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Flexoelectro-optic effect and two-beam energy exchange in a hybrid photorefractive
cholesteric cell with a short-pitch horizontal helix
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We develop a theoretical model to describe two-beam energy exchange in a hybrid photorefractive cholesteric
cell with a short-pitch helix oriented parallel to the cell substrates (so-called uniformly lying helix configuration).
Weak and strong light beams incident on the hybrid cell interfere and induce a periodic space-charge field
in the photorefractive substrate of the cell, which penetrates into the cholesteric liquid crystal (LC). Due to
the flexoelectro-optic effect an interaction of the photorefractive field with the LC flexopolarization causes the
spatially periodic modulation of the helix axis in the plane parallel to the cell substrates. Coupling of a weak
signal beam with a strong pump beam at the LC permittivity grating, induced by the periodically tilted helix
axis, leads to the energy gain of the weak signal beam. Dependence of the signal beam gain coefficient on the
parameters of the short-pitch cholesteric LC is studied.
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I. INTRODUCTION

Energy transfer between two light beams interacting in solid
inorganic photorefractive crystals is a well-known effect [1]. In
hybrid organic-inorganic photorefractives a liquid crystal (LC)
sample is placed adjacent to a solid photorefractive layer or
between two solid photorefractive layers. Incident intersecting
coherent light beams interfere and generate space charges in
the inorganic photorefractive layers. These charges create a
spatially modulated space-charge field, which penetrates into
the adjacent LC layer causing a director-modulation-induced
grating of the LC permittivity. Both incident light beams
propagate across the LC layer and interact on the grating.
Due to the beams coupling on the grating, one of the beams
is amplified. Very strong two-beam energy transfer between
coupled beams has been observed in these hybrid systems with
the gain coefficient of two orders of magnitude larger than in
solid inorganic photorefractive crystals [2–8].

The first theoretical models for hybrid organic-inorganic
photorefractive systems [9,10] supposed the beam-coupling
mechanisms to be similar to those in conventional LC cells.
Coupling between the director and the space-charge elec-
tric field would then be caused by the LC static dielec-
tric anisotropy. This hypothesis predicts the maximal energy
transfer to occur when the grating spacing and the LC cell
thickness are of comparable dimensions. However, in the
experiments [5–8] this maximum occurs when the ratio of
grating spacing to cell thickness is rather small. In our previous
papers [11–14] discussing the formation of a director grating
in hybrid systems, we supposed that the space-charge electric
field penetrating from photorefractive substrates into the LC
couples with the director through an interaction with the LC
flexoelectric polarization, rather than through the LC static
dielectric anisotropy. An additional assumption was made that
the magnitude of the director grating is a nonlinear function of
the space-charge electric field. Such a nonlinearity might be

the consequence of the dipole molecule segregation under a
strongly inhomogeneous electric field in LC and following the
director-concentration coupling. These assumptions allowed
for the description of the experimental results obtained for both
nematic [11] and cholesteric LC cells [12,13].

In recent years, there has been much interest in the short-
pitch cholesteric LCs confined in a sandwich cell with the helix
axis aligned parallel to the substrate planes. If the pitch is much
less than the wavelength of light, the cholesteric LC (CLC)
layer acts as a uniaxial wave plate with the optic axis along
the helix axis. When the electric field is applied perpendicular
to the helix axis, the CLC may exhibit a flexoelectro-optic
response: The helix axis rotates around an axis parallel to
the field. The rotation magnitude depends on the flexoelectric
coefficients and is linear with respect to the applied field
[15–17]. In the LC materials developed for optimization of
this effect, the rotation angles can reach values of 45◦ [18–20]
with switching times on the order of microseconds [21–25].
Together with other specific features, it makes the flexoelectro-
optic effect in the short-pitch CLCs a potential mechanism for
developing the high-speed optoelectronic devices [19,26–29].

In this paper, we extend the study of the energy transfer
between light beams in hybrid photorefractive cholesteric cells
presented in our papers [12–14] to the case of the short-pitch
CLC with the helix axis aligned parallel to the cell substrates.
We show that a spatially periodic space-charge field arising
in the photorefractive substrate under incident light beams
produces a spatially periodic flexoelectro-optic response in
the short-pitch CLC: The CLC helix axis is periodically
tilted in the direction parallel to the cell substrates. This
results in the appearance of the CLC permittivity diffraction
grating. Interaction of the light beams at the grating leads to
amplification of the weak signal beam. We calculate the signal
beam gain and study its dependence on the parameters of the
short-pitch CLC.
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FIG. 1. Cholesteric LC cell with the initial helix axis directed
along the x axis, showing light beams incident from the photorefrac-
tive medium, together with associated wave and polarization vectors;
α is an angle of refraction.

The paper is organized as follows. In Sec. II we introduce
the model of a hybrid cholesteric cell placed in the interference
pattern of two incident light beams, and obtain expressions for
the electric field in the short-pitch CLC cell. In Sec. III we
obtain an expression for the spatially periodic rotation angle
of the CLC helix axis under the photorefractive field. In Sec. IV
we consider propagation of light beams in the short-pitch CLC
and obtain an expression for the exponential gain coefficient.
Results of numerical calculations of the gain coefficient and
their discussion are presented in Sec. V. In Sec. VI we present
some brief conclusions.

II. PHOTOREFRACTIVE ELECTRIC FIELD IN CLC

Let the z axis be directed perpendicular to the planes
of a hybrid photorefractive cell, which contains the CLC
layer bounded by the planes z = −L/2 and z = L/2. We
suppose that the cholesteric helix axis is directed parallel
to the planes z = ±L/2 along the x axis. The cell bottom
substrate at z = −L/2 is photorefractive; the cell top substrate
at z = L/2 is nonphotorefractive (glass). The hybrid cell is
illuminated by two intersecting coherent light beams E1 =
A1e1 exp(ik1r − iωt) and E2 = A2e2 exp(ik2r − iωt). The
bisector of the beams is directed along the z axis, and the
wave vectors k1, k2 lie in the xz plane. At the entrance plane
z = −L/2 the polarization vectors e1, e2 of the beams also lie
in the xz plane (Fig. 1).

The beams produce a light intensity interference pattern in
the photorefractive substrate,

I (z) = (I1 + I2)
{
1 + 1

2 [m exp(iqx) + c.c.]
}
, (1)

where m = 2 cos(2δ)A1A
∗
2/(I1 + I2) is the modulation param-

eter; 2 δ is the angle between incident beams in the photore-
fractive medium; I1 = A1A

∗
1, I2 = A2A

∗
2 are the intensities

of incident beams; and q = k1x − k2x = 2k1 sin δ is the wave
number of the intensity pattern.

Inside the photorefractive substrate, the light intensity pat-
tern given by Eq. (1) induces a space charge. The space-charge
density is modulated along the x axis with period equal to
� = 2π/q and gives rise to an electric potential �̃(x) = �̃0 +
[�̃ exp(iqx) + c.c.] at the cell boundary z = −L/2. Here �̃0

is an arbitrary constant (which may be taken to be zero), and
�̃ = iEsc(q)m/2q, where Esc(q) is the space-charge field.
In particular, in an infinite photorefractive medium and for
a diffusion-dominated space-charge field, Esc(q) takes the
following form [30]:

Esc(q)= iEd

1+ Ed

Eq

, Ed = q
kbT

e
, Eq =

(
1− Na

Nd

)
eNa

ε0εPhq
,

(2)

where Ed is the diffusion field, Eq is the so-called saturation
field, εPh is the dielectric permittivity of photorefractive
material, e is the electron charge, and Na and Nd are the
acceptor and donor impurity densities, respectively.

The electric field in the CLC layer can be found from the
Poisson equation,

∇ · (ε0 ˆ̃ε · E + Pf ) = 0, (3)

where Pf = e11n∇ · n + e33(∇ × n × n) is the flexopolariza-
tion [31], ε̃ij = ε̃⊥δij + ε̃aninj is the low-frequency dielectric
permittivity of the CLC, ni are the components of the director
n, e11 and e33 are the flexoelectric coefficients, ε̃a = ε̃‖ − ε̃⊥
is the static dielectric anisotropy, and ε̃‖ and ε̃⊥ are the
components of the dielectric tensor along and perpendicular
to the director.

To solve Eq. (3) inside the CLC, we use the re-
lation E(x,z) = −∇�(x,z), and seek a solution for the
electric potential �(x,z) in the form �(x,z) = �0(z) +
[�(z) exp(iqx) + c.c.] with boundary conditions

�0(∓L/2) = 0, �(−L/2) = iEsc(q)

2q
m, �(L/2) = 0.

(4)

We will consider only small deviations of the director in
response to the electric field. In this case, we can neglect the
feedback of the director response on the electric field and derive
the following equations for �0(z) and �(z):

∂2

∂z2
�0(z) = 0, (5)[

ε̃⊥ + ε̃||
2

− 1

2
ε̃a cos 2ϕ0(x)

]
∂2

∂z2
�(z) − ε̃⊥q2�(z) = 0,

(6)

where ϕ0(x) = 2π
p

x and p is the pitch of the cholesteric helix.
We note that a characteristic length of the electric potential

variation along the x axis is an order of magnitude of the grating
spacing �; therefore, for the short-pitch CLC with p � � one
can average Eq. (6) over the cholesteric pitch yielding

ε̃⊥ + ε̃||
2

∂2

∂z2
�(z) − ε̃⊥q2�(z) = 0. (7)
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Solving Eqs. (5) and (7) with boundary conditions (4) we
get the following expressions for the electric field in the CLC
cell:

Ex = E0x exp (iqx) + c.c., Ez = E0z exp (iqx) + c.c.,

E0x = − Esc(q)m

2 sinh (q̃L)
sinh q̃(z − L/2),

E0z = iq̃Esc(q)m

2q sinh (q̃L)
cosh q̃(z − L/2), (8)

where q̃ = √
2ε̃⊥/(ε̃⊥ + ε̃‖) q and m is the modulation param-

eter at the LC cell boundary z = −L/2.

III. FLEXOELECTRO-OPTIC RESPONSE

The equilibrium director profile can be found by minimizing
the total free energy functional of the CLC cell defined by

F = Fel + Fl + FE + Ff l, (9)

where

Fel = 1

2

∫
[K11(∇ · n)2 + K22(n · ∇ × n + 2π/p)2

+K33(n × ∇ × n)2]dV,

Fl = −ε0εa

4

∫
(n · Ehν)2dV,

FE = −1

2

∫
(D · E) dV, Ff l = −

∫ (
Pf · E

)
dV. (10)

Here Fel is the bulk elastic energy of a distorted CLC layer,
Fl is the contribution of the light field to the total free energy
functional, FE is the contribution from the dc electric field
created in the CLC cell by the photorefractive substrate, and
Ff l is the contribution from the interaction of the dc electric
field with the CLC flexoelectric polarization.

Some terms in Eq. (9) can now be neglected. The LC
dielectric anisotropy at optical frequencies εa � 1, implies the
light field contribution Fl can be ignored. In addition, the LC
dielectric anisotropy term FE can also be neglected compared
to the contribution from the LC flexopolarization, which was
shown in [11]. For simplicity, we assume K11 = K22 = K33 =
K and following Ref. [15] we set the flexoelectric coefficients
e11 ≈ −e33 ≡ ẽ.

Presenting the CLC director in the form n =
0, cos ϕ(x,y,z), sin ϕ(x,y,z) the total free energy functional
(9) reduces to

F = K

2

∫ [(
∂ϕ

∂y

)2

+
(

∂ϕ

∂z

)2

+
(

∂ϕ

∂x
− 2π

p

)2

+ 2ẽ

K

∂ϕ

∂y
Ez

]
dV. (11)

From this point on we consider only a finite box-shaped
region, with the y side of size L1, a quantity on the order of
the beam spot size, but not necessarily coinciding exactly with

it. In this region, we assume ϕ to be given by the equation

ϕ = 2π

p
x + βyEz, (12)

and substituting Eqs. (8) and (12) into Eq. (11) we arrive at

F = Kβ

2

∣∣∣∣ q̃q Esc(q)me−q̃L/2

∣∣∣∣
2 ∫

[β(cos2qx + y2q2sin2qx)

× cosh2q̃(z − L/2) + βy2q̃2cos2qxsinh2q̃(z − L/2)

+ 2(ẽ/K)cos2qxcosh2q̃(z − L/2)]dV. (13)

Evaluating the integral in the above expression, we find that
the CLC free energy reaches its minimal value at

β = − 2r0(1 + sinh 2q̃L/2q̃L)

1 + 1
3L1

2(q2 − q̃2) + [
1 + 1

3L1
2(q2 + q̃2)

] sinh 2q̃L

2q̃L

,

(14)

where r0 = ẽ/K .
As in [15], introducing the vector k̃ along the helix axis

we rewrite Eq. (12) in the form ϕ = k̃ · r with k̃x = k̃ cos φ =
2π/p and k̃y = k̃ sin φ = βEz. Therefore, the rotation angle
of the helix axis is given by the relationship

tan φ = p

2π
βEz. (15)

Considering only small values of angle φ and recalling that
Ez = E0z exp(iqx) + c.c. [see Eq. (8)] we can rewrite Eq. (15)
as

φ(x,z) = φ(z) exp (iqx) + c.c., (16)

where

φ(z) = p

2π
βE0z. (17)

Therefore, the tilt of the CLC helix axis under the pho-
torefractive electric field defined by Eq. (16) is spatially
periodically modulated along the x axis with period 2π/q and
magnitude φ(z).

IV. SIGNAL BEAM GAIN COEFFICIENT

Let us introduce the local Cartesian system (x ′,y ′,z′) rotated
by the angle φ(x,z) around the z axis with the x ′ axis directed
along the tilted helix axis of the CLC. In this Cartesian system,
the CLC dielectric tensor at optical frequencies takes the form
[31]

ε̂ =

∣∣∣∣∣∣∣
ε⊥ 0 0

0 ε̄ + 1
2εa cos 4π

p
x ′ 1

2εa sin 4π
p

x ′

0 1
2εa sin 4π

p
x ′ ε̄ − 1

2εa
4π
p

x ′

∣∣∣∣∣∣∣, (18)

where ε̄ = (ε⊥ + ε‖)/2, εa = ε‖ − ε⊥ is the dielectric
anisotropy at optical frequencies.

Supposing the cholesteric pitch to be much less than the
wavelength of the light we can average the dielectric tensor
(18) over the cholesteric pitch and rewrite the averaged tensor
ε̂ in the initial Cartesian system (x,y,z). It yields the following
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expression for the dielectric tensor of the short-pitch CLC:

ε̂ = ε̂1 + [ε̂2(z) exp (iqx) + c.c.], (19)

where

ε̂1 =
∣∣∣∣∣∣
ε⊥ 0 0
0 ε̄ 0
0 0 ε̄

∣∣∣∣∣∣, ε̂2 = −1

2
εaφ(z)

∣∣∣∣∣∣
0 1 0
1 0 0
0 0 0

∣∣∣∣∣∣. (20)

The wave equation for the electric vector E = E1 + E2 of
both light beams in the LC with a dielectric tensor ε̂1 reads

∇ × ∇ × E − ω2

c2
ε̂1E = 0. (21)

Equation (21) can be decomposed into equations for the
electric vector of each beam:

∇ × ∇ × E1 − ω2

c2
ε̂1E1 = 0, ∇ × ∇ × E2 − ω2

c2
ε̂1E2 = 0.

(22)

Taking into account the form of the dielectric tensor ε̂1,
Eqs. (22) are the same as in a nematic LC and their solu-
tions are the plane waves E1 = A1e1 exp(ik1r − iωt), E2 =
A2e2 exp(ik2r − iωt) with the wave vectors k1, k2 and the
polarization vectors e1, e2 sited in the xz plane as is shown in
Fig. 1.

In the LC characterized by a dielectric tensor with a spatially
periodic modulation, ε̂1 + [ε̂2(z) exp(iqx) + c.c.], the light
beam electric vector Ẽ satisfies the modified equation:

∇ × ∇ × Ẽ − ω2

c2
{ε̂1 + [ε̂2 exp (iqx) + c.c.]}Ẽ = 0. (23)

Neglecting small terms of the second order with respect
to the small angle φ(z), the x and z components of Eq. (23)
coincide with the x and z components of Eq. (21) and do not
contain the electric field component Ẽy . It implies that Ẽx =
Ex = E1x + E2x, Ẽz = Ez = E1z + E2z. The y component of

Eq. (23) gives us an equation for Ẽy :(
∂2

∂x2
+ ∂2

∂z2

)
Ẽy

+ ω2

c2

{
ε̄Ẽy +

[
−1

2
εaφ(z) exp (iqx) + c.c.

]
Ex

}
= 0.

(24)

Therefore, we can seek a solution to Eq. (23) in the form

Ẽ = E1 + E2 + j Ẽy, (25)

where j is a unit vector along the y axis and Ẽy satisfies
Eq. (24).

We define beam 1 to be the signal and beam 2 to be the pump,
with the consequence that the pump amplitude |A2| � |A1|.
Then, in Eq. (24) we can set Ex = E1x + E2x ≈ E2x and seek
the solution to this equation in the form

Ẽy = A(z) exp (ikr − iωt). (26)

Further, we follow a procedure analogous to that first
outlined by Kogelnik [32], which we have used in our previous
related papers [11–13]. According to this, we suppose the
magnitude A(z) to vary slowly across the cell. Note that electric
fields E1, E2 satisfy Eq. (22) and their magnitudes A1, A2 are
the constants. Then, substituting Eq. (26) into Eq. (24), after
some algebra we obtain an equation for A(z):

2ikz

∂A(z)

∂z
− 1

2
εaφ(z)

ω2

c2
{exp [i(q + k2x − kx)x]

+ exp [−i(q − k2x+kx)x]}A2e2x exp[i(k2z − kz)z] = 0.

(27)

Recalling that q = k1x − k2x , Eq. (27) averaged over the
grating spacing has nonzero solutions only if kx ≈ k1x . In this
case it reduces to

∂A(z)

∂z
+ i

εa

4kz

ω2

c2
φ(z)A2 cos α exp[i(k2z − kz)z] = 0. (28)

Now we substitute φ(z) from Eq. (17) and E0z from Eq. (8)
into Eq. (28) and take into account that for the pump amplitude
|A2| � |A1| the expression for the modulation parameter m

reduces to m ≈ 2 cos(2δ)A1/A2. Then the solution to Eq. (28),
which satisfies the boundary condition A(−L/2) = 0 is as
follows:

A(z) = εa

4kz

ω2

c2

p

2π
β

q̃Esc(q) cos (2δ) cos α

2q sinh (q̃L)
A1

×
{

exp[q̃(z − L/2) + i(k2z − kz)z] − exp[−q̃L − i(k2z − kz)L/2]

q̃ + i(k2z − kz)

− exp[−q̃(z − L/2) + i(k2z − kz)z] − exp[q̃L − i(k2z − kz)L/2]

q̃ − i(k2z − kz)

}
. (29)

If the optical dielectric anisotropy is small, |εa| = |n2
e − n2

o| � 1, then the wave vector k of the wave (26) is close to the initial
signal beam wave vector k1. In this case, we can define the signal beam gain at the exit of the CLC cell as

G =
∣∣E1+Ẽy j

∣∣2

|E1|2
∣∣∣∣∣
z=L/2

= |A1|2 + |A(L/2)|2
|A1|2

. (30)
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Using Eq. (29) we can calculateA(L/2) and substitute it into
Eq. (30). The result is expressed in terms of the exponential
gain coefficient:

� = 1

L
ln |G|

= 1

L
ln

{
1 +

∣∣∣∣n2
e − n2

o

4k1

ω2

c2

p

2π
β

Esc(q) cos (2δ)

q

∣∣∣∣
2
}

,

(31)

where the parameter β is defined by Eq. (14).

V. NUMERICAL CALCULATIONS

For numerical calculations we use the cholesteric mixture
BC038/CB15, supposing that its helix axis is directed parallel
to the cell substrates. Theory developed in our paper [13]
provides a good description for the experimental data for the
signal beam gain coefficient in the hybrid cell with this mixture,
when the helix axis is perpendicular to the cell substrates.
Therefore, it will allow us to compare results obtained for
the gain coefficient in the same CLC, but having different
orientations of the helix axis, horizontal and vertical.

The ordinary and extraordinary refractive indices of the
mixture BL038/CB15 are no = 1.5 27 and ne = 1.799, respec-
tively [5]. As in our previous papers [11–13] accounting for a
change of the dipole concentration spatial distribution in the LC
cell under an inhomogeneous photorefractive field, we replace
in Eq. (31) the flexoelectric parameter r0 = ẽ/K by its effective
value r = r0(1 + μq2|Esc|2), where μ is the fitting parameter.
Based on the experimental data, the parameter μ was estimated
in Ref. [11] for a nematic LC TL208 and in Ref. [13] for
a cholesteric LC mixture BL038/CB15. In Ref. [13] the
cholesteric LC had its helical axis oriented perpendicular to
the cell substrates (uniformly standing helix) in contrast to
the current study where the helical axis is parallel to the
substrates (uniformly lying helix); moreover, in this current
work the cholesteric pitch is short compared to the wavelength.
A short-pitch cholesteric is optically equivalent to a nematic
LC with the effective (averaged) dielectric tensor ε̂1. Therefore,
for a definiteness at numerical calculations we used the value
for a parameter obtained for a nematic LC [11]: μ = 2 ×
10−21 J−2 C2 m4. The incident beams have wavelength λ =
532 nm; the LC cell thickness L = 5 μm. To evaluate Esc(q)
we set the ratio of the acceptor to donor impurity densities to
be very small, i.e., Nd � Na , with Na ≈ 3.8 × 1021 m−3; the
dielectric permittivity of the photorefractive substrate is given
by εPh = 200 [5,13].

Parameter L1 characterizing the transverse CLC cell di-
mension influences the gain coefficient via the function β(L1)
[see Eqs. (31) and (14)]. In Fig. 2 we show the function
|β(L1)|/2r0 versus the parameter L1 for several values of the
grating spacing �. It is seen from this figure that the function
|β(L1)|/2r0 changes appreciably depending on the value of
the grating spacing. However, influence of the parameter L1 is
minimized when its value is rather small. As an example, we
choose for further calculations L1 = 0.1 μm.

The magnitude of the helix axis rotation angle, φ(z),
determines the magnitude of the refractive index grating, which

FIG. 2. Dependence of the function |β(L1)|/2r0 on the transverse
CLC cell dimension L1 for grating spacing � = 1 μm (solid line),
2 μm (dashed line), and 4 μm (dot-dashed line). The cell thickness is
L = 5 μm.

is responsible for the coupling of the beams. It is proportional
to the magnitude of the photorefractive field component E0z

and therefore depends on the distance from the photorefractive
substrate and the grating spacing. In Fig. 3 we present the
function φ(z) versus grating spacing for several distances from
the photorefractive substrate setting, for example, the flex-
oelectric parameter r0 = 1 C m−1 N−1 and cholesteric pitch
p = 0.3 μm.

Presented in Fig. 3, the dependence of the helix axis
rotation angle magnitude on the grating spacing � reflects,
as follows from Eq. (17), the corresponding dependence on �

of the photorefractive field component E0z [see Eq. (8)]. The
magnitude of the director angle φ is proportional to the electric
field E0z; therefore, φ(z) decreases with the distance from the
photorefractive substrate (z = −L/2) in a similar fashion as
the photorefractive electric field component that penetrates into
the CLC cell from the photorefractive substrate.

In Fig. 4 we compare the gain coefficient �(�) for the short-
pitch cholesteric mixture BL038/CB15 when its helix axis is
oriented perpendicular (vertical helix) and parallel (horizontal
helix) to the cell substrates. The dashed line is obtained using
results of Ref. [13] and corresponds to the vertical helix axis.

FIG. 3. Magnitude φ(z) of the helix axis rotation angle versus
grating spacing. z/L = −0.5 (solid curve), −0.45 (dashed curve), and
−0.4 (dash-dotted curve); ratio of flexoelectric coefficient to elastic
constant r0 = 1 C m−1 N−1, cholesteric pitch p = 0.3 μm, and the
transverse CLC cell dimension L1 = 0.1 μm.
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FIG. 4. Gain coefficient � versus grating spacing � in a hybrid
photorefractive cell containing cholesteric LC mixture BL038/CB15.
Cholesteric pitch p = 0.25 μm; ratio of flexoelectric coefficient to
elastic constant in the case of horizontal helix axis (solid line) r0 =
1 C m−1 N−1; the ratios of flexoelectric to elastic moduli in the case of
vertical helix axis (dashed line) are those describing the experimental
results in [13] and have an order of magnitude ∼1 C m−1 N−11.

The solid line is calculated using Eq. (31) and corresponds to
the horizontal helix axis.

It is seen that the dependence of the gain coefficient on
the grating spacing is qualitatively different: In the short-pitch
CLC with the horizontal helix axis the function �(�) is similar
to those observed in a hybrid photorefractive cell filled with
nematic LC [11]. This is consistent with the fact that the
dielectric tensor ε̂1 obtained for the short-pitch CLC [see
Eq. (20)] has the same form as for an ordinary nematic LC.

From Eqs. (31) and (14) we can see that the gain coefficient
strongly depends on the ratio of the flexoelectric coefficient to
the CLC elastic constant. The bent-core LCs are reported to
possess a large flexoelectricity [33–35] and their twist or bend
elastic constants can be very small [36–38]. Therefore, the ra-
tios of flexoelectric to elastic moduli for the bent-core LCs can
considerably exceed those for conventional LCs. In Fig. 5(a)
the gain coefficient � versus the grating spacing � is plotted
for different values of the ratio of flexoelectric coefficient to
elastic constant, when the CLC helix axis is horizontal. We
keep other parameters the same as for BL038/CB15. It is seen
that the gain coefficient can reach high values for reasonable
values of the ratio ẽ/K .

In Fig. 5(b) we illustrate the influence of the cholesteric
helix pitch on the gain coefficient dependence on the grating
spacing described by Eq. (31). It is seen that even at small
pitches, p � λ, the gain coefficient can reach rather high
values.

VI. CONCLUSIONS

We have developed a theoretical model to describe the two-
beam energy exchange in a hybrid photorefractive cholesteric
cell with a short-pitch helix oriented parallel to the cell sub-
strates. It is shown that under the space-charge field penetrating
in the CLC from the photorefractive substrate and interacting
with the CLC flexopolarization, the CLC helix axis can be
spatially modulated along the x axis with period � = 2π/q.
We show that coupling of a weak signal beam with a strong
pump beam at the CLC permittivity grating induced by the

FIG. 5. Gain coefficient � versus grating spacing � for CLC with
horizontal helix axis; (a) different values of the ratio of flexoelectric
coefficient to elastic constant: r0 = 1 (dash-dotted line), 3 (dashed
line), 5 (solid line), p = 0.3 μm; (b) different values of the cholesteric
pitch: p = 0.2 μm (dash-dotted line), p = 0.3 μm (dashed line), p =
0.4 μm (solid line); r0 = 3.

periodically tilted helix axis leads to the energy gain of the
signal beam.

It is found that the dependence of the signal beam gain
coefficient on the grating spacing in the short-pitch CLC
with the helix axis parallel to the cell substrates substantially
differs from that in the CLC with the helix axis perpendicular
to the cell substrates. In the case of the helix axis parallel
to the cell substrates, this dependence is similar to that
observed in the hybrid photorefractive cells filled with the
nematic LCs.

We show that in hybrid cholesteric cells with the short-
pitch helix parallel to the cell substrates the gain coefficient
can reach rather high values, which can be further increased
by selecting CLC with a high ratio of flexoelectric to elastic
moduli. We pose the question of application of this theory to
an experimental test in the hybrid photorefractive cells filled
with the bent-core short-pitch CLCs, which possess increased
values of the ratio of flexoelectric to elastic moduli.
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