotropic and anisotropic case. The black dots are obtained by
the numerical simulations of Eq. (15) for α = 0 and the red squares are
obtained by the numerical simulations for α = 0.01. The continuous
black curve and the red dashed curve are obtained using the analytical
predictions of Eqs. (28)–(30), respectively, for α = 0 and α = 0.01.
As shown in this figure, the convexity of the chemical potential is
larger for α = 0.01 (red curve) than for α = 0 (black curve). The
value of the preferential slope is θe = π/9. The horizontal axis is in
units of l0 and the vertical axis is in units of γf .

We perform numerical simulations for two different values
of initial total surface ST (ST = 2.91 and ST = 4.15), and
five different values of the anisotropy strength α (α = 0,
α = 0.0025, α = 0.005, α = 0.0075, and α = 0.01). Our nu-
merical simulations presented in Fig. 11 reveals that during the
coarsening the larger island increases at expense of the smaller
island until it disappears. Ultimately for t > tc, only one island

FIG. 9. Coarsening driving force: absolute value of the derivative
of the chemical potential μ with respect to the island height h0.
The black disks and the red squares are obtained respectively from
the numerical simulations of Eq. (15) for α = 0 and α = 0.01. The
continuous black curve (α = 0) and the red dashed curve (α = 0.01)
are obtained using Eqs. (28)–(30). The critical height hc is defined as
the point at which the black curve and the red dashed curve intersect.
At this point hc, the two tangents to the the curves displayed on
Fig. 8, have the same slope. The value of the preferential slope is
θe = π/9. The horizontal axis is in units of l0 and the vertical axis is in
units of γf .
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FIG. 10. Island height h0 as a function of the surface ST . The
black dots and the red squares represent, respectively, the results of
the numerical simulations of Eq. (15) for α = 0 and α = 0.01. The
black solid curve (α = 0) and the red dashed curve (α = 0.01) are
obtained using the resolution of Eqs. (24), (28), and (29). The system
size is L = 16 for all the simulations. The horizontal axis is in units
of l2

0 and the vertical axis is in units of l0.

remains in the system. We present the time evolution of the
heights h1(t) and h2(t) of two islands obtained by the numerical
simulations of Eq. (15) for two regimes (small islands and large
islands). In Fig. 12 the island heights are small, whereas in
Fig. 13 the island heights are large.

The previous results shown on Figs. 12 and 13 on the
coarsening time shows that depending on the island height
coarsening can be slowed down or accelerated and that this
phenomenom depends on the islands pair height.

In Fig. 14, we show that for large islands, the coarsen-
ing time increases with the anisotropy, while the anisotropy
reduces the coarsening time for small islands. We propose

(c) (d)

FIG. 11. Spatiotemporal evolution of two islands computed by
the numerical simulation of Eq. (15). The initial condition are two
islands of height h1 = 0.51 and h2 = 0.49 separated by a distance
d = L/2, where L = 64 represents the system size. The anisotropic
parameters are α = 0.01 and θ = π/9. After a time tc = 69, only one
island remains in the system. The horizontal and vertical axes are in
units of l0.

FIG. 12. Time evolution of the islands heights h1(t) and h2(t).
We perform five numerical simulations of Eq. (15) for different
values of the anisotropy strength α (blue dot α = 0, orange square
α = 0.0025, green rhombus α = 0.005, red up-pointing triangle α =
0.0075, and violet down-pointing triangle α = 0.01). We observe that
as the anisotropy increases, the coarsening time decreases. The initial
system surface is ST = 2.91 for the five numerical simulations. The
horizontal axis is in units of t0 and the vertical axis is in units of l0.

here a simple argument which explains this nonintuitive effect.
The driving force for coarsening | ∂μ

∂h
| is proportional to the

difference of the chemical potential between the two islands.
For small islands (smaller than hc as defined on Fig. 9), the
driving force for coarsening is larger in the anisotropic case
(|∂μ/∂h0|α=0 < |∂μ/∂h0|α �=0), as shown in Fig. 9. On the
contrary, for large islands (larger than hc), the driving force for
coarsening is smaller in the anisotropic case (|∂μ/∂h0|α �=0 <

|∂μ/∂h0|α=0), as shown in Fig. 9. These effects can be
explained by the convexity of the chemical potential μ, which
increases with the anisotropy strengthα, as shown in Fig. 8. The
boundary between these two regimes (small islands and large
islands) is the point at which the two tangents to the curve μ(h0)
on Fig. 8 have the same slope and is approximately equal to be
hc = 0.5. Equivalently, hc is defined at the point at which the
driving force for coarsening |∂μ/∂h| has the same value in the
isotropic and anisotropic case as shown in Fig. 9. To conclude

FIG. 13. Time evolution of the island heights h1(t) and h2(t).
We perform five numerical simulations of Eq. (15) for different
values of the anisotropy strength α (blue dot α = 0, orange square
α = 0.0025, green rhombus α = 0.005, red up-pointing triangle α =
0.0075, and violet down-pointing triangle α = 0.01). We observe that
as the anisotropy increases, the coarsening time increases. The initial
system surface is ST = 4.15 for the five numerical simulations. The
horizontal axis is in units of t0 and the vertical axis is in units of l0.
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FIG. 14. Coarsening time tc as a function of the anisotropy
strength α for two different values of ST . The system under study
consists of two islands similar to the one shown in Fig. 11. The
decreasing curve (orange square) is obtained using the numerical
simulations of Eq. (15) for ST = 2.91 (small islands). The blue curve
(blue disk) is obtained using the numerical simulations of Eq. (15) for
ST = 4.15 (large islands). The vertical axis is in units of t0.

this section, let us note that the functional dependance of hc

on α can be obtained using the tools that we have presented
in this article. In particular, we conjecture that the scaling
behavior of tc versus h0 for a fixed value of α should exhibit
two different scaling regimes in h0 separated by a crossover at
hc. A natural extension of this work could be realized in three
dimensional system for which coarsening phenomena has been
shown to be very sensitive to the functional form of the surface
energy anisotropy. In particular, the strong slowing down
of coarsening predicted and observed in Refs. [10,29] still
requires a more deeper mathematical analysis. In particular,
we believe that the results obtained in Refs. [10,29] were found
in the regime of large islands heights in which coarsening is
slowed down.

V. CONCLUSION

This article presents an analytical and a numerical study of
the morphology and of the dynamics of strained semiconductor
islands in the presence of a surface energy anisotropy. Using
a simple model, we have found that the anisotropy accelerates
the coarsening time for small islands while it slows down the

coarsening for large islands. In the first part of this article,
we have shown that the main morphological feature of an
island can be described by a simple ansatz whose parameters
are determined by a variational method. This method permits
us to compute the island shape and its chemical potential
as a function of its height. Moreover, we have found that
the presence of the surface energy anisotropy increases the
convexity of the chemical potential of an island and this
phenomena affects the driving force for coarsening. In the
second part of this article, we have performed numerical
simulations of the coarsening dynamics of two islands using the
model introduced in the first part. We have shown numerically
that the coarsening time can increase or decrease depending
on the values of the island height. This effect is attributed
to the change of the driving force for coarsening induced by
the convexity of the chemical potential. An extension of this
work for a three-dimensional system could reveal a different
behavior. The N-island problem is much more complex to
handle from a purely theoretical point of view since it is a
N-body problem with long-range elastic interactions, which
could be solved within a mean field theory framework [22].
We believe that the islands pair problem could be a good
starting point for the elaboration of a model of N interacting
islands. Clearly, the two possible scenarios predicted for an
islands pair will have consequence in the dynamics of a large
number of islands. Furthermore, we have proposed a generic
form for the surface energy anisotropy. It would be of interest
to develop a similar approach for faceted systems which could
explain quantitatively the freezing of the coarsening observed
in Ref. [11]. In particular, the study of the freezing of the
coarsening as a function of the system parameters, such as the
shape around the surface anisotropy energy minimum (depth
and radius of curvature), should be interesting. Finally, it seems
possible that the results we have predicted for an islands pair
could be compared with experiments in semiconductor islands
(SiGe and AlGaN quantum dots) with a low surface density of
pairs [37].
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