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Self-propelled motion switching in nematic liquid crystal droplets in aqueous surfactant solutions
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The self-propelled motions of micron-sized nematic liquid crystal droplets in an aqueous surfactant solution
have been studied by tracking individual droplets over long time periods. Switching between self-propelled
modes is observed as the droplet size decreases at a nearly constant dissolution rate: from random to helical
and then straight motion. The velocity of the droplet decreases with its size for straight and helical motions but
is independent of size for random motion. The switching between helical and straight motions is found to be
governed by the self-propelled velocity, and is confirmed by experiments at various surfactant concentrations.
The helical motion appears along with a shifting of a point defect from the self-propelled direction of the droplet.
The critical velocity for this shift of the defect position is found to be related with the Ericksen number, which
is defined by the ratio of the viscous and elastic stresses. In a thin cell whose thickness is smaller than that
of the initial droplet size, the droplets show more complex trajectories, including “figure-8s” and zigzags. The
appearance of those characteristic motions is attributed to autochemotaxis of the droplet.
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I. INTRODUCTION

Active matter, objects with self-propelling mechanisms or
similar properties, have recently attracted the interests of re-
searchers [1–4]. Typical examples of microscopic active matter
include microorganisms and plankton [3,4]. Corresponding
artificial systems with self-propelling mechanisms have also
been intensively studied from theoretical and experimental
viewpoints [1,2,5,6]. These artificial objects are driven by a
spatial gradient in a local field, such as temperature, concen-
tration, or applied electric and magnetic field. For example,
camphor beads floating at an air-water interface exhibit var-
ious types of characteristic motion due to the asymmetry of
surface tension induced by the concentration gradient of the
dissolved camphor [7–9]. Various chemical systems composed
of oil droplets in aqueous surfactant solutions, or their inverse
systems, have also been reported to exhibit self-propulsion.
Most of these systems are driven by convective flow induced
by the Marangoni stress due to the gradient of surface tension
along their surfaces [10–23].

In addition to random motion, straight and circular trajec-
tories have been reported experimentally for artificial active
droplets [17,20]. Recently, helical motion by droplets com-
posed of both nematic [24] and cholesteric liquid crystals
[25] has also been reported experimentally, and predictions
of helical motion have also been made for systems with
deformable particles [5,26,27]. In self-propelled liquid crystal
droplets, the appearance of a helical motion is thought to
relate with the coupling between the molecular alignment and
the convective flow induced by the Marangoni stress inside
the droplet [24]. Because the alignment of a liquid crystal is
determined by the competition between forces at the surface
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and those in the bulk, spatial confinement is expected to be an
important factor for controlling their motion. The liquid crystal
droplets in aqueous surfactant solution dissolve slowly, so we
can change their size during the elapsed time.

In this study, we have experimentally studied the effect
of the size of a nematic droplet on its motion by observing
the dissolution process of individual droplets over long time
periods. We have also studied the influence of the dimension-
ality of the system on the motion of the droplets by using a
two-dimensionally confined cell.

II. EXPERIMENT

We dispersed a droplet of nematic liquid crystal, 4-pentyl-
4′-cyanobiphenyl (5CB, TCI) in a 10 wt% aqueous solution
of tetradecyl trimethyl ammonium bromide (TTAB, Sigma-
Aldrich). Since the density of 5CB is slightly larger than that
of the surfactant solution, an appropriate quantity of heavy
water (UVasol, Merck) was added to the aqueous phase to
match the density of the solvent with the droplet. We filled
the surfactant solution inside a silicone rubber ring with an
inner diameter of 1 cm and a thickness of 2 mm or 100 μm
[Fig. 1(a)]. A nematic droplet was prepared by injecting the
appropriate amount of 5CB into the surfactant solution using a
microinjector (femtojets 4i, Eppendorf) [25]. By changing the
injection pressure and time to jet, the size of the droplet can
be varied over a range of 20–200 μm. After that, a cover slip
was used to enclose the cell. Hereafter we refer to the cell with
the 2 mm ring as the 3D system and the cell with the 100 μm
ring as the 2D system. Only a few droplets of the same size
were dispersed in a cell at one time to reduce the interactions
between them.

The temperature was fixed at 25 ◦C in the nematic phase
during the experiments. The dissolution rate of a droplet is
rather small compared with that reported in previous studies
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FIG. 1. Experimental setup: (a) Schematic of the preparation
steps for the sample cell. A droplet of 5CB of the appropriate size is
injected into a surfactant solution using a microinjector. The thickness
of the cell is controlled using the silicone rubber ring. The solution
is enclosed with a cover slip after the droplets are injected. (b) A
bright-field microscope image of a nematic droplet dispersed in an
aqueous mixture solution of TTAB and D2O at 25 ◦C.

[24,28]. It took about 3 h for a droplet with an initial size
of 120 μm to dissolve completely. Observations were started
about 2 min after the injection of the droplet. The motion of a
single 5CB droplet was observed using an inverted microscope
(Eclipse Ti, Nikon) with a 4× objective lens (PlanFlour, NA =
0.13, Nikon). The obtained microscope images were captured
with a CCD camera (ADT-100, Flovel, 1000 × 1000 pixel2,
10 bits) at 30 frames/s. In larger droplets, large fluctuations in
the orientation of the liquid crystal were observed, as shown in
Fig. 1(b). We observed the motion of each droplet for 30–60 s
at the time intervals of 1 to 10 min. The trajectories of the
droplets and their sizes were analyzed using ImageJ.

III. SELF-PROPELLED MOTION OF A NEMATIC
DROPLET IN THE 3D SYSTEM

A. Switching of self-propelled motion with droplet size

The self-propelled mechanism of a nematic droplet in a
surfactant solution has been investigated by Herminighaus
et al. [23] The self-propulsion is induced by the Marangoni
flow originated by the symmetry breaking in the adsorption
of the surfactant molecules to the droplet. The propulsion
maintains by the dissolution of nematic molecules, which
results in the depletion of empty micelles at the rear side of the
droplet, and this keeps the gradient of the surfactant molecules
along the droplet.

Figure 2(a) shows the temporal change in the diameter of
two nematic droplets with different initial sizes. The solubi-
lization rate of the droplet diameter is nearly constant for both
droplets. A linear decrease over time in the droplet size has been
reported for both nematic [28] and isotropic droplets [29]. The
linear dependence holds when the solubilization zone is much
thinner than the droplet size [29]. As a result, deviations from
linearity are seen with the smaller droplets.

We also find that the droplet changes its characteristic
motion with decreasing the size as random → helical →
straight one. Typical trajectories of respective motions are
shown in Fig. 2(b). A droplet whose diameter is smaller than
about 10 μm exhibits Brownian-like random motion. The
critical sizes between the self-propelled motion modes are
similar for two droplets with different initial sizes, as shown
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FIG. 2. Change in self-propelled motion of a nematic liquid
crystal droplet in the 3D system. (a) Change in diameter over time for
two droplets with different initial sizes. Different symbols represent
different modes of motion. (b) Characteristic trajectories of a droplet
over 30 s. By decreasing the droplet size or waiting for time to elapse,
the motion was observed to change random → helical → straight.
The scale bars represent 50 μm.

in Fig. 2(a). This indicates that motion mode switching is
controlled by the size of the droplets.

The crossovers from random to helical motion, and from he-
lical to straight motion, are found to occur at droplet diameters
of about 60 and 30 μm, respectively. This kind of switching
in the self-propelled motion already has been reported for
isotropic droplets suspended at an air-water interface, both
experimentally and theoretically [17,20]. In addition, a phe-
nomenological theory of self-propelled objects in three dimen-
sions, which accounts for the coupling between self-propelled
motion, the deformation of a droplet, and the rotational motion,
predicts the appearance of straight, circular and spiral motions
[26,27]. According to these theories, straight motion becomes
unstable at larger velocities, so circular and helical (spiral)
motion spontaneously appear.

The characteristic temporal evolution of the mean square
displacement (MSD) for the two-dimensional (2D) trajectories
of random, helical, straight, and Brownian-like motions are
shown in Fig. 3(a). For random motion, the MSD is approx-
imately proportional to t2 over short time periods, but scaled
at t over long time intervals, due to the frequent changes of
direction. However, the MSD for helical and straight motion
is proportional to t2, at both short and long timescales. For
helical motion, the former value corresponds to motion along a
circular path over short time, and the latter relates to the straight
motion of a droplet along the axis of a helical trajectory. For
Brownian-like motion, the MSD is approximately proportional
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FIG. 3. Mean square displacement (MSD) and angular autocorre-
lation function C(t) for random, helical, straight, and Brownian-like
motions. (a) MSD calculated from a single droplet trajectory. (b) C(t)
calculated from the instantaneous velocities.

to t but seems to be slightly superdiffusive. We can distinguish
those motions based on the temporal dependence of the MSD.

The characteristics of respective motions are also dis-
tinguished by the angular autocorrelation function C(t) of
the instantaneous 2D velocities v(t) defined by C(t) =
〈 v(t+t0)·v(t0)

|v(t+t0)||v(t0)| 〉t0 , where 〈· · · 〉t0 denotes the time average over t0.

The temporal evolution of C(t) for random, helical, straight,
and Brownian-like motions are shown in Fig. 3(b). For random
and Brownian-like motions, the correlation decays exponen-
tially with time due to the change of the direction in their
translational motion. The correlation time is much larger
in the random motion, and there is oscillatory component
which is remnant of the helical motion. For helical motion,
the correlation shows the oscillation behavior with slightly
decaying amplitude. However, the decaying time is similar to
that observed in the straight motion. This indicates the axis of
helical motion is almost a straight one. We regard the period
oscillation observed in C(t) as the period of helical motion.

The dependence of the 2D projected instantaneous velocity
averaged over 1 s on the diameter of the droplet is shown
in Fig. 4(a). The velocity shows a linear dependence on the
droplet diameter in regions of straight or helical motion.
However, the velocity is independent of the droplet size in
regions with random motion. From the captured images, larger
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FIG. 4. Dependence of the averaged instantaneous 2D projected
velocity on the diameter of the droplet in 10 wt% TTAB solution.
Different symbols represent different modes of the self-propelled
motion. (a) Nematic phase at 25 ◦C. (b) Isotropic phase at 40 ◦C.

droplets tend to approach the cell wall, which is partially due
to imperfect density matching. An isotropic water droplet in
oil exhibits both straight and circular motions near the wall.
Its self-propelled velocity is found to be independent of the
type of motion [30], which is consistent with nematic droplets
undergoing random motion.

In the stationary state, the driving force of self-propulsion
F is balanced with the viscous force ζv, where ζ is the friction
coefficient and v is the self-propelled velocity. ζ is proportional
to ηR for a spherical droplet [31], where η is the effective
viscosity of the medium and R is the radius of the droplet.
When we assume that F is proportional to the surface area of
the droplet R2, v will be proportional to R.

However, when the droplet is near the cell wall, the viscous
dissipation is mainly due to the flow at the gap � between the
wall and the droplet. The viscous energy dissipation per unit
time can be estimated by η(v/�)2πR2�/2. In the stationary
state, this dissipation is balanced by the work done by the
driving force per unit time, based on the value of Fv. This
suggests that v is independent of R.

In Fig. 4(b) the self-propelled motion of a 5CB droplet in the
isotropic phase at 40 ◦C is shown for comparison. The droplet
also dissolves with an almost constant solubilization rate for the
size, but the rate is much larger than at 25 ◦C. Similar to nematic
droplets, larger droplets exhibit random motion, and smaller
ones show straight motion. The helical motion disappears in the
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isotropic phase, which agrees with a previous report [24]. This
confirms that the appearance of helical motion is characteristic
of nematic droplets. The critical diameter between random and
straight motion is about 30 μm. This is on the same order
as the transition value between helical and random motion
in the nematic phase. In the region of straight motion, the
velocity increases with droplet size, while for random motion,
the velocity tends to saturate at about 55 μm/s. This is larger
than the corresponding value in the nematic phase, as seen in
Fig. 4(a).

B. Characteristics of helical motion

The temporal changes in the characteristics of the helical
trajectories, the rotational period T , the helical pitch p, and the
radius of the helix r are evaluated. The period T is determined
from the temporal oscillations in the angular autocorrelation
function C(t) [see Fig. 3(b)]. The dependence of T on the
diameter of the droplet is shown in Fig. 5(a). The value of T

does not show any apparent size dependence over 10–20 s. The
apparent pitch p is plotted against the diameter of the droplet
in Fig. 5(b). Although p depends on the tilt of the helical axis
from the observation plane, the droplets are found to show little
vertical displacement during observation. p shows no apparent
size dependence over the range of about 100–150 μm. The
dependence of the radius r on the velocity of the droplet is
shown in Fig. 5(c). There are large errors in the experimental
data, but r tends to decrease with decreasing droplet velocity.
From the best-fit line of the data, the helical path disappears
(r → 0) at about 19.4 μm/s.

Since the velocity along the helical axis vp can be estimated
using p/T , vp is almost constant over the range of helical
motion. Conversely, since the tangential velocity vt can be
estimated using 2πr/T , vt increases with the droplet size.
The average velocity v̄h for helical motion is estimated using

the time average of
√

v2
p + v2

t over T as v̄h = 2vtE( π
2 ,k)/πk,

where k = vt/

√
v2

p + v2
t and E( π

2 ,k) is the complete elliptic

integral of the second kind. Since the contribution of vt is
dominant, the value of v̄h increases linearly with the droplet
size over the range of helical motion [Fig. 4(a)].

C. Dependence of switching between self-propelled motion
modes on the concentration of surfactant solution

To determine the primary factors that induce the observed
switching between the self-propelled motions, we change the
driving force by varying the concentration of the surfactant
solution. It has been reported that the velocity of a droplet
increases monotonously with the concentration of TTAB up
to 20 wt% [22,23]. We have also studied the self-propelled
motion in solutions containing 3.75 or 7.5 wt%. In Fig. 6 the
self-propelled velocity is plotted against the diameter of the
droplets for all TTAB concentrations. Although the overall
trends are similar, the critical values between the observed
modes appear different.

The boundary between random and helical motion appears
to be around a diameter value of 70 μm. However, the velocity
during random motion increases along with the concentration
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FIG. 5. Characteristic parameters of helical motion: (a) De-
pendence of rotational period T on the diameter of the droplet.
(b) Dependence of the pitch p of the helical trajectory on the diameter
of the droplet. (c) Dependence of radius r of the helical trajectory on
the velocity of the droplet. The extrapolated best-fit line to the data
crosses the zero-radius axis at 19.4 μm/s. The definitions of p and r

are shown in the inset of (b).

of TTAB. Since the switching of the modes is affected by
interactions with a wall, as discussed before, it is expected
to depend strongly on the droplet size. However, the crossover
between helical and straight motion is found to be determined
primarily by the velocity, with a switch occurring around
20–25 μm/s. The critical size for this transition increases
with decreasing TTAB concentration. This is consistent with
the previous result for switching between straight and circular
motions in an isotropic oil droplet [17,20]. The relationships of
the critical size and the critical velocity for switching between
self-propelled modes are summarized in Table I.
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FIG. 6. Dependence of the self-propelled velocity on the diameter
of droplet for various TTAB concentrations: 3.75, 7.5, and 10 wt%.
For all concentrations, the droplets show random (R), helical (H), or
straight (S) motion as their sizes decreased. The boundary between
the R and H motion appears to be governed by size, which is marked
with a thick vertical line. The crossover between H and S motion was
governed by velocity, as marked with a thick horizontal line.

D. Motion of a point defect during helical motion

Since the 5CB molecules align themselves normal to the
droplet surface, a point defect at the center of the droplet
spontaneously appears. Herminghaus et al. [23] reported that
this defects moves toward the stagnation point of convective
flow when the droplet is placed in a constant flow of a surfactant
solution. Krüger et al. [24] reported that the helical motion of
nematic droplets is due to symmetry breaking at the location
of a defect. Once a point defect shifts its position due to
fluctuations from the stagnation point during convection, the
defect stays at the position where the viscous force balances
the elastic distortion force. The polar position of the defect
is expected to increase monotonously with the velocity of
convection. Due to the isotropic orientation of the liquid crystal
at the core of the defect, the viscosity decreases, while the
velocity of convection increases near the defect. The gradient
in the convection velocity induces torque on the droplet, and it
starts to rotate. Therefore, the circular motion originates from
a shift of a point defect away from its propelling direction.
In addition, an autochemotactic force that prevents the droplet
from crossing its previous trajectory transforms the circular
motion into helical one.

TABLE I. Relationships between the critical size and critical
velocity thresholds for switching between straight (S) to helical (H),
or helical (H) to random (R) motion, and Ericksen number (Er ) at the
S-H transition, on the concentration of TTAB.

TTAB concentration (wt%) 10 7.5 3.75

S-H critical size (μm) 31.6 ± 0.4 38 ± 2 46.8 ± 1.2
S-H critical velocity (μm/s) 21 ± 7 24 ± 4 20 ± 2
H-R critical size (μm) 70 ± 6 68 ± 9 66 ± 6
H-R critical velocity (μm/s) 38 ± 2 36 ± 1 28 ± 3
Er (S-H) 1.4 ± 0.5 2.0 ± 0.4 2.0 ± 0.3
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FIG. 7. The motion of a defect during helical motion. (a) Time
series of bright-field microscope images. The contrast was controlled
to make the defect more easily identifiable. The black point indicated
by a triangle is a point defect. (b) The dependence of the polar angle
θ on the velocity of a droplet. The solid line represents the best-fit
approximate curve obtained by dimensional analysis. The schematic
shows the definition of polar angle θ . vc =18.3 μm/s is the critical
velocity for which the defect begins to shift its position away from
the velocity vector.

We directly observe changes of the polar position of a defect
θ in a self-propelled droplet under higher magnification (15×).
Figure 7(a) shows the time series of microscope images of a
droplet, whose propelling direction was perpendicular to the
plane of observation (from back to front). The defect noticeably
shifts its position from the center of the droplet. We also find
that its azimuthal position rotates around its propelling velocity
vector with a period of 6–8 s. This rotational period does not
have any apparent dependence on the velocity. Figure 7(b)
shows the dependence of θ on the average velocity of the
droplet. θ suddenly appears around 20 μm/s and saturates at
about 70◦ for large velocities.

The position of a defect θ is determined by the balance
between the viscous force and the elastic force. An exact
calculation of the deformation of the molecular alignment
and flow field over the whole droplet is difficult. Here we
consider only the local deformation of alignment in liquid
crystals for small values of θ . We estimated both contributions
using dimensional analysis. The local viscous stress around the
defect was estimated to be vη sin θ/R, where η is the effective
viscosity of liquid crystal at the defect, v is the velocity of
convective flow, and R is the radius of a droplet. The local
elastic stress was estimated to be kθ/R2, where k is the elastic
constant of liquid crystal. Based on the balance of these two
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stresses for small θ , vηθ (1 − θ2/6)/R ∼ kθ/R2, the solution
of θ �= 0 is θ ∼ √

1 − k/(vηR). Since we found v ∝ R in our
experiment, R can be written as R = v/α, where α is a positive
constant. Therefore, the dependence of θ on v can be written
as θ ∼ √

1 − v2
c /v

2. The critical velocity vc for the appearance
of the solution of θ �= 0 is given by vc ≡ √

kα/η.
The experimentally obtained dependence of θ on v in

Fig. 7(b) is fitted by
√

1 − v2
c /v

2 as shown the solid line.
The obtained vc = 18.3 μm/s is consistent with a value of
19.4 μm/s, as estimated from Fig. 5(c). The experimental
value of vc is also close to the estimated value of

√
kα/η =

16.8 μm/s from the reported values of η and k for 5CB at room
temperature [32]: k = k3 = 8.2 ×10−12 N, η = 35 mPa·s, and
the measured value of α = 1.20 s−1 from Fig. 4(a). We used
the value of η = η2/3 as the viscosity of the defect core, as
noted by Krüger et al. [24]

The onset of helical motion is controlled by the parameter
of vηR/k. This dimensionless parameter is known as the
Ericksen number, Er , and gives the ratio of viscous to elastic
forces [32]. The critical values of Er for switching to helical
motion for various TTAB concentrations are of the order
of unity and are listed in the last column of Table I. The
observed critical Er values exhibit slight dependence on TTAB
concentration, which is different from that predicted by our
rough estimation. Yamamoto reported the Er value for the
onset of helical motion in cholesteric liquid crystals to be
Er ≈ 3 [25]. The definition of Er used by Yamamoto is about
twice that used in this paper. Therefore, the critical value of
Er observed in this study appears to be consistent with the
finding of the cholesteric system. A more complete theoretical
discussion based on nemato-hydrodynamics is necessary to
understand the switching between straight and helical motion.

The origin of the spinning motion of a droplet about its
self-propelled velocity vector is not clear at this point. The
observed spinning motion will modulate the circular motion,
which results in helical motion about the circular trajectory.
Such flowerlike or superhelical trajectories have been reported
both in experiment [24] and in simulations of deformed particle
systems [27].

IV. SELF-PROPELLED MOTION IN THE 2D SYSTEM

The motion of a droplet in a spatially confined system
is observed by using a 100-μm-thick cell. Its thickness was
chosen to be smaller than the initial diameter of an droplet.
The various characteristic motions differ from those observed
in the 3D system, as shown in Fig. 8(a). By decreasing in the
size of the droplet, the trajectory changes from a “figure-8,” to
random, zigzag, or straight.

The temporal change of droplet size is shown in Fig. 8(b).
The dependence has an inflection point around 100 μm, which
corresponds with the thickness of the cell. We also plot the
diameter of the equivalent spheres, whose volumes are equal
to those of the pancake-shaped droplets. The dependence has
a similar slope to that seen for the 3D regime.

In the regime for which the droplet exhibits a “figure-8”
or random motion, the droplet is sandwiched between the
walls and is significantly deformed from its spherical shape.
This situation can be regarded as a quasi-2D system. Since
friction from the walls becomes larger, the velocity is expected
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FIG. 8. Characteristic motions of a self-propelled 5CB droplet in
the 2D system. The concentration of the TTAB aqueous solution is
10 wt%. (a) Typical trajectories of droplets of various sizes: “figure-
8”, random, zigzag, and straight. The scale bars represent 50 μm.
(b) Temporal change of droplet diameter. The data marked with empty
symbols represent the diameters of spheres with equivalent volumes.
(c) Dependence of the averaged instantaneous 2D projected velocities
on the diameter of the droplets. Different symbols represent different
types of motion.

to decrease with increases in the size. However, the velocity
increases with size, similar to the effect seen in the 3D
system, as shown in Fig. 8(c). This is partially due to a
negative autochemotactic effect [24,33], which is a “negative
phoretic” behavior in that the droplet tends to avoid areas
where it previously passed. In a thin cell, the diffusion of the
liquid crystal in solution become slower and its concentration
increases at the trailing side of the droplet. This gradient
pushes the droplet to more dilute regions and is expected to
significantly accelerate the self-propelled motion.

When the size of droplet is smaller than that of the cell
thickness, the dependence resembles that seen in the 3D
case [Fig. 4(a)]. The region in which the zigzag motion is
observed corresponds to that of helical motion in the 3D
system. Therefore, the zigzag motion can be regarded as a
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modified helical motion. Because the cell thickness is smaller
than in the 3D system, the motion of the droplet becomes
slower, and the concentration of liquid crystals near the droplet
slowly relaxes. The droplet avoids crossing its past trajectories,
and the helical motion is transformed into a zigzag mode in thin
cells.

The temporal change of MSD and the angular correlation
function C(t) for figure-8 and zigzag motions are shown in
Figs. 9(a)– 9(c). The MSD for figure-8 motion is approximately
proportional to t2 over short time periods but oscillates with
time over long time intervals. C(t) also shows oscillatory
behavior, and the oscillation is asymmetric about zero. The
MSD for zigzag motion looks like that of helical motion, but

C(t) rather looks like that of figure-8. Between these two
modes, the random motion appears and is characterized by
the oscillatory decaying function of C(t), which similar to that
in Fig. 3(b).

V. CONCLUSION

The self-propelled motion of a nematic liquid crystalline
droplet in an aqueous surfactant solution has been studied by
tracking single droplets over long time periods. The charac-
teristic motion switches depending on the droplet size and
self-propelled velocity. The switch between straight and helical
motion modes is found to be controlled by the velocity. At
the critical velocity, the straight motion becomes unstable
and a defect shifts away from the self-propelled direction.
This induces a tangential velocity gradient and changes the
direction. A spinning mode for the droplets is also observed.
The origin of this spinning motion is still not well understood.

The switching of self-propelled modes with velocity is
theoretically studied using a phenomenological model, in
which the translational velocity, the deformation of a particle,
the spinning motion, and their interactions are taken into
account [5,26,27]. In three dimensions, the straight, circular,
and helical modes have been observed with increasing velocity
of the droplet. Although the nematic droplet barely deforms
from its spherical shape, the deformation of the director field
in nematic droplets can be expressed in a tensor form similar to
the particle deformation. Therefore, it is expected that tuning
the parameters in the theory will help to understand what
is observed in this study using a phenomenological model
[26,27,34]. However, in a nematic droplet, the circular motions
have not been observed as a transition between the straight and
helical motions.

Even under strongly confined condition, the droplet can
propel itself to a large velocity. One origin of this character-
istic motion is negative autochemotaxis. A theoretical model
including a concentration field around the droplet [33,35,36]
can be used to elucidate the observed motions in this study.
This system can be used as a physical model to understand the
collective behavior of microorganisms undergoing chemotac-
tic motion. The droplet studied in this research can also propel
itself even in an isotropic phase, and the effect of sedimentation
can be reduced by density matching. Therefore, this system can
also be used as a model for chemically driven self-propelled
objects.
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