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Delamination of a thin sheet from a soft adhesive Winkler substrate
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A uniaxially compressed thin elastic sheet that is resting on a soft adhesive substrate can form a blister, which
is a small delaminated region, if the adhesion energy is sufficiently weak. To analyze the equilibrium behavior of
this system, we model the substrate as a Winkler or fluid foundation. We develop a complete set of equations for
the profile of the sheet at different applied pressures. We show that at the edge of delamination, the height of the
sheet is equal to

√
2�c, where �c is the capillary length. We then derive an approximate solution to these equations

and utilize them for two applications. First, we determine the phase diagram of the system by analyzing possible
transitions from the flat and wrinkled to delaminated states of the sheet. Second, we show that our solution for
a blister on a soft foundation converges to the known solution for a blister on a rigid substrate that assumed
a discontinuous bending moment at the blister edges. This continuous convergence into a discontinuous state
marks the formation of a boundary layer around the point of delamination. The width of this layer relative to the
extent length of the blister, �, scales as w/� ∼ (�c/�ec)1/2, where �ec is the elastocapillary length scale. Notably,
our findings can provide guidelines for utilizing compression to remove thin biofilms from surfaces and thereby
prevent the fouling of the system.

DOI: 10.1103/PhysRevE.97.062803

I. INTRODUCTION

In the past few decades, there has been renewed interest
in the behavior of thin elastic sheets due to the findings that
these films form novel patterns under confinement [1–4]. In
particular, thin elastic sheets that are adhered to soft founda-
tions present rich morphological structures, such as smooth
wrinkles and localized folds [5–9], or stress focusing patterns,
such as crumpled structures and creases [10,11]. Although
these structures depend strongly on the system set-up, i.e., the
geometry and the external forces, they all originate from the
same competition between the energetics of the substrate and
the elastic sheet.

The nature of the pattern formation changes dramatically
when the latter two energies become comparable to the ad-
hesion energy, which characterizes the strength of bonding
between the elastic sheet and the substrate. Under these
conditions, it is often experimentally observed that the sheet
delaminates from the substrate [12,13]. This detachment mech-
anism gives rise to wealth of new structures. For example,
a thin sheet peeled from an adhesive substrate revealed fin-
gering instabilities [14] and triangular shapes [15–17]. The
delamination of a flat sheet placed in contact with an adhesive,
spherical substrate displayed branched, wavy patterns [18] or
axisymmetric wrinkles [19].

Spatially localized delaminated regions within these pat-
terns are generally referred to as blisters. Blisters are of special
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importance in the study of fracture mechanics [20,21] and in
the measurements of the adhesion energy [22] because their
formation is tractable both experimentally and theoretically.
The formation of a two dimensional blister in the form of a
telephone cord was analyzed in Refs. [23,24]. Another example
is given in Ref. [25] where a circular thin sheet was placed
on a fluid substrate and displaced upwards from its center by
an indentor. When a blister formed, its border presented five
different morphologies, from a smooth circular shape to a sharp
triangular boundary.

In this paper, we focus on a particular system set-up of
a one-dimensional blister and consider a thin sheet that is
adhered to a Winkler foundation or a fluid substrate and is then
uniaxially compressed. The restoring force that is provided by
the Winkler model is relatively simple; it is represented by
harmonic springs that only deform in the vertical direction.
Under some restrictions [26], the Winkler model mimics the
behavior of a soft elastic substrate [27]. Although this system
has been analyzed extensively when the sheet is completely
adhered to the substrate (presenting wrinkles and fold states)
[7,9,28–30], less attention was given to the possible transition
from an adhered state to a delaminated pattern. One study
that approached this problem was presented in Ref. [27],
where the researchers considered the delamination of a heavy
sheet from a fluid substrate. In the latter study, a sheet with
nonnegligible weight was placed on a fluid substrate and
uniaxially compressed. At a critical confinement, a transition
to a delaminated state occurred. This state was governed by
two regimes: One is a central blister that mimics the shape of
a heavy elastica [31–33], and the second is an adhered regime
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that consists of a sinusoidal decaying pattern, which mimics
the shape of a floating elastica [7].

The analysis presented here differs from the above study
[27] in two aspects. First, we neglect gravitational effects.
While in Ref. [27] the gravitational energy of the sheet was
considered as the dominant mechanism for the formation of
a blister, here we neglect this contribution and show that,
in general, a blister can form independent of the weight
of the sheet. Consequently, we shed light on the regime
where the elastocapillary length-scale is dominant instead
of the elastogravitational length-scale. Second, we relax the
inextensibility assumption that was placed in Ref. [27]. This
allows us to analyze the flat-to-blister transition, in addition to
the wrinkles-to-blister transition that was analyzed in Ref. [27].

An important outcome of the present model is the conver-
gence of its solution to that of a large blister on a rigid substrate
[34]. Notably, our model assumes a continuous transition
between the two regions of the sheet, the delaminated and
adhered parts. However, the prior model on a rigid substrate
[34], assumes discontinuous bending moments at the blister
edges. Although the latter condition has been extensively
justified either analytically by an energy minimization method
[35–37] and the J-integral procedure [20,38] or experimentally
[34,39], it nevertheless prescribes a nonintuitive discontinuity
in the profile of the sheet. The convergence of the two models,
for soft and rigid substrates, has two signicant implications.
First, it justifies the moment-discontinuity from a new per-
spective; namely, it shows a continuous convergence into the
discontinuity. Second, when a discontinuity in the bending
moment is prescribed, it obviously masks very sharp gradients
that occur over very small distances, i.e., a boundary layer. The
present solution provides the details of this layer and allows us
to extract its characteristics, such as the stress profiles around
the point of delamination and the penetration length inside the
substrate. To the best of our knowledge, this is the first time that
this condition is obtained as an asymptotic limit of a continuous
shape.

We note that these studies are relevant to investigations of
the delamination of biofilms from soft or fluidlike substrates.
Biofilms are formed from a combination of cells and the ex-
tracellular matrix of the individual cells [40,41]. The adhesion
of a biofilm to the underlying substrate plays a crucial role
in the fouling of submerged surfaces and consequently, the
deterioration of devices encompassing such surfaces. In the
continuum limit, this biofilm can be viewed as a viscoelastic
thin layer, or to leading order, as a thin elastic sheet. Indeed,
the detachment patterns of biofilms mimic the ones that are
observed on thin sheets [40,42]. Hence, these studies can
help pinpoint regions in parameter space where an applied
compressive force can be utilized to prevent the biofouling
of the substrate.

The paper is organized as follows. In Sec. II, we write the
energy functional of the system and minimize it to obtain a
complete set of equations for the configuration of the sheet.
Under some assumptions, we solve this set of equations in
Sec. III and then utilize the solutions for two applications.
First, in Sec. IV, we obtain the critical displacement at which a
flat or a wrinkled sheet is transformed into a small blister, and
second, in Sec. V, we analyze the formation of a boundary layer
at the edge of a large blister. Finally, in Sec. VI, we summarize

FIG. 1. Schematic evolution of the sheet into a delaminated state.
A flat and relaxed sheet (a) that is adhered to a soft substrate
and uniaxially compressed can evolve into the delaminated state
(d) through one of the following scenarios. First is the flat-to-
blister transition, (a)→(b)→(d). The sheet remains flat upon small
confinements, 0 < � < �fb, and then jumps to the delaminated
state when � > �fb. Second is the wrinkles-to-blister transition,
(a)→(b)→(c)→(d). The sheet remains flat up to � < �w = 2ξL.
From there on, regular undulations (wrinkles) emerge and remain sta-
ble between �w < � < �wb. When � > �wb the latter morphology
becomes unstable against delamination. The first scenario is dominant
if �fb < �w; otherwise, and assuming that the adhesion energy, wad,
is sufficiently small, the second scenario takes place.

our findings, discuss the relevance of this work to some known
experimental results and suggest future extensions.

II. FORMULATION OF THE PROBLEM

We consider an extensible flat sheet of relaxed length L,
thickness t , and the respective bending and stretching moduli,
B and Y . The sheet is adhered to a substrate that has a stiffness
K . The sheet is uniaxially confined from the boundaries by
either a displacement, �, or a pressure, P , such that the external
work of shortening the end-to-end length of the sheet is given
by P�. The deformed configuration is characterized by three
fields. One is the angleφ(s) between the tangent to the sheet and
the horizontal axis (see Fig. 1). Second is the compression field
γ (s) = dŝ/ds where s and ŝ are the arc length parameters of the
relaxed and compressed configurations, respectively, and third
is the height function h(s). These fields are not independent as
they are related by the geometrical constraint,

γ sin φ = dh

ds
. (1)

The deformed profile of the sheet on the xy plane is given
parametrically by the position vector r(s) = (x(s),h(s)), where

x(s) =
∫ s

−L/2
γ (s ′) cos φ(s ′)ds ′, (2a)

h(s) =
∫ s

−L/2
γ (s ′) sin φ(s ′)ds ′. (2b)

The total energy of the system, E, is divided into two
regimes: (i) the free, delaminated region, Edel, which is located
symmetrically around the sheet center (s < |�/2|), and (ii) the
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adhered region, Eadh, at the sheet tails (s > |�/2|),
E[φ(s),γ (s),h(s)] = Edel[φα(s),γα(s),hα(s)]

+Eadh[φβ(s),γβ(s),hβ(s)]. (3)

Following the formulation in Ref. [37], we differentiate be-
tween the fields in the two regions by the subscripts α and β,
where α characterizes the delaminated regime and β charac-
terizes the adhered regime. In addition, since we anticipate the
final configuration to be symmetric with respect to the y axis,
we consider only the half-sheet, s ∈ [0,L/2] and multiply the
energy by a factor of two. Note that the delamination length,
�, is a priori unknown. It will be determined to minimize the
total energy of the system.

In the delaminated region, the sheet is free and therefore
there is an energetic penalty that is associated with the bending
and stretching of this delaminated region. This energetic
penalty is given by

Edel = 2
∫ �/2

0

[
B

2

(
dφα

ds

)2

+ Y

2
(γα − 1)2

]
ds. (4)

In the adhered region, in addition to bending and stretching,
there is an energetic cost due to deformation of the substrate and
due to the adhesive interactions of the sheet with the substrate.
Therefore, this energy is given by,

Eadh = 2
∫ L/2

�/2

[
B

2

(
dφβ

ds

)2

+ Y

2
(γβ − 1)2 + esub(hβ,φβ) − wad

]
ds, (5)

where esub(hβ,φβ) is the energy of the substrate. Although
in the main text we consider a Winkler foundation, esub =
(K/2)h2

β , this formulation also applies to a fluid substrate
under some modifications that are worked out in Appendix
A. The main difference between the two substrates is that
while a Winkler foundation exerts forces only in the vertical
direction (y axis), the fluid hydrostatic pressure is directed
normal to the sheet. We emphasize that these foundations
differ significantly from a solid-compliant substrate, which
is frequently considered in the literature [26,43–48]. While a
solid-compliant substrate accumulates energy under the blister
due to compression, the Winkler and fluid surfaces remain
undeformed in the delaminated section.

The last term in the integral of Eq. (5) refers to the adhesion
energy, wad. This term is a constant that represents the work
per undeformed unit area that is required to separate two close
by surfaces. The forces that bond the two surfaces together
originate from short-range interactions between molecules
of the sheet and the substrate that are in contact on the
interface. Methods for measuring this constant can be found
in Refs. [21,22,49]. In the case of a solid that is lying on a
fluid substrate, this term accounts for the interfacial toughness
[25,34].

To obtain the equations for the equilibrium structure of the
film, we must minimize G = E − P� given the geometric
constraint, Eq. (1). For this purpose, we first normalize all
lengths by the length-scale of the wrinkles: �w = (B/K)1/4

(for example s → s/�w). This length-scale does not depend
on the blister phenomena and is manifest as the wavelength of

the wrinkling pattern in a completely adhered sheet [28,50]. In
addition, the total energy is rescaled by B/�w; and accordingly,
the pressure and the adhesion are rescaled by (BK)1/2. Second,
we express the displacement as a function of our fields
[9,30],

� =
∫ L/2

−L/2
(1 − γ cos φ)ds

= 2
∫ �/2

0
(1 − γα cos φα)ds + 2

∫ L/2

�/2
(1 − γβ cos φβ)ds,

(6)

and write the total energy as G = 2
∫ �/2

0 L1ds + 2
∫ L/2
�/2 L2ds,

where

L1 = 1

2

(
dφα

ds

)2

+ 1

2ξ
(γα − 1)2 − P (1 − γα cos φα)

−Qα

(
γα sin φα − dhα

ds

)
, (7a)

L2 = 1

2

(
dφβ

ds

)2

+ 1

2ξ
(γβ − 1)2 + esub − wad

−P (1 − γβ cos φβ) − Qβ

(
γβ sin φβ − dhβ

ds

)
. (7b)

In the above expressions, Qi (i = α,β) are Lagrange mul-
tipliers that enforce the geometric constraint, Eq. (1), in
each regime and 1/ξ = Y�2

w/B ∝ t−1/2 is a dimensionless
parameter that measures the degree of extensibility; when
ξ → 0, the sheet becomes inextensible since the energetic cost
for stretching diverges. Initially, the problem was characterized
by five independent constants: B,Y,L,K and wad. Because the
energy is arbitrarily rescaled by B/�w, we are left with only
four independent length-scales: the rest length L, the thickness
t = (B/Y )1/2, the capillary length, �c = (wad/K)1/2, and the
elastocapillary length, �ec = (B/wad)1/2. Note that �w depends
on the last two by �w = (�c�ec)1/2.

Finally, minimization of Eq. (7a) with respect to φα,γα,Qα ,
and hα yield the following equilibrium equations (see Ap-
pendix B for details):

0 = d2φα

ds2
+ Pγα sin φα + Qαγα cos φα, (8a)

0 = 1

ξ
(γα − 1) + P cos φα − Qα sin φα, (8b)

0 = dhα

ds
− γα sin φα, (8c)

0 = dQα

ds
, (8d)

and similarly, minimization of Eq. (7b) with respect to the
β-fields gives

0 = d2φβ

ds2
+ Pγβ sin φβ + Qβγβ cos φβ, (9a)

0 = 1

ξ
(γβ − 1) + P cos φβ − Qβ sin φβ, (9b)
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0 = dhβ

ds
− γβ sin φβ, (9c)

0 = desub

dhβ

− dQβ

ds
. (9d)

While Eqs. (8a) and (9a) describe the balance of normal forces
on a finite segment of the sheet, Eqs. (8b) and (9b) describe
the balance of forces in the tangential direction. In addition,
by Eq. (9d), the Lagrange multiplier, Qβ , is the total vertical
force that the substrate exerts on the sheet up to a point s in
the adhered section, Qβ = ∫ L/2

s
hβds. Similarly, Qα accounts

for the vertical force that acts on the edge of the delaminated
portion of the sheet, s = �/2.

Equations (8) and (9) form a system of eight differential
equations. To close the system, nine boundary conditions must
be provided [51]. First, the even symmetry of the profile implies

φα(0) = 0. (10)

Second, two boundary conditions are required at the sheet end,
s = L/2. In this derivation, we assume the following hinged
boundary conditions:

hβ(L/2) = 0, (11a)

dφβ

ds
(L/2) = 0. (11b)

Third, we demand that the height function and the angle field
will be continuous over the point of delamination,

hα(�/2) = hβ(�/2), (12a)

φα(�/2) = φβ(�/2). (12b)

Fourth, following the procedure in Appendix B, we obtain three
natural conditions for the minimizing configuration,

0 =
[
dφα

ds
− dφβ

ds

]
s= �

2

, (13a)

0 = Qβ(�/2), (13b)

0 = Qα(0), (13c)

Equation (13a) guarantees the continuity of the bending mo-
ments, Mi = dφi/ds (i = α,β), at s = �/2. In addition, since
the sheet is confined only by the horizontal force, P , and no
vertical force (or vertical displacement) is prescribed at the
boundaries, the total force from the substrate in the y direction
must vanish. This requirement is specified by Eq. (13b),
Qβ(�/2) = ∫ L/2

�/2 hβds = 0. Last, the even symmetry of the
solution implies Eq. (13c); when Qα(0) = 0, we have from
Eqs. (8a) and (10) that the bending moment is maximum at the
center of the sheet, i.e., (dMα/ds)s=0 ≡ (d2φα/ds2)s=0 = 0,
as required by the even symmetry of the solution. We note
that the continuity of φ and h, Eq. (12), along with the latter
boundary conditions, imply the continuity of the compression
field, γ . Thus, the tangential force, σ i

ss = (γi − 1)/ξ , and the
normal force, σ i

sn = (1/γ )d2φ/d2s, are both continuous at the
point of delamination.

The last boundary condition is obtained by minimization of
the total energy with respect to � [13,21,34,36–38,52]. This
condition is equivalent to Griffith’s theorem, which relates

the interfacial toughness of the material to the energy release
rate [20,37]. We derive this boundary condition explicitly in
Appendix B 1. The result of this minimization fixes the height
of the sheet at the point of delamination,

hβ(�/2) = (2wad)1/2. (14)

The above discussion completes the formulation. In sum-
mary, given L, ξ , wad, and P , one in principle can solve Eqs. (8)
and (9) given the boundary conditions, Eqs. (10)–(14). In the
next section, we derive an approximate nonlinear solution that
captures the main physical essence of the system.

III. APPROXIMATE NONLINEAR SOLUTION FOR
BLISTER FORMATION

In this section, we seek an approximate solution that is based
on the following assumptions. (i) The total relaxed length is
long compare to any other length-scale in the system, L 	
1. Thus, terms of order 1/L are neglected. (ii) Extensibility
corrections are small, ξ 
 1, and can be neglected. Yet, terms
of order ξL are kept intact. This approximation was shown to
be sufficient in the analysis of linear stability in other closely
related problems [53,54]. (iii) The adhesion energy is small,
wad 
 1. This assumption has two implications. First, since
by definition the rescaled adhesion energy is given by wad =
�c/�ec, the following scale separation must hold:

�c 
 �ec 
 L. (15)

Second, since hβ(�/2) = √
2�c is small [see Eq. (14)] and we

anticipate a decaying profile, the β fields can be approximated
by their linear order. The α fields, however, may in general be
large and go beyond this order.

Assumption (ii) and Eqs. (8b) and (9b) imply that the
compression fields are given by

γ ≡ γi = 1 − ξP . (16)

In addition, utilizing assumption (iii) simplifies Eqs. (8) and
(9) into

0 = d2φα

ds2
+ P sin φα, (17a)

0 = sin φα − dhα

ds
, (17b)

0 = d4hβ

ds4
+ P

d2hβ

ds2
+ hβ, (17c)

where we used Eq. (8d) and the boundary condition, Eq. (13c),
to set Qα = 0.

The solution of these equations is given by

φα(s) = 2 arcsin[m sn(q(s + s0),m2)], (18a)

hα(s) = h0 + 2m

q
cn[q(s + s0),m2], (18b)

hβ(s) = e−κζ [B1 cos(kζ ) + B2 sin(kζ )]

+ eκζ [B3 cos(kζ ) + B4 sin(kζ )], (18c)

where ζ = s − �/2 and hereafter we use the conventional
symbols for the various elliptic functions, sn, cn, E , K, cn,
sc, and sc−1, as defined in Ref. [55]. In addition, the wave
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numbers, q and k, and the decay parameter, κ , are related to
the pressure by

q = P 1/2, (19a)

k = 1
2 (2 + P )1/2, (19b)

κ = 1
2 (2 − P )1/2. (19c)

Equations (18) introduce eight constants, {m,s0,h0,�,Bj },
that are yet to be determined by the boundary conditions. By
assumption (i), we can readily eliminate two, B3 = B4 = 0.
These constants corresponds to the boundary conditions at
the sheet end, Eqs. (11). Since we anticipate a decaying
profile far away from the centered blister, the correction from
the boundary can be assumed smaller then 1/L. Note that
this assumption breaks down if κ 
 1 such that κL ∼ O(1)
[29,56]. Thus, for the rest of this solution, we require that the
pressure is below its maximum value, Pmax = 2.

Solving for the other six unknown constants using Eqs. (10)
and (12)–(14) gives

s0 = 0, (20a)

h0 = (2wad)1/2 − 2m

q
cn(q�/2,m2), (20b)

B1 = − k

κ
B2 = (2wad)1/2, (20c)

m sn(q�/2,m2) = sin(B1κ) � B1κ, (20d)

m cn(q�/2,m2) = B1
k2 − 3κ2

2q
, (20e)

where in Eq. (20d) we expanded the right-hand side to leading
order in B1 as required by assumption (iii). Given the identity
sn2(x,m2) + cn2(x,m2) = 1, the last two equations, Eqs. (20d)
and (20e), can be solved explicitly for the modulus m and the
extent length �. The solution reads

m = (wad/2P )1/2, (21a)

� = 2√
P

cn−1(P − 1,m2), (21b)

where to simplify the resulting expressions, we used Eqs. (19)
and (20c) and the identity, sc−1( [P (2−P )]1/2

P−1 ,m2) = cn−1(P −
1,m2). Equations (21) is one of our central results; it relates the
blister length to the applied pressure and the adhesion energy.

Equations (18)–(21) complete our approximated solution.
In summary, given ξ , L, wad, and the external pressure, P , the
shape of the sheet on the xy plane is given by r = (x(s),h(s)).
In the delaminated regime, 0 < s < �/2, we have the following
nonlinear solution:

xα(s) = −s + 2

q
E(qs,m2), (22a)

hα(s) = (2wad)1/2

P
[1 + cn(qs,m2)], (22b)

where we used Eqs. (20b) and (20e) to simplify Eq. (22b), and
in the adhered regime, �/2 < s < L/2, the solution is given to

linear order by

xβ(s) = (s − �/2) + xα(�/2), (23a)

hβ(s) = (2wad)1/2

k
e−κζ cos(kζ + φ), tan φ = κ

k
. (23b)

In these equations, xα and xβ are calculated from Eq. (2a) in
their respective level of approximation. In addition, it should
be understood that the profiles at s < 0 are obtained by mirror
symmetry around the y axis. In Fig. 2 we plot these height
profiles for several values of the pressure, P , and compare the
analytical profiles to the numerical solution of Eqs. (8) and (9).
The agreement between the two validates our approximated
solution to the problem.

Two comments should be added to the above solution. First,
since the modulus of the elliptic functions is bounded between
0 � m � 1 and the pressure is bounded from above by Pmax =
2, we find from Eq. (21a) that

m ∈ [
w

1/2
ad

/
2,1

]
, (24a)

P ∈ [wad/2,2]. (24b)

In addition, the fact that m does not approach continuously to
zero is a mark of the first order adhered-to-blister transition as
we further discuss in Sec. IV. Second, the maximum height of
the blister,

Amax ≡ hα(0) = (8wad)1/2

P
, (25)

is independent of the modulus, m. Consequently, this expres-
sion holds for small (m 
 1), as well as for large (m ∼ 1)
blisters.

A. Energy and pressure-displacement relation

To obtain the total energy, E, and the pressure-displacement
relation, �(P ), we substitute the solution, Eqs. (22) and (23),
into Eqs. (3) and (6) and integrate. This gives,

E − E0 = ξLP 2

2
+ 2q2�(m2 − 1) + 4qE(q�/2,m2)

+ wad

2κ
(k4 + 1 − 2k2κ2 + 13κ4) + �wad, (26a)

� = ξLP + 2� − 4

q
E(q�/2,m2) + wad

2κ
(k2 + 5κ2),

(26b)

where E0 = −wadL is the energy of the relaxed configuration
and � is given by Eq. (21b).

Investigation of Eq. (26b) indicates that the displacement,
�, is a nonmonotonic function of the pressure, P . In Fig. 2,
we plot several scenarios of this behavior. Increasing the
displacement up to � = �min(Pmin), we find that there is no
solution to the pressure-displacement relation. This means that
the branch of the blister solutions to Eqs. (8) and (9) become
available only at a finite confinement. This finite confinement
increases with the adhesion energy [see Fig. 2(b)]. Thus, up
to �min, only adhered solutions, such as flat and wrinkles,
are physically accessible and no delamination can occur. At
�min, the blister solutions become available, yet, they do not
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FIG. 2. Plots of the sheet configuration and the pressure-displacement relation for L = 8π and ξ = 0.005. In panel (a), we plot the height
function for several values of the pressure P and wad = 0.15. For clarity, the profiles are shifted along the y direction. In each configuration,
the orange line marks the delaminated part of the sheet, Eqs. (22), the solid blue line marks the adhered oscillatory decay solution, Eqs. (23).
In addition, the dashed blue line marks the blister solution on a rigid substrate; see Eqs. (34) in Sec. V. While at high pressures there are
some deviations between the two solutions, they progressively converge at small pressures. The orange and black dots on each curve mark the
numerical solution of Eqs. (8) and (9), respectively. (b) Plot of the pressure-displacement relation, Eq. (26b), for several values of wad, again
the dots on each curve are evaluated numerically at the values of the pressure that are considered in panel (a). Note that all curves are non
monotonic. For example, at the lowest adhesion energy, wad = 0.05, up to �min � 0.29 (Pmin � 1.19) there is no solution to Eq. (26b); for
� > �min, there are two possible solutions, one with increasing pressure and therefore decreasing amplitude [see Eq. (25)] and second with
decreasing pressure and therefore with increasing amplitude. The latter solution is the physical one as it has the lowest energy.

necessarily yield the minimum of the energy. At a given
confinement the actual equilibrium configuration is always
selected among all possible solutions, blistered and adhered,
such as to minimize the total energy.

Beyond this minimum point, � > �min, there exist two
blistered solutions. One with decreasing pressure and therefore
with increasing amplitude [see Eq. (25)], and second with in-
creasing pressure and therefore with decreasing amplitude. As
can be shown by direct substitution into the energy, Eq. (26a),
the first solution is energetically favorable over the second one.
Thus, from here on, we refer to the first blister solution as
the one that is physically accessible. We note that this subtle,
nonmonotonic behavior of the pressure-displacement relation
has already been observed in other closely related systems
[33,57,58].

IV. PATTERN TRANSITIONS FROM AN ADHERED SHEET
TO A SMALL BLISTER

A thin elastic sheet that is adhered to a soft substrate and
uniaxially compressed presents transitions between several
morphologies [28]. Particularly, up to a critical confinement
�w � 2ξL, the sheet remains flat and absorbs all the ex-
ternal pressure by in-plane stretching. Beyond this critical
confinement, regular undulations (called wrinkles) with a well-
defined wavelength, λ = 2π�w, appears on the surface. The
amplitude of the wrinkles’ growth remains stable up to �F �
�w + λ2/L. From there on, a localized pattern (fold) takes
place [29,53,56]. In this section, we utilize the approximated
solution to analyze the formation of a small blister from the
flat or wrinkled states (see Fig. 1) as our goal is to derive the
“phase-diagram” of the system [59].

A transition to a blistered state occurs when it is ener-
getically preferable over the adhered solution. To analyze
this transition, we first choose the displacement, �, and the
maximum height, Amax, as the respective control and order
parameters. Second, we assume that the two transitions occur
at small enough confinements such that the blister can be
estimated by its linear form, m 
 1, Eq. (21a). Expanding
the energy and the pressure-displacement relation, Eqs. (26),
to leading order in m gives

E − E0 � ξLP 2

2
+ wad

κ

(
1 + 3

2
κ�

)
, (27a)

� � ξLP + 1 + κ�/2

κP
wad, (27b)

where the extent length �, Eq. (21b), in this approximation is
given by

� � 2√
P

cos−1(P − 1). (28)

Third, we derive the energies of the flat and wrinkled states
[53],

Ef − E0 = �2
f

2ξL
, (29a)

EW − E0 � 2ξL + 2(�W − �w) + O((�W − �w)2/L),

(29b)

where we use the subscripts “f” and “W” to denote the energies
and the displacements of the flat and wrinkled states.
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FIG. 3. (a) Phase diagram on (wad/(BK)1/2,�/�w) plane. In this diagram ξ = 0.01 and L = 8π such that the flat-to-wrinkles displacement
is �w = 2ξL � 0.5 (purple). Since the fold-to-blister transition was not analyzed in the present study, we cut the y axis at the critical
wrinkles-to-fold displacement, �F = �w + 4π 2/L � 2.0. The flat-to-blister, Eq. (30), and the wrinkles-to-blister, Eqs. (31), transitions are
plotted respectively by the blue and orange lines. In the inextensible limit, ξ → 0, the flat state diminishes as the triplet point, P , tends toward
the origin of the diagram. In this limit the extensible wrinkles-to-blister displacement (orange) coincides with the inextensible prediction
(dot-dashed red line), Eq. (32). (b) The phase diagram close to the triplet point [zoom-in the dashed circle from panel (a)]. For clarity, in this
diagram we normalize the axes by ξL, i.e., consider (wad/(ξL),�/(ξL)) plane. However, the axes labels in this diagram are obtained after
dimensions are retrieved into these variables. As seen by Eqs. (30) and (31) under this normalization, the diagram becomes parameter free, i.e.,
independent on the specific values of ξ and L. Thus, in general the flat-to-blister transition occurs when wad/(ξL) � 0.2. In addition, while
the flat-to-wrinkles transition (purple) is of second order, the flat-to-blister and the wrinkles-to-blister transitions (blue and orange) marks a
first-order transition.

To find the critical flat-to-blister displacement, we equate
Eqs. (27a) and (29a) at a given displacement, �f = �. This
yields the parametric solution,

wad = 2�κ2P 2

(1 + κ�/2)2
ξL, (30a)

�fb = ξLP + 2�κP

1 + κ�/2
ξL, (30b)

where�fb is the flat-to-blister critical displacement. For a given
wad, ξ , and L, we can solve Eq. (30a) for P and substitute in
Eq. (30b) to obtain the critical flat-to-blister displacement. We
cut this line at �w = 2ξL, as in this displacement the flat state
becomes unstable against the wrinkling. Thus, beyond �w a
transition to a blistered state, if it occurs, is initiated from a
wrinkled pattern.

To analyze the latter transition, we equate Eqs. (27a)
and (29b) and substitute �W = �. This gives the parametric
solution of the wrinkles-to-blister line,

wad = κP (2 − P )2

2(2 − P )(1 + κ�/2) − 2κP�
ξL, (31a)

�wb = (4 − P 2)(1 + κ�/2) − 2P 2κ�

2(2 − P )(1 + κ�/2) − 2κP�
ξL, (31b)

where �wb is the wrinkles-to-blister critical displacement.
In Fig. 3, we plot the phase diagram of the system as it

is obtained from Eqs. (30) and (31). Two comments should
be added regarding this diagram. First, although the transition
from flat-to-wrinkles is of second order [53], the two transitions

to a blistered state are always of a first order, i.e., the first
derivative of the energy, P = dE/d�, is discontinuous at the
transition. Since P is finite at the transition, the order parameter
Amax = (8wad)1/2/P jumps from zero to a finite value. Exper-
imentally, this first-order transition will be manifested by a
hysteresis behavior of the amplitude. Although the amplitude
behaves discontinuously at the adhered-to-blister transitions, it
is expected to behave continuously in the opposite, blister-to-
adhere, route. This is because the energy release rate, Eq. (14),
acts to set an energetic barrier in the former case, but it has no
effect on the latter case, which involves reformation of adhesive
interactions.

Second, since practically extensibility corrections are very
small, it is useful to consider the inextensible limit, ξ → 0,
of the above predictions. In this limit, the flat state diminishes
and only the wrinkles-to-blister transition is considered. To
obtain the critical displacement of this transition, we first set
ξ = 0 in Eqs. (27) and (29b). Next, we equate the resulting
energies, E = EW, at a given displacement; this gives, P �
1.12. Finally, we substitute this pressure back into Eq. (27b)
and extract the critical displacement,

�wb � 3.11wad. (32)

This result is plotted in the phase-diagram, Fig. 3(a). Taking the
limit ξ → 0 in this diagram is equivalent to shifting the point P
toward the origin. In this limiting case, the line that is predicted
by Eq. (31) will coincide with Eq. (32). In addition, since in
the inextensible case wrinkles become unstable against folding
at �F = 4π2/L [56], a wrinkles-to-blister transition will only
occur if �wb < �F, i.e., wad � 12.7/L.
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V. FORMATION OF A BOUNDARY LAYER AT THE EDGE
OF A LARGE BLISTER

In this section, we show that our approximated solution
converges to the known solution of a blister on a rigid substrate
[34] for large enough confinements, i.e., small pressure P ∼
wad. This convergence marks the formation of a boundary layer
at the vicinity of delamination.

To adapt the present model to the case of a rigid substrate, we
first set hr

β(s) = φr
β(s) = 0, such that Eqs. (9) are automatically

satisfied and γ r
β = γ . To differentiate the current solution

from the previous one, we denote the rigid substrate fields by
superscript or subscript r . Second, we impose the following
boundary conditions on Eqs. (8),

φr
α(0) = Qr

α(0) = φr
α(�/2) = hr

α(�/2) = 0, (33a)

Mr = (2wad)1/2, (33b)

where Mr = (dφr
α/ds)s=�/2 is the bending moment at s = �/2.

These boundary conditions are obtained by similar methods
as we describe in Sec. II and Appendix B. Third, we reduce
Eqs. (8) to their approximated form, Eqs. (17), and solve
them given the boundary conditions, Eqs. (33). The solution
reads

hr
α = (2wad)1/2

P

[
1 + cn

(
qs,m2

r

)]
, (34a)

mr =
√

wad

2P
, (34b)

�r = 4K
(
m2

r

)
√

P
. (34c)

Before we compare this solution with the one that we
have obtained for a soft substrate, we emphasize their main
differences in the following three points. (i) While Eq. (14)
states that the work of adhesion is balanced by the energy
of the substrate, Eq. (33b) states that adhesion is balanced
by the work of the bending moment. (ii) When dimensions
are retrieved into these equations, we find that while Eq. (14)
gives rise to the capillary length-scale, �c, the latter, Eq. (33b),
introduces the elastocapillary length-scale, �ec. In fact, in the
case of a rigid substrate K → ∞, the length-scales �w and
�c are completely suppressed [60]. (iii) While for a rigid
substrate the first derivative of φ is discontinuous at s = �/2
(discontinuous bending moment), in the current formulation
discontinuity appears only at higher derivatives of φ; the first
derivative of the angle must be continuous as dictated by
Eq. (13a).

Despite these differences, the two models converge. Com-
paring Eqs. (34a) and Eq. (22b), we find that the solutions
coincide given that the parameters, mr and �r , coincide with
their counterparts m and �. From Eqs. (21b) and (34c) and the
relation cn−1(x → −1,m2) → 2K(m2), we find that � → �r

in the limit P 
 1. Similarly, comparing Eqs. (21a) and (34b)
we find, surprisingly, that mr = m independent of the value
of the pressure. Thus, the solutions of the two models become
equivalent for large enough confinements.

In Fig. 2, we plot the height profile on a rigid substrate,
Eqs. (34), against the soft substrate one, Eqs. (22) and (23).

While at high values of the pressures there are significant
differences between the two, at small pressures, P ∼ wad, they
converge up to vanishingly small deviations at the point of
delamination.

This convergence marks the formation of a boundary layer
at the point of delamination across which gradients of the
bending moment rapidly decay to zero. To explore this layer,
we first calculate the bending moment, Mi = dφi/ds, in each
regime,

Mα = (2wad)1/2cn(qs,m2), (35a)

Mβ = (2wad)1/2

k
e−κζ

[
2kκ sin(kζ + φ) − q2

2
cos(kζ + φ)

]
,

(35b)

and then expand the resulting expressions around s = �/2,

Mi � Mi(�/2) + σ i
sn(s − �/2) + dσ i

sn

ds
(s − �/2)2 + · · · .

(36)

Keeping in mind our order of approximation, the various
constants in this expansion reads

Mα = Mβ = (2wad)1/2(1 − P ), (37a)

σα
sn = σβ

sn = (2wad)1/2(2 − P )1/2P, (37b)

dσα
sn

ds
= (wad/2)1/2(P − 1)P, (37c)

dσ
β
sn

ds
= dσα

sn

ds
− (wad/2)1/2. (37d)

Since the boundary layer is created at large confinements,
we restrict the following discussion to small values ofP ∼ wad.
From Eq. (37a), we see that the bending moment is continuous
across �/2 and it approaches Mr from below as P diminishes,
Mi → Mr ∼ (2wad)1/2 ∝ �−1

ec . In the latter expression and
in the subsequent ones, the proportionality is obtained after
dimensions are retrieved from Mi/B. The first-order correction
to the rigid substrate solution scales as Mr − Mi ∼ w

3/2
ad ∝

�c/�
2
ec. Thus, in the limit of a rigid substrate, K → ∞ and

therefore �c → 0, this correction diminishes and the bending
moment converges to a constant which is independent on the
substrate stiffness.

The first derivative of the bending moment, the normal
force σ i

sn, is also continuous across the point of delamination,
Eq. (37b). The fact that this force diminishes at small pressures,
σ i

sn ∼ w
3/2
ad ∝ �

1/2
c /�

5/2
ec , has two consequences, (i) the point

s = �/2 becomes maximum of the bending moment, and
(ii) the second derivative of the bending moment becomes
the leading order correction in the expansion, Eq. (36). Thus,
discontinuity first appears only in the second derivative of Mi

(third derivative of φ). This order is beyond the continuity
that is dictated by the force balance equations, Eqs. (8)
and (9).

When we approach the take-off point from the left, s →
(�/2)−, we find from Eq. (37c) that dσα

sn/ds ∼ w
3/2
ad ∝ �−3

ec ,
while when we approach it from the right, s → (�/2)+, we
find from Eq. (37d) that dσ

β
sn/ds ∼ w

1/2
ad ∝ 1/(�c�

2
ec). Since
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FIG. 4. The normalized bending moment at the edge of de-
lamination as a function of the normalized coordinate s/(�/2). In
this plot, wad = 0.005 and three different pressures are considered,
P = 0.1,0.05,0.0035. The red solid line marks the discontinuous
solution of the bending moment on a rigid substrate. As the pressure
decreases, the profiles converge to the discontinuous solution up to
a narrow boundary layer of width w. Although the width of this
layer remains constant, its relative length with respect to � shrinks
to zero.

�c 
 �ec the gradients in the delaminated region are much
smaller than in the adhered region. In fact, while the latter
decay to zero over a distance w ∼ 1/κ ∝ �w, the former
decay to zero over much larger distance, Mα � 0 at s � �/4
[see Eqs. (35a) and (21a)]. Thus, the width over which the
profile decays to zero in the adhered region, w, relative to
the delaminated extent length, � ∝ �ec, diminishes at large
confinements, w/� ∼ (�c/�ec)1/2 
 1.

In Fig. 4, we plot Eqs. (35) for the bending moments as
a function of the normalized coordinate, u = s/(�/2). As the
pressure drops, the relative gradients between the delaminated
and the adhered regions grow such that ultimately sharp
transition between the two regimes is obtained, as we would
expect from a boundary layer.

VI. CONCLUSIONS

Inspired by efforts to remove biofilms from soft surfaces,
we modeled the behavior of a thin sheet that is lying on top of
a compliant substrate and is uniaxially compressed from the
boundaries. Our aim was to determine the necessary displace-
ment and pressure that causes a portion of the film to form a
blister, which is delaminated from this surface. The formation
of this blister facilitates the removal of the thin film from
the surface and can thereby inhibit the fouling of the system.
Moreover, by considering a soft surface, which is approximated
by the Winkler model, we relaxed the assumption of a rigid
substrate that was considered elsewhere [34,37].

Our formulation yields a closed system of differential equa-
tions and boundary conditions that describe the continuous
force and moment balance transitions across the point of
delamination. In particular, similar to the Jurins law [61] in
capillary phenomenon, the height of the sheet at the point of
delamination is determined by a balance between the substrate
and adhesion energies, Eq. (14). This boundary condition links
the elastic shape to the adhesion energy.

TABLE I. Summary of the main results.

Critical displacements of the pattern transitions

Extensible Inextensible

Flat-to-blister, �fb Eq. (30) Not applicable
Wrinkles-to-blister, �wb Eq. (31) Eq. (32)

Main differences between blisters on soft and rigid substrates

Soft substrate Rigid substrate
Height function h(s) Eqs. (22) and (23) Eq. (34a)
Energy release rate Eq. (14) Eq. (33b)
Blister length, � Eq. (21b) Eq. (34c)
Maximum height, Amax (8wad)1/2/P (8wad)1/2/P

Under the set of assumptions that we postulated in Sec. III,
we solved this system of equations. This solution conserves
aspects of the inherent nonlinearity of the problem by allowing
the height of the delaminated region to go beyond linear
order. Two comments should be added to these assumptions.
First, in our model, we have neglected the energy of the
meniscus. This energy, which is associated with the shape of
the substrate beneath the delaminated sheet, can be estimated
by Em/(B/�w) � (B/�w)

√
wadK�2

c = w
3/2
ad (see Appendix A

in Ref. [19]), where Em is the meniscus energy. Since this
term is proportional to w

3/2
ad , it is negligible at our order

of approximation. Second, we note that in the case of an
inextensible sheet that is lying on a fluid substrate, each regime
(delaminated and adhered) have exact solutions [9,54]; the
challenge is, however, to combine the two solutions such that
the boundary conditions are correctly satisfied.

We showed that this approximated solution converges to
the known solution of a blister on a rigid substrate, for
summary see Table I. Consequently, for sufficiently strong
confinement, the elastic shape approximately satisfies the
boundary condition of a discontinuous bending moment even
for very soft foundations. This convergence can be rationalized
quantitatively when the respective energies of the substrate and
the blister are considered. In the limit of large confinements,
the energy of the substrate and the blister scales as wad and
w

1/2
ad , respectively [see the third and forth terms in Eq. (26a)].

Thus, when wad 
 1, most of the energy is localized in the
blister and only a small part of it is stored in the substrate. This
approximates the rigid substrate scenario, which neglects the
energy of the substrate altogether.

A surprising result that emerged from our studies is that the
maximum heights of a blister on soft and rigid foundations are
equal [compare Eqs. (25) and (34a) at s = 0]. Thus, even at
small confinements, where we would expect large deviations
due to the different boundary conditions of the two models, the
two profiles agree up to some discrepancy at the blister edges.
The latter discrepancy at the edges is due to different lengths
for the extent of delamination in the two profiles, Eqs. (21b)
and (34c). Our model provides details of the boundary layer
that is forming on the substrate close to the critical point of
delamination. We showed that the penetration length of this
layer inside the substrate scales as �w = (�c�ec)1/2, which is
much smaller then the elastocapillary length, �ec, over which
the blister evolves.
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Our approximated solution was also utilized to analyze the
possible transitions between two adhered solutions, flat and
wrinkled, to a blistered state; for summary of these results see
Table I. Our findings are summarized in the phase diagrams,
Figs. 3. Two general conclusions can be drawn from these
diagrams. First, a flat-to-blister transition occurs for large
enough confinement if η ≡ wad

ξL
� 0.2, where the parameter

η accounts for the ratio between the energy of adhesion and
the stretching energy of the sheet. Retrieving dimensions into
this parameter and reordering terms we obtain the following
criterion:

flat-to-blister criterion: wad � 0.2
B3/4K5/4L

Y
. (38)

Second, when η > 0.2, a transition from an adhered state
to a delaminated state is initiated from wrinkles or a fold.
In the present study, we did not analyze the fold-to-blister
transition and therefore the following conclusions hold for
�wb < �F; the blister-to-wrinkles transition appears before
the wrinkles-to-fold transition. In general, the maximum value
of η for which a wrinkles-to-blister transition occurs depends
on ξ . This maximum value can be calculated numerically by
setting �wb = �F in Eq. (31b), solving for P and substituting
this pressure in Eq. (31a). However, since in many practical
cases, the stretching energy of the sheet can be neglected,
ξL → 0, the criterion for the wrinkles-to-blister transition can
be well approximated by the inextensible limit wad � 12.7/L.
Retrieving dimensions into the latter expression, we obtain our
second general conclusion,

wrinkles-to-blister criterion (inextensible):

wad � 12.7
B3/4K1/4

L
. (39)

Although the detailed predictions of our phase diagram still
requires experimental verification, the above criteria can be
tested against known experimental results in two cases. First,
in Ref. [28] a polyester thin sheet (E = 2.5 GPa) of length
L ∼ 6 cm with thicknesses t = 10 μm was placed on a water
substrate (K = 104 N/m3) and uniaxially compressed. In this
experiment, the sheet evolved into a localized-folded state
and no delamination had been observed. To check that this is
consistent with our theory, we first notice that the sheet can be
treated as in the inextensible limit since ξL ∼ 10−5. Second,
we plug the experimental parameters into Eq. (39). This gives
12.7B3/4K1/4/L ∼ 10−4 J/m2 and wad ∼ 0.07 J/m2. Thus,
consistent with these experiments, the adhesion energy is too
strong and no delamination is predicted by the theory.

However, in Refs. [27,62] 0.6- to 1.6-mm-thick rubber
sheets (E ∼ 220 KPa) of length L = 40 cm was placed on
potassium carbonate liquid (K = 1.5 × 104 N/m3 and wad =
102 Nm/m) and compressed uniaxially. The parameters in
these experiments gives ξL ∼ 0.1 and therefore η ∼ 0.7–2.5.
Since η > 0.2, we first conclude that a flat-to-blister transition
will not occur. Second, since the extensibility corrections
are not negligible (ξL � 0) we cannot use our inextensible
criterion, Eq. (39). Thus, to obtain an appropriate criterion for
the latter case, we must go back to Eqs. (31) and substitute
�wb = �w + 4π2/L ∼ 1.3 in them and solve for η. This
gives the upper bound ηcr ∼ 3.2. Thus, our theory predicts
a wrinkles-to-blister transition at 0.2 � η � 3.2. Indeed, in

the latter references, these transitions were reported. However,
because of the large thickness of the rubber the elastogravity
length-scale became dominant over the elastocapillary length
scale and thus the delaminated state converged to the heavy-
elastica solution, where gravity plays an essential role in the
elastic shape, instead of the elastica solution as considered
here. In general, we expect that the addition of gravity to the
system will shift the lines in our phase diagrams upward, such
that delamination will occur at larger displacements. This is
because the sheet will need to overcome its own weight in
addition to the adhesive interactions to delaminate from the
substrate.

While the Winkler model is adequate to describe small de-
formations of soft substrates, such as fluid or shallow adhesive
layers [63], its predictions are, in general, not applicable to
more stiff substrates. This is because Winkler’s model takes
into consideration only part of the substrate’s elastic energy,
i.e., it considers only vertical deformations of its surface and
neglects most of its in-plane compression. This unaccounted
elastic energy may result in qualitative as well as quantitative
changes of the observed patterns. Thus, our results do not apply
to stiffer substrates that are compressed underneath the blister
as, for example, in Ref. [47]. In these systems, delamination
is driven by a different mechanism: the competition between
the bending energy of the sheet and the elastic compression
of the substrate underneath the blister. Thus, the Winkler
model is insufficient to capture this effect. For example, in
the case of stiffer substrates, the jump into a blistered state
is of a completely localized nature as it is independent of
the total length of the sheet. In addition, the latter systems
evolve into a state of multiple blisters and as explained in
Ref. [57], this state is energetically unfavorable in the present
model.

A possible means of experimentally verifying the present
results could be achieved through the procedure described
in Ref. [34], where a blister state was initially assumed. In
this experiment, a thin sheet was pressed against an adhesive
substrate through its entire length, accept for some portion at
the center. The system was then released until an equilibrium
state was obtained. Following this procedure for the current
system should give the height profile, Eq. (22b), in the
blistered regime. Measuring the maximum height, Eq. (25),
as a function of the external pressure can confirm the results of
the present model. Once confirmed, this method can be used as
an independent measurement of the adhesion energy in other
similar experimental setups.

The present work can be extended in several directions;
here, we mention three of them. First, one can consider the
addition of time dependent forces to the system. This could be
done, for example, by periodic excitations of the compressing
force. At a critical frequency, when the system is at resonance,
the film can potentially jump into a blistered state even before
our static criterion is achieved. Second, to better mimic the
behavior of biological tissues, the time dependence could be
added by replacing the elastic sheet with a viscoelastic one.
Third, in light of the present results, and especially the new
boundary conditions that show a continuous convergence into
the moment discontinuity, it would be interesting to obtain a
similar set of equations for two or three-dimensional vesicles
that are lying on an adhesive substrate [64,65].
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APPENDIX A: THE EQUILIBRIUM EQUATIONS IN THE
CASE OF A FLUID SUBSTRATE

Since the hydrostatic pressure that the fluid exerts on the
sheet is oriented in the normal direction it has, in general,
nonzero projection along the x and y axes. Although the total
pressure along the y axis must vanish, similar to Eq. (13b),
the corresponding component along the x direction is not
zero. This component of the pressure displace the edge of
the delaminated section. Consequently, the energy of the fluid
has two contributions esub = e1

sub + e2
sub. One is the work to

displace the fluid from zero to a certain height in the adhered
region,

e1
sub = 1

2

∫ L/2

�/2
γβh2

β cos φβds, (A1)

and second is to displace the delaminated section,

e2
sub = Ps

∫ �/2

0
(1 − γα cos φα)ds, (A2)

where

Ps =
∫ L/2

�/2
γβhβ sin φβds = −h2

β(�/2)

2
, (A3)

is the total pressure in the x direction that the fluid exerts at s =
�/2. To derive Eq. (A3) we have used the boundary condition,
hβ(L/2) = 0, and the geometric constraint, Eq.(1).

Replacing the term for the Winkler foundation by the above
energies modify Eqs. (7) into

L1 = 1

2

(
dφα

ds

)2

+ 1

2ξ
(γα − 1)2 − P (1 − γα cos φα)

−Qα

(
γα sin φα − dhα

ds

)
+ Ps(1 − γα cos φα),(A4a)

L2 = 1

2

(
dφβ

ds

)2

+ 1

2ξ
(γβ − 1)2 + 1

2
γβh2

β cos φβ − wad

−P (1 − γβ cos φβ) − Qβ

(
γβ sin φβ − dhβ

ds

)
. (A4b)

Following Appendix B and minimizing Eq. (A4a) with respect
to the α fields gives

0 = d2φα

ds2
+ (P − Ps)γα sin φα + Qαγα cos φα, (A5a)

0 = 1

ξ
(γα − 1) + (P − Ps) cos φα − Qα sin φα, (A5b)

0 = dhα

ds
− γα sin φα, (A5c)

0 = dQα

ds
. (A5d)

Similarly, minimization of Eq. (A4b) reads

0 = d2φβ

ds2
+

(
P + h2

β

2

)
γβ sin φβ + Qβγβ cos φβ, (A6a)

0 = 1

ξ
(γβ − 1) +

(
P + h2

β

2

)
cos φβ − Qβ sin φβ, (A6b)

0 = dhβ

ds
− γβ sin φβ, (A6c)

0 = desub

dhβ

− dQβ

ds
. (A6d)

Following our derivation of the boundary conditions,
Eqs. (10)–(14), we find that they remain unchanged. Thus,
from Eq. (14) we have that Ps = −wad. In addition, comparing
Eqs. (A5a) and (A6a) and Eqs. (A5b) and (A6b) we find that
the normal and tangential forces transforms continuously at
the point of delamination.

In Sec. III the approximated solution is based on the
assumption that wad 
 1. As a result, for large values of the
pressure, P 	 wad, the terms that are akin to Ps in Eqs. (A5)
and (A6) can be neglected and the solution remains unchanged.
However, for smaller values of the pressure, P ∼ wad, this
modification should be considered. In this case a plausible
approximation would be to replace P by P − Ps . It is then
easy to verify that at our level of approximation there are no
qualitative differences between the two foundations.

APPENDIX B: DERIVATION OF THE EQUILIBRIUM
EQUATIONS AND BOUNDARY CONDITIONS IN THE

CASE OF A DEFORMABLE SUBSTRATE

In this Appendix we carry out the minimization that leads
to Eqs. (8) and (9) and the boundary conditions, Eqs. (13).
In addition, in the subsequent subsection we will derive the
boundary condition, Eq. (14). Our goal is to minimize the
energy G = ∫ �/2

0 Lαds + ∫ L/2
�/2 Lβds, where Lα and Lβ are

given by Eqs. (7a) and (7b).
We carry out the minimization with respect to φi, γi, hi ,

and Qi (i = α, β) in the standard way. We consider a small
perturbation over these variables, for example, φ → φi + δφi ,
and then expand to linear order in δφi . This procedure gives

δG =
[
dφα

ds
δφα

]s=�/2

s=0

+
[
dφβ

ds
δφβ

]s=L/2

s=�/2

+ [Qαδhα]s=�/2
s=0 + [

Qβδhβ

]s=L/2
s=�/2

+
∫ �/2

0

[
d

ds

(
∂Lα

∂(dxi/ds)

)
− ∂Lα

∂xi

]
δxids

+
∫ L/2

�/2

[
d

ds

(
∂Lβ

∂(dyi/ds)

)
− ∂Lβ

∂yi

]
δyids, (B1)

where in the second line xi = φα, γα, hα, Qα and yi =
φβ, γβ, hβ, Qβ and it should be understood that there is a
summation over the indexes i. Equating to zero each of the
integrand in the second line readily yields the equilibrium
equations, Eqs. (8) and (9).
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The first line in Eq. (B1) gives the boundary conditions,
Eqs. (13). To reveal this result we first note that since φα(0)
and hβ(L/2) are prescribed δφα(0) = δhβ(L/2) = 0. In ad-
dition, the continuity conditions at s = �/2, Eq. (12), gives
δφα(�/2) = δφβ(�/2) and δhα(�/2) = δhβ(�/2). Thus, we are
left with

δG =
(

dφα

ds
− dφβ

ds

)
�/2

δφα(�/2) + (
Qα − Qβ

)
s=�/2

× δhα(�/2) − Qα(0)δhα(0), (B2)

where (dφβ/ds)s=�/2 = 0 was used. Since δφα(�/2), δhα(�/2),
and δhα(0) are arbitrary, we can independently equate each of
their coefficients to zero. This yields the boundary conditions,
Eqs. (13).

Derivation of Eq. (14)

In this subsection, we elaborate on the boundary condition
that is obtained by minimization of the total energy with respect
to the delamination length, �. Following Refs. [37,64,66,67]
we minimize the energy, G, with respect to �. This gives the
following equation:

δG

δ�
= 1

2
L1(�/2) − 1

2
L2(�/2) +

(
dφα

ds

dφα

d�

)
s=�/2

−
(

dφβ

ds

dφβ

d�

)
s=�/2

, (B3)

where to simplify the final result we have used Eqs. (8), (9),
and (13). Equation (B3) can further be simplified using the
following arguments. A small perturbation in the delamination

length, � → �� + δ�, must yield a perturbation in the angles
fields, φα → φ�

α + δφα and φβ → φ�
β + δφβ . Consequently, at

s = �/2 these fields can be expanded as follows:

φα(�/2) = φ�
α[(�� + δ�)/2] + δφα[(�� + δ�)/2]

� φ�
α(��/2) + 1

2

(
dφ�

α

ds

)
s= ��

2

δ� + δφα(��/2),

(B4a)

φβ(�/2) = φ�
β[(�� + δ�)/2] + δφβ[(�� + δ�)/2]

� φ�
β(��/2) + 1

2

(
dφ�

β

ds

)
s= ��

2

δ� + δφβ(��/2).

(B4b)

Subtracting the two equations and noting that by the continuity
conditions, Eqs. (12), φα(�/2) = φβ(�/2) and φ�

α(��/2) =
φ�

β(��/2), we have

dφβ

d�
− dφα

d�
= 1

2

(
dφ�

α

ds
− dφ�

β

ds

)
= 0, (B5)

where we have used δφi/δ� = dφi/d�. In addition, the last
equality holds since the bending moment is continuous,
Eq. (13a). Last, substituting Eqs. (B5) in (B3) and using
Eqs. (7a) and (7b) gives

δG

δ�
= 1

2
(wad − esub). (B6)

The boundary condition, Eq. (14), is obtained once we equate
Eq. (B6) to zero.
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