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When chiral liquid crystals or magnets are subjected to applied fields or other anisotropic environments, the
competition between favored twist and anisotropy leads to the formation of complex defect structures. In some
cases, the defects are skyrmions, which have 180◦ double twist going outward from the center, and hence can
pack together without singularities in the orientational order. In other cases, the defects are merons, which have
90◦ double twist going outward from the center; packing such merons requires singularities in the orientational
order. In the liquid crystal context, a lattice of merons is equivalent to a blue phase. Here we perform theoretical
and computational studies of skyrmions and merons in chiral liquid crystals and magnets. Through these studies,
we calculate the phase diagrams for liquid crystals and magnets in terms of dimensionless ratios of energetic
parameters. We also predict the range of metastability for liquid crystal skyrmions and show that these skyrmions
can move and interact as effective particles. The results show how the properties of skyrmions and merons depend
on the vector or tensor nature of the order parameter.
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I. INTRODUCTION

When chiral liquid crystals are in an anisotropic environ-
ment (under an applied electric field or between aligning
surfaces), they experience geometric frustration: The chirality
favors a twist in the director field, but the anisotropy favors
a director orientation that is incompatible with twist [1,2].
Because of this frustration, these liquid crystals form complex
topological defect structures, with regions of twist separating
regions of the favored orientation. In some cases, these defects
are walls with a one-dimensional (1D) twist of the director
field n(x) [3]. In other cases the defects are skyrmions, which
have a two-dimensional (2D) variation of the director field
n(x,y) with double twist going outward from the center,
covering all possible orientations on the unit sphere [4–10].
In even more complex cases, the defects are hopfions, with a
three-dimensional (3D) variation of the director field n(x,y,z)
in a knotted texture [11,12].

An important feature of all three cases—walls, skyrmions,
and hopfions—is that the orientation varies in a topological
configuration that cannot anneal away, but the magnitude of the
order parameter remains constant. Unlike typical topological
vortices, there is no singularity where the magnitude goes
to zero (or otherwise changes away from its bulk value
[13]). These nonsingular defects were originally proposed in
nuclear physics [14], and they are now studied extensively in
condensed matter, especially in chiral magnets [15–21], where
they have potential applications in magnetic memory, logic,
low-power information technology devices, microwave detec-
tors, and oscillators [22] as well as topological spintronics [23].

*Present address: Los Alamos National Laboratory, Los Alamos,
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The nonsingular defect structure of skyrmions can be
compared with the singular defect structure of half-skyrmions
[24,25], which are called merons [26]. A meron has a double
twist of the director field going outward from the center, similar
to a skyrmion, except that it covers only half of the unit
sphere. There is one crucial difference between merons and
skyrmions: Neighboring merons are separated by disclinations
(singularities in the director field, where the magnitude of
nematic order changes away from its bulk value), while
neighboring skyrmions are separated by uniform defect-free
regions. In that sense, a lattice of merons is equivalent to a
blue phase of chiral liquid crystals, with a periodic array of
double-twist tubes separated by singularities. (In the absence
of an applied electric field, a bulk blue phase has a 3D cubic
structure [27,28]; under a strong applied field, it evolves toward
a 2D lattice [29–32].) Hence, an important issue in chiral liquid
crystals is how to understand the crossover between skyrmions
and merons (or blue phases). Why would a chiral liquid crystal
form singular or nonsingular defect structures?

A further theoretical issue is how to compare skyrmions and
merons in liquid crystals with analogous structures in chiral
magnets. Both liquid crystals and magnets have orientational
order parameters with magnitudes and directions. They can
both exhibit nonsingular defects (with constant magnitude of
the order parameter), as well as singular defects (with the
magnitude vanishing or otherwise changing away from its bulk
value). The main difference between these materials is the
symmetry of the orientational order parameter: liquid crystals
have a tensor order parameter, while magnets have a vector
order parameter. How does this difference of symmetry affect
the skyrmions or merons that form in the material?

The purpose of this paper is to address these issues through
theoretical studies of chiral liquid crystals and magnets. In
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Sec. II we consider a simple analytic model for chiral liquid
crystals and show that there are four characteristic energy
scales: the energy associated with the magnitude of nematic
order, the chiral interaction, the anisotropy, and the tempera-
ture. We derive a phase diagram in terms of three dimensionless
ratios of these energies. This phase diagram includes classical
results for blue phases with no anisotropy and extends the
analysis to include anisotropy. It shows that meron lattices
are stable when the energy associated with the magnitude
of nematic order is relatively low. Skyrmions are not stable
structures in this phase diagram, but they can be metastable
when that energy scale is high.

In Sec. III we present Monte Carlo and relaxational dynamic
simulations of the model for chiral liquid crystals. These
numerical simulations confirm the phase diagram derived
through simple analytic approximations. They also show the
formation of skyrmions as metastable defects, with length
scales that can be understood analytically.

In Sec. IV we extend the simple analytic model to describe
chiral magnets, which have a Dzyaloshinskii-Moriya (DM)
interaction term in the free energy, arising from Dresselhaus
spin-orbit coupling. In this case, there are four characteristic
energies: the energy associated with the magnitude of magnetic
order, the chiral DM interaction, the anisotropy, and the applied
magnetic field, while the temperature scales out of the problem.
We derive a phase diagram in terms of three dimensionless
ratios of these energies and show that this phase diagram is
quite similar to previous results from more detailed numerical
calculations. The results are generally similar to the liquid-
crystal case, but with one important difference: in magnets,
skyrmions can be stabilized by the competition between
anisotropy and applied magnetic field. This competition is not
available in liquid crystals because of the tensor nature of the
order parameter.

In this article, we only consider the formation of skyrmions
or meron lattices driven by bulk chirality, known as Dressel-
haus spin-orbit coupling in the magnetic case. We should note
briefly that modulated structures can also be driven by another
mechanism for broken inversion symmetry. In liquid crystals,
that mechanism is called polarity. Polarity is often induced by
surfaces, and the phenomenon of surface-induced modulations
has been studied for many years [33,34]. More recently,
spontaneous bulk polarity has also been found in the twist-bend
nematic phase of certain liquid crystals [35], and theoretical
research has predicted that bulk polarity can induce blue phases
[36,37]. In magnets, the analogous mechanism for broken
inversion symmetry at surfaces is called Rashba spin-orbit
coupling, and it has also been shown to favor the formation
of skyrmions [38]. Although we have investigated only the
comparison between chiral (Dresselhaus) defects in liquid
crystals and magnets, we expect that the same considerations
will apply to polar (Rashba) defect structures.

II. THEORY OF CHIRAL LIQUID CRYSTALS

A. Model

We begin with the theory of chiral liquid crystals, as
usually studied in the context of blue phases. A liquid crystal
is represented by a tensor order parameter Q(r), which is

related to the scalar order S(r) and the director field n(r)
by Qαβ = S( 3

2nαnβ − 1
2δαβ). Because we wish to describe

meron lattices with disclinations, we use Landau-de Gennes
theory (in terms of the full Q tensor with variable eigenvalues)
rather than Oseen-Frank theory (in terms of the director n with
unit magnitude). In Landau-de Gennes theory, the free energy
density can be expressed as

F = 1
2a Tr Q2 + 1

3b Tr Q3 + 1
4c(Tr Q2)2

+ 1
2L(∂γ Qαβ)(∂γ Qαβ) − 2Lq0εαβγ Qαδ∂γ Qβδ. (1)

Here the first three terms represent the free energy of a uniform
system, expanded in powers of the tensor order parameter.
These terms favor certain eigenvalues of Q (corresponding
to a certain magnitude of uniaxial nematic order), which will
occur everywhere except in the disclinations. The quadratic
coefficient a is assumed to vary linearly with temperature,
while b and c are assumed constant with respect to temperature.
The fourth and fifth terms represent the elastic free energy
associated with variations of Q as a function of position.
The fourth term penalizes splay, twist, and bend deformations
equally, with an elastic coefficient L. The fifth term favors a
chiral twist of the nematic order, with a characteristic inverse
length q0 arising from the molecular chirality (analogous to
the Dzyaloshinskii-Moriya interaction in magnets). We neglect
other possible elastic terms that give different energy costs for
splay, twist, and bend, such as 1

2L2(∂αQαγ )(∂βQβγ ).
In the context of blue phases, following the work of Grebel

et al. [28], researchers normally rescale parameters to simplify
the theory. To motivate this rescaling, it is convenient to
consider the specific temperature at which a = 0. This tem-
perature is below the first-order isotropic-nematic transition,
which occurs at a positive value of a. At this temperature,
the first four terms in the free energy favor a nematic phase
with order parameter S ∼ |b|/c, the free energy density of the
nematic relative to isotropic phase is F ∼ b4/c3, and the core
radius of a disclination in nematic order is ξ ∼ (Lc/b2)1/2.
Hence, at general temperature, we rescale the Q tensor, the free
energy density, and all lengths by those characteristic values.
In particular, we define the scaled free energy density as F̃ =
Fc3/b4. The theory then depends only on two dimensionless
ratios, which are normally written as

t = 27ac

b2
, κ =

√
108cLq2

0

b2
. (2)

The parameter t is a dimensionless temperature, which
represents the temperature-dependent quadratic coefficient
a relative to b and c. The parameter κ is a dimensionless
chirality, which represents the natural twist q0 relative to
the disclination core radius ξ . We can express the same
comparison in terms of energies. The free energy density
associated with the favored chiral twist is LS2q2

0 , while the
free energy density of a disclination core is LS2ξ−2. Hence,
κ2 can be interpreted as the energy scale of the favored chiral
twist relative to the energy scale associated with changing the
eigenvalues of Q inside a disclination core. A liquid crystal
material with low κ is usually called “low chirality,” but it
could equally well be called “stiff nematic order.” Likewise,
a material with high κ is usually called “high chirality,” but it
could be called “soft nematic order.”
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In many experiments, a liquid crystal is placed in an
anisotropic environment, which favors some alignment of
nematic order with respect to a certain axis, which we can call
the z axis. If the anisotropy favors alignment along the axis,
it is called “easy axis”; if it favors alignment perpendicular
to the axis, it is called “easy plane.” There are two common
mechanisms for anisotropy. First, an electric field can be
applied along the z axis, leading to a dielectric anisotropy.
This field alignment can be represented by an additional term
in the free energy of


F = −
εE2Qzz, (3)

with Ftotal = F + 
F . This term gives easy axis anisotropy if

ε > 0 and easy plane anisotropy if 
ε < 0. Following the
same argument as above, we can rescale this term as 
F̃ =

Fc3/b4 to obtain the dimensionless anisotropy

α = 
εE2c2

|b|3 . (4)

A second mechanism for anisotropy is to put a liquid crystal
in a narrow cell, of thickness d, between two surfaces with
strong anchoring. Homeotropic anchoring gives easy-axis
anisotropy on the bulk liquid crystal, while planar anchoring
gives easy-plane anisotropy. To see the analogy between
field-induced and surface-induced anisotropy, suppose the
nematic order at the midplane is tilted at a small angle θ with
respect to the z axis. For field-induced anisotropy, the extra
free energy density (relative to an untilted state) is 
εE2Sθ2.
For surface-induced anisotropy, the extra free energy density
is LS2θ2/d2. Hence, the effect of surface-induced anisotropy
is similar to field-induced anisotropy with an effective

εE2 ∼ LS/d2 and effective α ∼ (Lc)/(d2b2). Of course,
this analogy is an approximation for small tilt and may break
down when the tilt becomes larger.

Our goal is now to determine what modulated structures of
the Q tensor minimize the free energy. In particular, does the
system form nonsingular defects, such as walls, skyrmions, and
hopfions, with approximately constant eigenvalues of Q? Or
does it form blue phases, with double-twist tubes (or merons)
separated by disclinations in which the eigenvalues change
away from their bulk values? The results must be controlled
by the three dimensionless parameters t, κ , and α.

As a minimal model to address this question, we consider
a 3D nematic order tensor that depends only on two spatial
coordinates, Q(x,y), with no dependence on the third spatial
coordinate z, under field-induced anisotropy. This model can
describe walls and skyrmions, although not hopfions. Fur-
thermore, it can describe a simple version of blue phases
as vertical double-twist tubes (merons) separated by vertical
disclinations, although it cannot describe the cubic structure
of real 3D blue phases.

B. Simple analytic calculations

As a first step in analyzing this model, we make assumptions
about Q(x,y) in each of the possible structures and calculate
the free energies. By comparing the free energies, we determine
a phase diagram in terms of t, κ , and α. Of course, we recog-
nize that these assumptions are very simple. For that reason,
in the following section we verify the results through Monte
Carlo (MC) simulations of the model.

1. Isotropic phase

In the isotropic phase, the system is disordered with Q = 0
everywhere. The scaled free energy density is F̃iso = 0, and the
anisotropy contributes 
F̃iso = 0. (In this analysis, we neglect
any slight paranematic order that might be induced by the
anisotropy.)

2. Vertical nematic phase

In the vertically aligned nematic phase, the director is
n̂ = ẑ, and the order tensor is Qαβ = S( 3

2nαnβ − 1
2δαβ). From

Eq. (1), the free energy becomes F = 3
4aS2 + 1

4bS3 + 9
16cS4.

Minimizing with respect to the order parameterS givesSvnem =
(−b + √

b2 − 24ac)/(6c), and hence the scaled free energy
density is

F̃vnem = − (3 + √
9 − 8t)2(3 + √

9 − 8t − 4t)

93312
. (5)

The anisotropy makes an additional contribution of 
F̃ =
−αQzz = −αS, which implies


F̃vnem = −α(3 + √
9 − 8t)

18
. (6)

In this and the following sections, we neglect the slight change
in S induced by the anisotropy. This assumption allows us to
obtain algebraic expressions for the free energy, which can be
compared to find the phase diagram. We will check the results
by comparison with MC simulations, which do not rely on this
assumption.

3. Planar nematic phase

In the horizontally aligned nematic phase, the director is
n̂ = x̂. Most of the analysis is the same as for the vertically
aligned nematic phase, with the same order parameter Spnem

and the same scaled free energy density F̃pnem. However,
the anisotropy now contributes 
F̃ = −αQzz = + 1

2αS, and
hence


F̃pnem = α(3 + √
9 − 8t)

36
. (7)

4. Cholesteric phase (lattice of walls)

A cholesteric phase has the twisted structure shown in
Fig. 1 (middle column). It can be regarded as a periodic
lattice of twist walls, separating regions in which the director
field is aligned with the anisotropy. To a first approxima-
tion, we assume that the director field is unperturbed by
the anisotropy, so that n̂(x) = − ŷ sin(πx/d) + ẑ cos(πx/d),
where d is the pitch. The free energy is then F = 3

4aS2 +
1
4bS3 + 9

16cS4 + 9
4π2LS2d−2 − 9

2πLq0S
2d−1. By minimiz-

ing with respect to d and S, we obtain dchol = π/q0 and
Schol = (−b +

√
b2 − 24ac + 72cLq2

0 )/(6c), and the scaled
free energy density becomes

F̃chol = − t
1

93 312
(3 +

√
9 − 8t + 6κ2)2

× (3 − 4t + 3κ2 +
√

9 − 8t + 6κ2). (8)

The scaled free energy density associated with the anisotropy
now depends on x, and it averages to 
F̃ = −α〈Qzz〉 =

062706-3



AYHAN DUZGUN, JONATHAN V. SELINGER, AND AVADH SAXENA PHYSICAL REVIEW E 97, 062706 (2018)

FIG. 1. Structure of the modulated liquid-crystal phases studied
in this paper: blue phase (meron lattice), cholesteric phase (lattice of
walls), and skyrmion lattice. The top row shows schematic views of
the director field, and the bottom row shows MC simulation results
(with the color scale indicating |nz|).

− 1
4αS, giving


F̃chol = −α(3 + √
9 − 8t + 6κ2)

72
. (9)

5. Blue phase (meron lattice)

In two dimensions a blue phase has the structure shown in
Fig. 1 (left column). It consists of a hexagonal lattice of double-
twist tubes, which can be regarded as merons or half-skyrmions
[24]. In each meron, the director twists through an angle of
π/2, from a vertical orientation at the center to a horizontal
orientation at the edge of the tube. A simple assumption for
this variation can be expressed in cylindrical coordinates as
n̂(r) = −φ̂ sin(πr/d) + ẑ cos(πr/d), for 0 � r � d/2, where
d is the diameter of the tube. In each region between three tubes,
the director field is in the (x,y) plane, and it has a disclination
with topological charge of −1/2. The argument of Ref. [13]
shows that the Q tensor becomes biaxial in the disclination
core, but to a first approximation we will simply consider the
core as an isotropic region.

To estimate the average free energy density of the blue
phase, we represent each unit cell of the lattice (with area
A = √

3d2/2) as one meron (with A = πd2/4) and two
disclinations (with the remaining area) and obtain

〈F 〉 = FmeronAmeron + 2FdefectAdefect√
3d2/2

= π
√

3aS2

8
+ πbS3

8
√

3
+ 3π

√
3cS4

32

+33.5LS2

d2
− 3

√
3Lq0S

2(4 + π2)

4d
. (10)

We then minimize over d to find dmeron = 3.7/q0, and we
use the same value of S as in the cholesteric calculation.

The average scaled free energy density then becomes

〈Fmeron〉 = − (9.7 × 10−6)(3 +
√

9 − 8t + 6κ2)2

× (3 − 4t + 4.1κ2 +
√

9 − 8t + 6κ2). (11)

Similarly, the scaled free energy density associated with the
anisotropy averages to

〈
Fmeron〉 = 0.0027α(3 +
√

9 − 8t + 6κ2) . (12)

6. Skyrmion lattice

A hexagonal lattice of skyrmions is shown in Fig. 1 (right
column). In each skyrmion, the director twists through an angle
of π , from vertical at the center to horizontal and back to
vertical at the edge. A simple assumption for this variation can
be expressed as n̂(r) = −φ̂ sin(2πr/d) + ẑ cos(2πr/d), for
0 � r � d/2. In each region between three tubes, the director
field is vertical, and hence there are no disclinations.

As in the previous case, we represent each unit cell of the
lattice (with A = √

3d2/2) as one skyrmion (with A = πd2/4)
and two vertical nematic regions (with the remaining area), so
that the average free energy density becomes

〈F 〉 = FskyrmionAskyrmion + 2FvnemAvnem√
3d2/2

= 3aS2

4
+ bS3

4
+ 9cS4

16
+ 100.4LS2

d2
− 3

√
3π2Lq0S

2

2d
.

(13)

After the same minimization as in the previous case, we obtain
dskyrmion = 7.8/q0 and

F̃skyrmion = − 1

93 312
(3 +

√
9 − 8t + 6κ2)2

× (3 − 4t + 1.37κ2 +
√

9 − 8t + 6κ2). (14)

The anisotropy further contributes


F̃skyrmion = −α(8 − π
√

3)(3 + √
9 − 8t + 6κ2)

144
. (15)

C. Phase diagram

We now have approximate algebraic expressions for the
free energy Ftotal = F + 
F for each of the six structures
considered above, as functions of the three dimensionless
variables: temperature t , chirality κ , and anisotropy α. For each
set of (t,κ,α), we determine which structure has the lowest free
energy, and hence construct a phase diagram for the system.

First, consider the case of no anisotropy, α = 0. The phase
diagram in the (t,κ) plane is shown in Fig. 2. At high
temperature, the system is in the disordered isotropic phase.
At lower temperature, for high chirality, the system forms a
blue phase (meron lattice). In this structure, there are favorable
contributions to the free energy from the optimal magnitude of
nematic order and from the optimal double twist of the director
field within the merons. There is an unfavorable contribution to
the free energy from the disclinations between the merons, but
these disclinations do not cost too much free energy because
the nematic order is fairly soft in this case of high chirality.
By contrast, at low temperature and low chirality, the system
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Blue phase
(merons)

FIG. 2. Phase diagram for chiral liquid crystals in the
temperature-chirality plane, with no anisotropy. The insets show
structures calculated by the MC simulations. In those structures, the
colors represent |nz|, with the same color scale as in Fig. 1.

forms a cholesteric phase. In this structure, there are favorable
contributions to the free energy from the optimal magnitude
of nematic order and from the single twist of the director
field (which is not as favorable as double twist). There are no
disclinations, which is reasonable because disclinations cost

too much free energy when nematic order is stiff in this case
of low chirality.

This phase diagram in the (t,κ) plane is equivalent to the
classic phase diagram for blue phases, which has been studied
for many years, and the competition between the energy gain
of double twist and the energy cost of disclinations has been
discussed in Ref. [27]. In previous studies such as Ref. [28],
the phase diagram has been derived by methods that are much
more rigorous than those in this section. Here we see that it is so
robust that it occurs even with our very rough approximations.

Now suppose that there is some anisotropy, which may
be either easy-axis (α > 0) or easy-plane (α < 0). We then
obtain a 3D phase diagram in the (t,κ,α) space, which is
shown using two different 3D visualizations in Fig. 3. (Note
that the scales on the axes are different in these two views.)
This phase diagram still shows the isotropic, cholesteric, and
blue phases. In addition, the vertical nematic phase is stable
for large α > 0, and the planar nematic phase is stable for
large α < 0. The transitions between uniform nematic phases
and modulated phases (cholesteric or blue) depend mainly on
the balance between anisotropy (which favors nematic) and
chirality (which favors modulation).

The 3D phase diagram does not show any region in
which the skyrmion lattice is stable. At least with this set
of rough approximations, the skyrmion lattice never provides
the optimum balance among the different contributions to the
free energy. Even so, we can still ask: Where in the phase
diagram is the skyrmion lattice close to the optimum state? That
consideration will at least tell us when skyrmions are likely to
be observed as metastable defects, and when they may even
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FIG. 3. Two views of the phase diagram for chiral liquid crystals in the temperature-chirality-anisotropy space. (Note that the scales on the
axes are different in these two visualizations.) The thick horizontal and vertical arrows show the MC simulation paths discussed in Sec. III, and
the insets show structures calculated by the simulations. In the right column, middle image, the isolated merons resemble the structures studied
in Ref. [25]. In all the images of merons, twist walls occur at the dark blue lines where nz = 0, and disclinations occur wherever three dark blue
lines intersect.
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be stable if our approximations are not exactly correct (as with
surface-induced anisotropy). The answer is that the skyrmion
lattice is almost the optimum state for very low chirality κ , near
the transition between vertical nematic and cholesteric, which
occurs for easy-axis anisotropy α > 0. Hence, we can see that
the skyrmion lattice and the meron lattice are actually very
different types of structures, in spite of the fact that they look
somewhat similar. The meron lattice requires high κ , so that
the necessary disclinations will not cost too much free energy.
The skyrmion lattice requires low κ , so that the nematic order
parameter will be stiff against variations.

This analysis can be compared with a recent paper from
our group [9], which modeled skyrmions using a very dif-
ferent theoretical formalism. That paper used a director field
(with constant order parameter S), together with an extra
phenomenological parameter representing the free energy
cost of melting the nematic order at the core of a defect.
It applied the director formalism to a 3D cell with strong
homeotropic anchoring. That paper found a phase diagram with
three structures: vertical nematic, cholesteric, and skyrmion
lattice. Although that phase diagram was expressed in terms
of different variables, it can be translated into our current
variables. The nematic-cholesteric-skyrmion triple point in
that phase diagram occurs at (d/ξ )2 ∼ 103 and q0d ∼ 101/2,
which implies α ∼ (ξ/d)2 ∼ 10−3 and κ ∼ ξq0 ∼ 10−1. For
α � 10−3, the skyrmion lattice occurs between the vertical
nematic phase and the cholesteric phase, around κ ∼ 10−1.
For α � 10−3, there is a direct transition from vertical nematic
to cholesteric around κ ∼ 10−1. Comparing Ref. [9] and the
current article, we see that the two different theories both show
that skyrmions are stable or metastable at low κ , not at high κ .

III. NUMERICAL SIMULATIONS

A. Equilibrium phases

As an alternative method to minimize the free energy
Ftotal = F + 
F , we run MC simulations using the Metropolis
algorithm. In these simulations, the liquid crystal order is
represented by a 3 × 3 traceless, symmetric tensor Q at each
site of a 2D square lattice in the (x,y) plane. In the free energy,
all derivatives are approximated by finite differences. We relax
the five independent components of Q by simulated annealing
from a disordered state for each set of temperature t , chirality
κ , and anisotropy α. The states found through this numerical
method can then be compared with the states found by the
simple analytic assumptions of Sec. II B.

As a first study, we vary the parameters t and κ , for zero
anisotropy α = 0, to explore the phase diagram of Fig. 2. At
high t , the system is in the isotropic phase, with a highly
disordered Q tensor field. At low t and low κ , the simulations
show a cholesteric phase, with a lattice of twist walls separating
vertically aligned stripes. Because of fluctuations in the MC
simulation, the cholesteric order is not perfect, but rather
exhibits hairpin defects. At high κ , we find a blue phase, which
consists of double-twist tubes or merons, separated by twist
walls. At each point where three walls intersect, there is a
disclination of topological charge −1/2 in the orientational
order. These disclinations are points where the eigenvalue

associated with the ẑ axis becomes dominant and negative in
sign, surrounded by biaxial cores, as predicted in Ref. [13].

For a second comparison, we vary κ from 0.09 to 1.9, with
the other two parameters fixed at t = −0.9 andα = 0.001. This
series of simulations moves along the thick arrow in Fig. 3 (left
side). A series of simulated structures is shown by the insets
around the phase diagram.

At low chirality, the system is in the vertically aligned
nematic phase. The director is everywhere parallel to the
anisotropy axis, n̂ = ẑ, as indicated by the uniform red color in
the figure. When the chirality increases, there is a transition into
the cholesteric phase. Because of fluctuations in the simulation,
the cholesteric phase shows several dislocations in the stripe
pattern, which correspond to disclinations in the orientational
order. As the chirality increases further, the density of disloca-
tions increases, and the long stripes of vertical alignment evolve
into shorter segments. Eventually the segments shorten into
hexagonal cells, which can be regarded as double-twist tubes or
merons, separated by twist walls. The transitions among these
structures occur quite close to the phase boundaries predicted
by the simple analytic assumptions.

For a third comparison, we vary α from −0.2 (easy plane
anisotropy) to +0.1 (easy axis anisotropy), with the other
parameters fixed at κ = 0.9 and t = −0.9. This series moves
along the thick arrow in Fig. 3 (right side), with simulated
structures shown by insets around the phase diagram.

For high easy plane anisotropy, the system is in a hori-
zontally aligned nematic phase, with n̂ in the (x,y) plane.
The orientation within the plane is random, and it is uniform
across the system. When the anisotropy is reduced toward
zero, the system begins to show isolated merons, with vertical
alignment in the center and double twist of the director going
outward. These merons are separated by large regions of n̂ in
the (x,y) plane, which must include disclinations in the planar
director field. As the anisotropy decreases further, the density
of merons increases, and they eventually form a hexagonal
lattice, which can be regarded as a blue phase. After the
anisotropy changes sign and becomes larger in the easy axis
direction, there is a transition into a cholesteric phase, with
walls separating vertically aligned stripes. For even larger easy
axis anisotropy, the system forms a vertically aligned nematic
phase, with a uniform director field. Again, the transitions are
generally consistent with the phase boundaries derived from
the approximations of Sec. II B.

B. Metastable skyrmions

We do not see stable skyrmions in the MC simulations for
any set of parameters in this model. In that respect, the MC
simulations are once again consistent with the simple analytic
calculations of Sec. II B: One of the other phases is always
lower in free energy than the skyrmion lattice.

Although skyrmions are not stable minimum energy states,
they can still exist as metastable states. To investigate the
possibility of metastable skyrmions, we run dynamic simula-
tions of the same model with free energy Ftotal = F + 
F ,
with the code running on a graphical processing unit. In
these dynamic simulations, we integrate the Q tensor forward
in time, following the relaxational equation ∂Qαβ(r,t)/∂t =
−δFtotal/δQαβ(r,t), where  is a mobility coefficient. This
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0 0.5 1

FIG. 4. Simulation of a metastable skyrmion. The director field
covers all possible orientations on the unit sphere exactly once, giving
a skyrmion topological charge of 1. The out-of-plane component |nz|
is indicated by the color scale, while the in-plane component points
circumferentially around the center. The yellow line on the bottom
shows nz from −1 to 1, as a function of x, for fixed y in the center.
This structure can be regarded as a π -wall that is curved into a ring,
with vertical nematic in the interior and the exterior.

equation is not required to conserve skyrmion charge, because
the eigenvalues of Q can change in time. However, it normally
conserves skyrmion charge, unless the system goes over a
significant energy barrier to changing the eigenvalues.

We begin the dynamic simulations with an initial condition
corresponding to a circular skyrmion, in which the director is
vertical at the center, and it twists by 180◦ going outward to the
perimeter. Depending on the parameters relevant to energetics,
we see three types of shape evolution: (a) If the anisotropy is too
large, the skyrmion shrinks and disappears; the final state is a
vertical nematic. (b) If the anisotropy is too small, the skyrmion
expands and evolves into one of the variations of cholesteric
stripe patterns that was seen in the MC simulations. (c) If the
anisotropy is within the right range, the initial state relaxes into
a metastable skyrmion.

The metastable skyrmion has the structure shown in Fig. 4.
The director twists by 180◦ from the center to the perimeter, but
this twist is not uniform. Rather, the director is almost vertical
over some distance from the center and the twist occurs over a
short range. Hence, the skyrmion can be regarded as a π -wall
that is curved into a ring, with a vertically aligned nematic
phase in the interior and the exterior.

The size and shape of a skyrmion are very robust and long-
lived. For example, in Fig. 5, if the initial state is a distorted
elliptical loop rather than a circle, the skyrmion quickly evolves
into a final static circular shape which never breaks down. If two
skyrmions are in close proximity, they repel each other until
they reach a separation comparable to the skyrmion diameter.
Because of this robustness and interaction, a system of many
skyrmions forms a lattice, analogous to the crystallization of
particles with repulsive interactions. This behavior is similar

FIG. 5. Static skyrmions as particles: (a) An initially distorted
shape quickly evolves into a circular ring. (b) Skyrmions repel each
other. (c) A system of many skyrmions forms a lattice.

to formation of a triangular or square lattice in simulations of
magnetic skyrmions [19,26].

To understand the metastable skyrmion structure, we rep-
resent the director field in cylindrical coordinates as n̂(r) =
−φ̂ sin[θ (r)] + ẑ cos[θ (r)] and make the linear Ansatz for the
polar angle

θ (r) =

⎧⎪⎨
⎪⎩

0, for r � rin

(r − rin)π/δr, for rin � r � rout

π, for r � rout

, (16)

where rin is the inner radius of the ring, rout is the outer radius,
and δr = rout − rin is the thickness of the wall. As in the
calculations of Sec. II B, we calculate the free energy for this
configuration using Qij = S( 3

2ninj − 1
2δij ), and we subtract

the background energy of the vertical nematic phase. We then
make the substitution g = rin/δr , to obtain a skyrmion free
energy as a function of g and δr . Minimization with respect to
δr yields

δr = 3πLq0S


εE2
, (17)

showing that the wall thickness is determined by the competi-
tion between elastic constant (which favors a thicker wall) and
anisotropy (which favors a thinner wall). The skyrmion free
energy, relative to the vertical nematic, then becomes

F = 9πLS2

4

(
π2

(
1 − 3Lq2

0S


εE2

)
(1 + 2g) + log

(
1 + 1

g

)

+ cos(2πg){Ci(2πg) − Ci[2π (g + 1)]}

+ sin(2πg){Si(2πg) − Si[2π (g + 1)]}
)

, (18)

where Ci and Si are the cosine integral and sine integral
functions, respectively.

To minimize the skyrmion free energy over g, we rewrite
the equation ∂F/∂g = 0 as

3Lq2
0S


εE2
= 1 − 1

π
sin(2πg){Ci(2πg) − Ci[2π (g + 1)]}

+ 1

π
cos(2πg){Si(2πg) − Si[2π (g + 1)]}. (19)
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FIG. 6. Skyrmion wall thickness δr and average radius rav =
1
2 (rin + rout), as functions of the anisotropy 
εE2, in units of π/q0.
The points represent simulation results, and the solid lines are the
calculation in Sec. III B. Parameters are L = 0.001, q0 = π , and
S = 0.405.

This equation has a solution provided that the ratio on the left
side is between the minimum value

lim
g→0

3Lq2
0S


εE2
= 1 − Si(2π )

π
≈ 0.55 (20)

and the maximum value

lim
g→∞

3Lq2
0S


εE2
= 1. (21)

Equivalently, the range of anisotropy must be

3Lq2
0S � 
εE2 � 5.5Lq2

0S. (22)

Within that range, skyrmions are metastable with a character-
istic radius given by rin = gδr . For anisotropy below the lower
limit of that range, the skyrmion radius will grow to infinity.
For anisotropy above the upper limit, a skyrmion will shrink
and disappear.

This model for metastable skyrmions is qualitatively con-
sistent with the simulations, which also find that metastable
skyrmions can exist over a certain range of anisotropy. As a
further quantitative comparison, we determine the skyrmion
wall thickness δr and average radius rav = 1

2 (rin + rout) from

the simulation results for n̂(r) across the wall. We then plot
these simulated quantities in comparison with the model calcu-
lations as functions of the anisotropy 
εE2 in Fig. 6. The wall
thickness calculations are in good agreement with simulation
results over the full range of anisotropy that was simulated. The
average radius calculations are close to the simulation results
for high anisotropy and small radius, where the simulated
skyrmion is circular in shape. However, for low anisotropy
and large radius, there is a significant discrepancy; the model
underestimates the minimum value of 
εE2 for skyrmion
stability. This discrepancy seems to be caused by the shape
of the skyrmions; the simulated skyrmion develops a four-fold
anisotropy in this limit, perhaps because of the finite-difference
approximation for derivatives in the underlying lattice model.
Despite the latter discrepancy, the model generally provides a
good estimate for the skyrmion size and the range of anisotropy
needed for skyrmion stability.

For another comparison, we consider the free energy of a
skyrmion, relative to the vertical nematic state. This free energy
difference is positive, indicating that skyrmions are metastable
in this model. To determine the magnitude of this difference in
the simulation, we vary the elastic constant L along the border
of the vertical nematic and cholesteric phases. For each L, we
adjust the anisotropy 
εE2 so that the size of the skyrmion is
roughly the same. In other words, the g and δr values are the
same across simulations of different L values. The simulation
results for free energy, relative to the vertical nematic, are
shown by the points in Fig. 7. By comparison, the calculation
of Eq. (18) for the same L and 
εE2 is shown by the solid line
in the same figure. These results are consistent up to a factor
of 2, which is reasonable for such an approximate model.

As noted in the Introduction, many experiments have
studied skyrmions in confined cholesteric liquid crystals [4–
10,24]. These experiments generally cannot determine whether
skyrmions are metastable, as predicted by the calculations in
this section, or whether they are actually stable structures.
Indeed, that issue may depend on the exact form of the

FIG. 7. Skyrmion free energy relative to the vertical nematic
state, in arbitrary units. The elastic constant L is varied for fixed
a = −0.1, b = −3, and c = 3, with the anisotropy 
εE2 adjusted to
maintain the skyrmion size (g and δr). The points represent simulation
results, and the solid line is the calculation of Sec. III B for the same
L and 
εE2.

062706-8



COMPARING SKYRMIONS AND MERONS IN CHIRAL … PHYSICAL REVIEW E 97, 062706 (2018)

anisotropy, which can arise from an applied electric field
or from homeotropic anchoring on surfaces. Regardless of
whether skyrmions are metastable or stable, they are separated
from the uniform vertical state by a large energy barrier and
hence require significant disturbances in order to form or decay.
These skyrmions occur in liquid crystals with stiff nematic
order, in contrast with blue phases (meron lattices), which
occur in liquid crystals with soft nematic order or high chirality.

IV. THEORY OF CHIRAL MAGNETS

In recent years, many investigators have carried out sub-
stantial theoretical research on modulated structures in chiral
magnets, as in Refs. [15–21]. In this section, we briefly review
that work in a notation similar to the notation for chiral
liquid crystals. We then use this theory to compare magnetic
skyrmions and merons with the analogous structures in liquid
crystals.

A fundamental difference between liquid crystals and
magnets is that liquid crystals have a tensor order parameter
Q(r), while magnets have a vector order parameter M(r),
which is the magnetization. Because we wish to describe
meron lattices with disclinations, we treat M as a vector of
variable magnitude, just as we treat Q as a tensor of variable
eigenvalues. In Landau theory, the bulk free energy density of
a chiral magnet can be written as

F = 1
2a|M|2 + 1

4c|M|4 + 1
2k(∂iMj )(∂iMj )

+ kq0εlikMl∂iMk − HMz − AM2
z . (23)

Here the first two terms represent the free energy of a uniform
system, expanded in powers of the vector order parameter.
These terms favor a certain magnitude |M|, which will occur
everywhere except in the disclinations. The quadratic coeffi-
cient a is assumed to vary linearly with temperature, while c

is assumed constant with respect to temperature. The third and
fourth terms represent the elastic free energy cost associated
with variations of M as a function of position. The third
term penalizes all variations in M, while the fourth term is
a Dzyaloshinskii-Moriya interaction that favors certain twist
deformations because of the Dresselhaus spin-orbit coupling.
The last two terms involve two distinct types of symmetry-
breaking fields acting on the magnetic order. The H term is
a standard magnetic field in the z direction, which couples
linearly to M, while the A term is a magnetocrystalline
anisotropy, which couples quadratically to M. The anisotropy
may be easy-axis with A > 0, or easy-plane with A < 0.

Equation (23) for the magnetic free energy is quite analo-
gous to Eq. (1) for the liquid crystal free energy, but there are
two important distinctions. First, the bulk free energy for the
liquid crystal has quadratic, cubic, and quartic terms, while
the bulk free energy of the magnet has only quadratic and
quartic terms. Second, the liquid crystal has only a quadratic
anisotropy acting on the order parameter, while the magnet
has both a linear field and a quadratic anisotropy. Both of these
distinctions arise from the tensor versus vector nature of the
order parameter.

By analogy with the liquid crystal theory, we can sim-
plify the magnetic theory by rescaling parameters. Here the
characteristic value of the magnetic order parameter is M ∼

(|a|/c)1/2, the free energy density of the ferromagnetic relative
to disordered phase is F ∼ a2/c, and the core radius of a vortex
in magnetic order is ξ ∼ (k/|a|)1/2. Hence, we rescale M, F ,
and all lengths by those characteristic values. The theory then
depends on three dimensionless ratios, which we write as

κ = q0

√
k

|a| , h = H

√
c

a3
, α = A

|a| . (24)

The chirality parameter κ is a dimensionless version of the
Dzyaloshinskii-Moriya interaction. As in the liquid crystal
case, it represents the natural twist q0 relative to the disclination
core radius ξ . Equivalently, κ2 can be interpreted as the energy
scale of the favored chiral twist relative to the energy scale
associated with changing the magnitude of M inside a defect
core. Low κ can be called “low chirality” or “stiff magnetic
order,” while high κ can be called “high chirality” or “soft
magnetic order.” The parameters h and α are dimensionless
versions of the field and anisotropy. The anisotropy α is
analogous to the anisotropy in the liquid crystal case, while
the field h does not exist in the liquid crystal.

The magnetic system does not have a temperature parameter
t analogous to the liquid crystal case. Because the magnetic free
energy density includes the quadratic and quartic but not the
cubic terms in M, the temperature scales out of the magnetic
case, leaving a problem with no explicit dependence on the
temperature-dependent coefficient a (assuming that a < 0 so
that the system is in an ordered phase).

Many investigators have already studied the phases of this
model through detailed numerical simulations. We suggest that
key features of the phase diagram can be understood through
simple analytic calculations, analogous to the liquid crystal
calculations in Sec. II B. Hence, we repeat those calculations
for the magnetic case, and compare the results with simulations
from the literature.

For these simple analytic calculations, we consider the
following phases:

(a) Vertical ferromagnetic phase. The system has uniform
magnetic order in the z direction, with M = M ẑ. After min-
imizing over M , the scaled free energy density is F̃vert =
− 1

4 − h − α.
(b) Tilted ferromagnetic phase. The magnetic order is given

by M = M[x̂ sin θ + ẑ cos θ ], and the scaled free energy den-
sity is F̃tilt = − 1

4 − h cos θ − α cos2 θ . The tilt θ is determined
by the competition between h and α.

(c) Spiral phase. The spiral phase of magnetic systems has
the structure shown in Fig. 8(a), analogous to the cholesteric
phase of liquid crystals. If h and α are zero, the modulated
structure is M(x) = M[−x̂ sin(πx/d) + ẑ cos(πx/d)]. If h

and α are small but nonzero, the structure is only slightly
distorted, so that the expression can still be used as a first
approximation. After minimizing over M and d, the aver-
age scaled free energy density is F̃spiral = − 1

4 (1 + κ2)2 −
1
2α(1 + κ2).

(d) Skyrmion lattice. Skyrmions are modeled by disks
arranged in a hexagonal lattice, as in Fig. 8(b). Within
each disk, the magnetic order twists through an angle
of π , from downward at the center to upward at the
edge. Our linear assumption for this variation is M(r) =
M[−φ̂ sin(2πr/d) + ẑ cos(2πr/d)], for 0 � r � d/2. Be-
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FIG. 8. Structure of the different modulated magnetic phases
studied here.

tween the disks, the magnetic order is uniform and upward.
After minimizing over M and d, the average scaled free en-
ergy density is F̃skyrm = − 1

4 − 0.36κ2 − 0.15κ4 − 0.093h −
0.37h(1 + 0.80κ2)1/2 − 0.55α − 0.36ακ2.

(e) Meron lattice. Merons are modeled by disks with a twist
of π/2 from the center to the edge. As was pointed out in
Ref. [24], the difference between the vector order parameter
for a magnet and the tensor order parameter for a liquid
crystal implies an important difference in the arrangement
of the merons. In a magnet, merons cannot be arranged
in a hexagonal lattice, as shown in Fig. 8(c), because the
magnetic order parameter would be incompatible at each point
where two disks meet. As an alternative, merons can be
arranged in a square lattice, shown in Fig. 8(d), as discussed
in Ref. [15]. In this structure, there is a regular alternation
of merons with the central M pointing upward or downward.
Our linear assumption for the variation within each disk is
M(r) = M[−φ̂ sin(πr/d) + ẑ cos(πr/d)], for 0 � r � d/2.
In each region between four disks, the magnetic order has
a vortex of topological charge −1, which we model as a
disordered, isotropic region. After minimizing over M and
d, the average scaled free energy density is F̃meron = − 1

4 −
0.36κ2 − 0.11κ4 − 0.23α − 0.28ακ2.

By comparing the free energies of these structures, we
construct a 3D phase diagram in the chirality-field-anisotropy
space, as shown in Fig. 9. In the limit of low chirality,
the system forms a ferromagnetic phase, which is vertical
for large easy-axis anisotropy and tilted for large easy-plane
anisotropy. In the limit of high chirality, the system forms a
spiral phase. The more complex skyrmion and meron lattices
occur for intermediate chirality. In this intermediate regime,
easy-plane anisotropy favors the meron lattice, because this
lattice has large planar regions. A field favors the skyrmion
lattice, because it has a predominant vector orientation which
can align with the field.

Instead of performing our own simulations, we can compare
the results of these approximate analytic arguments with
previously published simulations by other investigators. As
examples, Refs. [26] and [38] both present phase diagrams for
magnetic structures in the field-anisotropy plane, which can
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FIG. 9. Visualization of the phase diagram for chiral magnets in
the chirality-field-anisotropy space.

be compared with a cross section of our phase diagram for
fixed chirality κ = 0.5, as shown in Fig. 10. We can see the
same general arrangement of the phases in Fig. 7 of Ref. [26],
and in Fig. 1 (left) of Ref. [38], as in our Fig. 10. (As a
matter of terminology, the polarized ferromagnetic phase is
equivalent to what we have called vertical ferromagnetic, and
canted ferromagnetic is equivalent to what we have called
tilted.) Hence, we can observe that the approximate analytic
arguments of this section capture key features of the free energy
balance among the phases, even without the need to do detailed
numerical simulations.

V. DISCUSSION

The work presented in this article attempts to put the
topological phases in liquid crystals and chiral magnets on
the same footing. It enables us to compare skyrmions with
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FIG. 10. Cross section of the phase diagram for chiral magnets in
the field-anisotropy plane for fixed chirality κ = 0.5.
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merons and also to compare various orientational phases of
chiral liquid crystals with chiral magnets.

To compare skyrmions with merons, we see that these
structures are similar from the perspective of local geometry
near the defect core: They both have the same double-twist
structure in the orientational order. However, they are quite
different from the perspective of global topology: Around a
skyrmion, the orientational order goes to the same vertical
orientation everywhere. Hence, it is possible to pack many
skyrmions together with uniform regions in between. The
whole lattice of skyrmions is nonsingular, with approximately
uniform magnitude of orientational order (uniform eigenvalues
of Q for a liquid crystal, uniform |M| for a magnet). By
contrast, around a meron, the orientational order goes to a
horizontal orientation, and it covers the full range of all possible
horizontal orientations. Hence, it is not possible to pack many
merons together with uniform regions in between. Rather,
there must be singularities in the orientational order between
the merons. Hence, a lattice of merons can only form if the
energetic cost of forming these singularities is not too great.

Because skyrmions are surrounded by uniform vertical
orientational order, they can be regarded as local excitations.
Hence, skyrmions move and interact as effective particles, with
only a short-range potential between them [19]. Conversely,
because merons are surrounded by the full range of nonuniform
horizontal orientational order, they are more complex nonlocal
excitations, which have long-range logarithmic interactions,
and which must be accompanied by other defects, This distinc-
tion in locality has been pointed out in the magnetic context
[20], and it applies also in the liquid crystal context.

To compare chiral liquid crystals with chiral magnets, we
note that these materials are similar from the perspective of
topology: They both can form skyrmions and merons. How-
ever, chiral liquid crystals and chiral magnets are quite different
from the perspective of energetics: In chiral magnets, it is
straightforward to stabilize skyrmions by applying a magnetic
field, which couples linearly to M and stabilizes the orientation
outside the skyrmions, in contrast with the orientation inside
the skyrmions. Hence, a lattice of skyrmions becomes the
ground state for an appropriate choice of field and anisotropy.

By contrast, in chiral liquid crystals we have a tensor order
parameter Q, so there is no field that can distinguish between
orientational order upward or downward; there is only a
quadratic easy-axis or easy-plane anisotropy. As a result, the
specific model studied here does not have skyrmions as a
ground state; it only has skyrmions as metastable defects.
To be sure, variations on this liquid-crystal model (perhaps
with anisotropy arising from surface anchoring) might have
skyrmions as a ground state, as in Ref. [9]. Even so, they
are stabilized by a fairly delicate balance of free energies, not
by the simple field as in the magnetic case. Thus, we would
state that the vector order parameter of magnets tends to favor
skyrmions, while the tensor order parameter of liquid crystals
tends to disfavor skyrmions.

In chiral liquid crystals, the formation of merons in a
hexagonal lattice requires singularities of topological charge
−1/2 between the merons. In “high-chirality” liquid crystal
materials, the energetic cost of these singularities is not too
large compared with the energetic benefit of the double-twist
regions. Hence, it is straightforward to stabilize meron lattices
in liquid crystals. Such lattices are called blue phases, and they
have been studied extensively for many years. In 3D liquid
crystals, blue phases normally have a more complex cubic
structure rather than the 2D lattice considered here, but still
the same principles apply. By contrast, in chiral magnets, the
formation of merons in a square lattice requires singularities
of the larger topological charge −1 between the merons. It is
theoretically possible for this structure to be the ground state,
but it is difficult to find parameters where the energetic cost
of the singularities is less than the energetic benefit of the
double-twist regions. Thus, we would state that the tensor order
parameter of liquid crystals tends to favor merons, while the
vector order parameter of magnets tends to disfavor merons.
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