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Motile bacteria in a critical fluid mixture
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We studied the swimming of Escherichia coli bacteria in the vicinity of the critical point in a solution of
the nonionic surfactant C12E5 in buffer solution. In phase-contrast microscopy, each swimming cell produces a
transient trail behind itself lasting several seconds. Comparing quantitative image analysis with simulations show
that these trails are due to local phase reorganization triggered by differential adsorption. This contrasts with
similar trails seen in bacteria swimming in liquid crystals, which are due to shear effects. We show how our trails
are controlled, and use them to probe the structure and dynamics of critical fluctuations in the fluid medium.
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I. INTRODUCTION

Active matter has attracted the attention of diverse investiga-
tors in recent years [1]. Self-propelled microswimmers, natural
or synthetic, are instances of active matter [2]. Their lack of
time-reversal symmetry promises new physics [3] and novel
kinds of active self-assembly can be envisaged [4,5]. A signifi-
cant theme in active matter research concerns microswimmers
in complex passive environments, both static and dynamic.
Thus, restricting our attention to natural microswimmers, we
find recent studies on motile bacteria in concentrated polymer
solutions [6], colloidal structures [7], emulsion drops [8,9],
liquid crystals [10,11], gels [12], arrays of static, asymmetric
obstacles [13], and intricate microfluidic devices [14].

One complex passive medium that is yet to be explored in
this context is a critical fluid. Critical binary fluids have been
used to generate self-propulsion in synthetic particles via the
manipulation of critical fluctuations by surface asymmetries
[15,16]. However, the way these fluctuations may interact with
microswimmers has not been probed to date.

Near the critical point, the correlation length diverges
according to ξ ∝ ε−ν , with ε = |(T − Tc)|/Tc measuring how
close the temperature T is to the critical temperature Tc. For
small enough ε, ν ≈ 0.630 for binary fluids [17]; for larger
ε, ν = 1

2 . The characteristic decay time of fluctuations also
diverges: τ ∝ ε−νz, where z = d + xη in d dimensions, and
xη ≈ 0.068 [17]. We expect these fluctuations to decay with a
diffusivity that scales as D ∼ ξ 2/τ ∼ εφ with φ = ν(d − 2 +
xη) > 0 [17], so that D → 0 as ε → 0.

For an active particle of characteristic dimensions L swim-
ming in a critical binary mixture at speed v, the characteristic
advective and diffusive time scales are ta ∼ L/v and td ∼
L2/D, so that the Péclet number Pe = td/ta ∼ Lv/D diverges
near criticality. We may therefore expect nontrivial effects in
such a system.

We explore this possibility using motile Escherichia coli, a
model active colloid [18] with body length L � 2 μm typical
speed v ∼ 20 μm s−1, in a critical mixture of the nonionic
surfactant C12E5 and water. In this mixture, ξ ∼ 0.3 μm and
τ � 0.01 s at a readily accessible ε ∼ 10−4 [19–21], giving

D � 10 μm2/s and Pe ∼Lvτ/ξ 2 � 1. Under these conditions,
we find that the motile bacteria paint a transient pattern of trails
in the critical fluid reminiscent of the process whereby Jackson
Pollock created his iconic canvasses [22].

Visually similar trails seen in bacteria swimming in liquid
crystals [10] are due to shear effects. Our trails, on the other
hand, relate to the way the swimmers modify the structure
and dynamics of the critical fluctuations. This effect is not
confined to self-propelled particles, but has also been predicted
for colloids being dragged through critical fluids [23,24], so
that our experiments using active colloids provide the first ex-
perimental verification of this prediction based on simulations
of passive particles. At the same time, our results constitute
another example of microswimmers acting as a local probe of
complex fluids, albeit in a roundabout way [6,10].

II. METHODOLOGY

A. Experimental

We cultured a �cheY (nontumbling) mutant of strain
AB1157 in Luria Broth (LB) agar plates. A single colony
was then transferred to 10 ml of liquid LB to be incubated at
30 ◦C overnight. Then 350 μL of this culture was transferred
into 35 mL of Terrific Broth (TB) to grow for 4 h, reaching
the midexponential phase. Cells were then washed three times
in a motility buffer [MB: 6.2 mM K2HPO4 (Sigma-Aldrich),
3.8 mM KH2PO4 (Fisher Chemical), and 0.1 mM EDTA
(Sigma Aldrich)] using a filter unit and 0.45 μm filter paper.
We then transferred the bacteria into our critical fluid. Our final
critical fluid consisted of a mixture of 1.6 wt.% pentaethylene
glycol monododecyl ether, C12E5, (Sigma Aldrich), a nonionic
surfactant, the motility buffer (MB), and 1.5 mM glucose.
The glucose promotes stable swimming for several hours
[18], while the concentration of C12E5 was nonharmful to
E. coli swimming. The final bacterial suspension, having an
optical density (OD) between 0.05 and 0.1, was loaded into
50 μm×0.5 mm rectangular capillaries (CM Scientific).

We used a lower critical solution temperature (LCST)
critical mixture. This critical mixture was chosen because of its
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compatibility with bacterial swimmers, its large microscopic
correlation length, and flat phase boundary near criticality, the
latter giving a large window for observing critical fluctuations
[20]. The solution was stored away from light. The precise
phase boundary varied between experiments due to sample
degradation by dissolved CO2 and photodissociation (mini-
mized by storage in the dark) as well as external temperature
variations. Therefore, Tc was determined in each experiment
separately, by warming a sample up from the single-phase
to the two-phase region through the critical point. The trail
measurements were then taken immediately using a sample in
a fresh capillary to avoid any hysteresis effects from improper
remixing [25].

Using phase-contrast microscopy (Nikon 20× ph1 and 60×
ELWD ph3 objectives) near a glass surface and a 16-bit high-
sensitivity camera (Orca Flash, Hamamatsu), we imaged bac-
teria and their trails. An INSTEC temperature stage (mK1000)
kept the sample temperature stable to ±0.01 ◦C. The samples
were taken to 0.1 ◦C below Tc, while Tc was determined for
each experiment with an error of ±0.05 ◦C. Measurements at
different ε were then carried out by successively decreasing the
temperature. Ten 40 s movies at 100 frames per second were
taken at each temperature after stabilizing for 5 min.

We also extracted the diffusion coefficient DBulk of the
density fluctuations using differential dynamic microscopy
(DDM) following a published protocol [26]. Movies of the
binary mixture without bacteria at different temperatures were
taken (60× ELWD ph3 Nikon objective, 40s at 100 frames
per second, 512×512 and 4×4 binning). This gave access to
a wave vector range of 0.05 � q � 6.6 μm−1. The extracted
differential intensity correlation functions (DICFs) [26] exhib-
ited single exponential decay, which we fitted with A(q)(1 −
e−Dq2t ) + B(q), where t is the delay time between two frames.
A(q) is determined by the structure factor and form factor
of the sample, while B(q) is the measured camera noise. We
obtained a value of D for each available q and averaged over
0.5 � q � 2.4 μm−1, the region in which reliable correlation
functions could be obtained.

B. Simulations

To further our understanding of the observed phenomenon,
we simulated the two-dimensional (2D) conserved order
parameter (COP) Ising model [27]. To model a binary (AB)
mixture, the N×N spins in the COP Ising model are defined
to be si = +1 or −1 if site i is occupied by species A or B. The
total energy is H = J

4

∑
ij (1 − s1s2) = const − J

∑
ij sisj

summed over nearest neighbors with J > 0. We require con-
servation of n = N−1 ∑

i σi , the normalized (signed) differ-
ence in numbers of A and B. The critical point is at Tc ≈ 2.27 in
units of J/kB and nc = 0. We work at nc, where at T < Tc, the
system separates into equal amounts of symmetric coexisting
A- and B-rich phases, i.e., n = ±�n. In our Monte Carlo (MC)
simulations, n conservation is implemented using Kawasaki
(or nearest-neighbor spin exchange) dynamics [27,28].

At each step of our Monte Carlo simulation, we chose
a random site and one of its neighbors and calculated the
energy change �E for exchanging the two spins. We used
the heat-Bath algorithm [27], i.e., a spin exchange probability
of p = (1 + e�E/T )−1. We define ts as the time when spin
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FIG. 1. (a) Phase-contrast microscopy image snapshots of a single
swimming E. coli at different times, showing an occurring trail in
a phase-separating fluid (brighter than the background). The image
contrast was increased for clarity. (b) Experimental phase diagram
of the temperature versus the concentration of C12E5 in the motility
buffer, without bacteria, highlighting the experimental area. Points
show the measured upper and lower bounds of the phase separation,
while the line is a guide to the eye. (c) Schematic of how the trail
intensity profiles are extracted from the images.

exchange attempts equal the number of cells in the system.
Simulations were performed over for of T = 2.7 and 2.8
(Tc ≈ 2.27, ε = 0.19, 0.23) [27] on 1050×1050 and 540×540
cell systems.

Two types of simulations were performed. Initially, in
order to mimic a swimming bacterium, we allowed our Ising
model simulation to progress at T = 2.8 (ε ≈ 0.23), with
a Gaussian-shaped energy inclusion [peak value = 5.6kBT ,
standard deviation = 4 pixels (px)] traveling at a speed of
0.05 px/ts . We extracted the average spin when centered
around the energy inclusion, after reaching a steady state. To
distinguish the origin of the trail between phase separation
and shear mixing a second simulation was performed, where
a trail was imposed and let to equilibrate. For local phase
separation, we allowed the simulation to equilibrate at T = 2.7
(ε ≈ 0.19) and subsequently applied a positive spin trail. In the
case of mixing, we constructed initial conditions by imposing
a projected 1D spatial variation of a high temperature and
simulated until a steady state was reached. The spatial variation
for the temperature or spin profile was a step function with a
diameter of 64 sites. A waiting time of t = 100000ts was found
to be sufficient for reaching a steady state in all cases. The new
profile was then allowed to equilibrate without external control
and the relaxation dynamics were qualitatively compared to the
experiments. We typically averaged results from >10 runs.

III. RESULTS

We observed smooth-swimming mutants of E. coli dis-
persed in a solution of C12E5 in phosphate motility buffer
with added glucose, in which cells remain motile for several
hours. The solution’s phase diagram, Fig. 1(b), resembles
that of C12E5 in pure water [19,20], but the critical point is
shifted from c = 1.2 wt.% to c0 = 1.6 wt.% C12E5 and a lower
critical solution temperature (LCST) from T = 31.8 ◦C to
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(a) (b) (c)

FIG. 2. Snapshots of bacteria at a temperature near criticality/
phase separation (≈−0.1 K), with the concentration of C12E5 at (a)
1.1 wt.%, (b) 1.6%, and c) 2.2%. Note the appearance of bacterial
aggregates for (b) and (c).

Tc = 27.0 ◦C. We monitored cells swimming at�10 μm s−1 in
a mixture at c0 and 3×10−4 � ε � 3×10−3 (with a variability
of ±0.05 ◦C in Tc from sample to sample due to uncertainties
in concentration).

Phase-contrast microscopy movies revealed a crisscrossed
pattern of ∼6 μm long phase-bright trails behind swimming
cells, Fig. 1(a) (also see Supplemental Material movies 1
and 2 [29]). In our setup, phase bright corresponds to lower
than average refractive index. Since C12E5 has higher index
than water [30], our trails should be water rich.

This suggest that E. coli surfaces have a higher overall
affinity for water than surfactant, which gives rise to a water-
rich fluid layer next to the cell whose extent scales as ξ .
Near criticality, it extends mesoscopically into the surrounding
fluid. As a cell moves, this layer is advected backwards,
forming a phase-bright water-rich trail, which then equalizes
its concentration with the bulk by diffusion. Consistent with
this picture, we observed no trails at the same ε but a lower
C12E5 concentration of c = 1.1 wt.% < c0, i.e., richer in water
than criticality, but did observe trails at c = 2.2 wt.%.

Moreover, we have incidentally observed that in off-critical
concentration experiments, bacteria tended to form aggregates
whenever trails were visible (with the concentration of C12E5 at
1.6% and 2.2% wt.%). However, these are anecdotal observa-
tions on dilute samples, with aggregates only forming between
nonmotile bacteria. The resulting clusters appear few and far
apart. We show some microscope images of our observations
in Fig. 2. This is again consistent with preferential water
affinity, which should generate attractive critical Casimir forces
[31–34].

To make a minimal model of trail formation, we consider
the bacterium as a source moving at velocity −u and emitting
water-rich phase at a constant rate Q per unit time. In the
comoving frame, fluid advects past the cell at the origin at
velocity u, and the concentration of water-rich phase, c(r,t),
satisfies mass conservation:

∂tc + ∇ · j = Qδ(r). (1)

Substituting the diffusive and advective fluxes jD = −D∇c

and jA = cu (so that j = jD + jA) and assuming incompress-
ibility (∇ · u = 0) gives

∂tc − D∇2c + u · ∇c = Qδ(r), (2)

an advection-diffusion equation, which has been used to model
pheromone spreading from a moving insect [35]. The neglect
of hydrodynamics is plausible a priori because of the dipolar

(a) (b)

(c)

FIG. 3. Main: Plot of three intensity profiles at a near-critical
temperature (ε = 3.3 10−4, or Tc − T ≈ 0.1 ◦C) after subtraction of
the background for τ = 0.5 (red), 1.5 (blue), and 3.0s (green). Dots
are from analysed data, while solid lines are the Gaussian fits to the
data. Insets: (a) A contour plot of the intensity profiles as a function
of time, for the analyzed data and for the fitted curves. The height,
(b), and variance, (c), of the Gaussian fits as a function of time,
including a linear fit in (c), from which a diffusivity can be extracted
[Eq. (7), here D ≈ 0.15 μm2/s].

or higher-order flow field around a bacterium [36], and justified
a posteriori by fit with experiment.

In the steady state, ∂tc = 0, and let u be along x. For all
times t such that ut � √

2Dt , or t � 2D/u2, advection is
much faster than diffusion. This requires x � λ = 2D/u. For
our u � 6 μm s−1 and 0.1 � D � 1 μm2/s (see later), λ �
0.3 μm. In the x � λ (high Péclet) limit, we neglect diffusion
along x, and obtain

u∂xc = D(∂yyc + ∂zzc) + Qδ(r). (3)

For a moving source at z = h above a nonporous wall at
z = 0, the stationary concentration profile is

c(r) =
√

Q

2πDx(τ )
exp

{
− uy2

4Dx(τ )

}√
Q

2πDx(τ )

×
[

exp

{
−u(z − h)2

4Dx(τ )

}
+ exp

{
−u(z + h)2

4Dx(τ )

}]
, (4)

with the second z-dependent image term enforcing zero flux
at z = 0. In the laboratory frame, the distance downstream
from the cell in the comoving frame, x, is parametrized
by the time interval τ before the current time t when the
cell was at position x = ut downstream from its current
position, assuming constant u, Fig. 1(c), so that the transverse
concentration profile at a fixed z is Gaussian:

c(y,τ ) = A(τ ) exp

{
− y2

4Dτ

}
, (5)

If the intensity in our movies, I , is proportional to concen-
tration, then measuring It (y,τ ) in individual images, Fig. 1(c),
can test Eq. (5). In practice, we average over different frames
(i.e., over t) for each of many cells i = 1 to ∼103. We plot
the result with background subtracted, 〈I (y,τ )〉t,i − I0, Fig. 3,
including only data from vigorous swimmers, v > 6 μm s−1
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and for x = vτ > 6 μm, the latter to avoid strong effects from
beating flagella. The data can be fitted by Eq. (5):

〈I (y,τ )〉t,i = A(τ ) exp

{
− y2

2σ (τ )2

}
+ I0, (6)

except that the variance has a constant term:

2σ 2 = 4Dτ + 2σ 2
0 , (7)

with D ≈ 0.15 μm2/s and σ0 ≈ 0.30 μm, the latter corre-
sponding to a minimum full width of � 1 μm, which is close
to the point spread function of our imaging system.

This minimal model suggests that the dynamics of the trail
is indeed diffusive, Fig. 3(c). However, the fitted diffusivity
is significantly underestimated, because the trail profile is
oscillatory along y and not Gaussian. A more realistic model
for the trail profile requires information on initial conditions,
which are poorly understood in this experiment. So, instead, we
extracted a more realistic diffusivity by numerically calculating
how the experimentally measured initial trail profile at time t0
should spread out diffusively.

Specifically, we numerically integrate 1D Fickian diffusion,
dI/dt = Dd2I/dx2, for the trail intensity I (t0 + t) and use
the experimental profile at time t0 as a starting state. We then
compare the time-dependent experimental profiles with the
simulated ones and minimize their squared differences, using
the diffusion coefficient D as a fitting parameter. This method
offers a distinctive advantage over using analytical modeling,
as it does not require explicit knowledge of the shape of the
starting conditions. We fit DTrail over multiple instances of
t0, every 0.08 s over a duration of 0.2 s, examining the fit
only 5 μm around the track center. Our final value of DTrail

is averaged over curves, which represent meaningful data and
are fitted well.

We find that at short times fitting is not ideal (Fig. 4),
probably due to phase-contrast halo artifacts, as we find that
deviations are generally found around the regions of the
oscillations. Thus, the data to be averaged is chosen by two
criteria: (i) the squared height of the peak at the particular t0,
denoting the relevance of the data point and (ii) the wellness
of the fit given by the reciprocal of the sum of the squared
difference between the fit and the data. The product of the two
produces a nondimensional parameter K , which we can use
to rate the fitted diffusivities. A typical example is shown in
Fig. 5. The ten diffusivities with the highest rating are then
used to average the data point of the particular temperature/
measurement.

This procedure was repeated at different temperatures to
obtain DTrail(ε), Fig. 6. This procedure returns diffusivities
that are �2× those obtained from fitting Gaussians to the trail
profiles [data not shown, but one can compare to the value
obtained from Fig. 3(c)]. Theoretically, D ∼ εφ , where φ =
νxD with xD = d − 2 + xη in d dimensions [17], so that in
three dimensions, φ ≈ 0.63×1.068 = 0.67 (or, using the mean
field ν = 1

2 , φ = 0.534). Fitting DTrail(ε) gives φ = 0.56 ±
0.08.

Next, we used differential dynamic microscopy (DDM) to
measure the diffusivity in the bulk of our mixture [26] (Fig. 7)
as a method of giving another estimate of the diffusivity,
DBulk(ε), Fig. 6. The data are less noisy than DTrail(ε), and

(a) (b)

(c) (d)

FIG. 4. Fitting of the diffusivity for a specific temperature
(ε = 6×10−4), by numerically integrating Fick’s second law over the
experimental data, showing the experimental data and the fitting.
The range of fitting is restricted to 5 μm from the center of the
track. (a) The starting configuration for the model integration, a short
time after the trail has been formed (t0 = 0.7 s) and (b) the end
configuration (0.7 + 0.2 s). (c) The starting configuration at a further
time (t0 = 1.4 s) after the trail formation and (d) the corresponding
end configuration (1.4 + 0.2 s). Note the improvement of the fitting
quality between (b) and (d).

return a similar φ = 0.60 ± 0.03. In absolute magnitude,
DBulk ≈ 2DTrail. Part of the discrepancy may be due to the
difference between the actual 3D profile of the trails, and
the 2D phase-contrast projection used for extracting DTrail.
Despite this discrepancy, the closeness of the φ exponents from
DTrail and DBulk confirm our hypothesis that the trails dissipate
diffusively.

To further confirm our claim that the trails are preferen-
tially adsorbed water-rich layers being advected downstream
and explore an alternative mechanism, we simulated the 2D
conserved order parameter (COP) Ising model [27]. For a

FIG. 5. Figure showing the selection of data for the averaging
process. The fitted diffusivity (Fig. 4) is plotted against the squared
peak value of the trail, multiplied by the reciprocal of the sum
of squared deviations between the fit and the experimental data
(K). The ten diffusivities scoring the highest K are then averaged
(noted by the vertical line). The points corresponding to Fig. 4 are
highlighted.
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FIG. 6. Diffusivity as a function of normalized distance from
criticality, D(ε), measured by fitting trail intensity profiles ( ) and
from differential dynamic microscopy ( ). Lines are fits to D ∼ εφ

with φ = 0.56 ± 0.08 and 0.60 ± 0.03, respectively.

direct analog to a bacterium swimming in a critical fluid, we
simulated a Gaussian-shaped high-energy region traversing the
lattice at ε ≈ 0.23 and constant speed [24]. In the comoving
frame, we see a downstream trail, Fig. 8(a), whose transverse
profile n(y) shows a peak that decays oscillatorily, Fig. 8(b),
because of order parameter conservation, which is the direct
analog of mass conservation in our experiments. Experimen-
tally, the situation is more complex: the observed oscillations
are partly artifacts of phase-contrast imaging [37].

The high shear rate near rotating flagella, γ̇ ∼ 104 s−1 [6],
might also generate a phase-bright trail in our system. If
γ̇ −1 � τ , the decay time of the fluctuations, we may expect
the flow to homogenize the fluctuations [38], reducing ξ and
therefore scattered light. The advection of a homogenized
region downstream generates a phase-bright trail. Indeed, shear
melting by flagella is responsible for bacterial trails in liquid
crystals [10].

To explore this possibility, we simulated the evolution of
two kinds of stripes embedded in a near-critical COP Ising
lattice (ε ≈ 0.035,n = 0). To mimic a shear-homogenized
region, we used a stripe initially at a much higher temperature
(ε ≈ 0.76), evidenced by the finer-scale fluctuations in the
stripe compared to the bulk, Fig. 9(a). Visually, this region

 (a)  (b)

FIG. 7. (a) DICFs [26] for several wave vectors at a fixed tem-
perature corresponding to ε = 5×10−4. Markers: experimental data;
lines: corresponding fit with a single exponential decay. (b) Diffusion
coefficient extracted from DICF adjustment at each wave vector q for
several temperatures.

(b)(a)

FIG. 8. (a) Ising model simulation at T = 2.8 (ε ≈ 0.23) of a
trail formed by an Gaussian-shaped energy inclusion [peak value =
5.6kBT , standard deviation = 4 pixels (px)] traveling at a speed of
0.05 px/ts towards the right. (b) Average spin profile from the center
of the inclusion, corresponding to different time scales, showing a
reduction of the peak in time, as indicated by the color-coded vertical
dashed lines in (a).

becomes barely distinguishable from the bulk within τ shear
R ∼

500ts , where ts is the MC time step. Plots of the energy profile
of the stripe, H (l), at increasing times verify this observation.

To mimic a water-rich trail, we prepared a stripe of positive
spins at ε ≈ 0.19. Visual inspection and the H (l) plot show
that relaxation now takes ∼105ts � 102τ shear

R . This is because
a homogenized trail has the bulk concentration (n = 0), but
a stripe of up-spins has a different concentration (n = 1).
Relaxation of the latter requires long-range transport subject
to conserved (Kawasaki) dynamics. Thus, much slower dif-
ferential adsorption effects will mask any shear effects in our
system.

The COP Ising model belongs to the same universality
class as binary fluids with identical static critical exponents.
Nevertheless, we do not attempt a more quantitative compar-
ison between simulations and experiments, since dynamical
critical phenomena and exponents are model dependent [39,40]
and sensitive to details, e.g., the presence or absence of
hydrodynamics. Thus, we would not expect the diffusivity
exponents to be the same. However, the main conclusion we
draw from these simulations, viz., the large separation in time
scales between the relaxation processes in Fig. 9(a) mimicking
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FIG. 9. Simulations of 64-site wide trails with different initial
conditions embedded in a COP Ising lattice at TBulk = 2.7 (ε ≈ 0.19).
Snapshots are shown at time t = 0 and two other times in units of
Monte Carlo time step, ts , and plots of the average energy as a function
of the distance from the center of the profile, which decay towards the
background energy value with increasing time (l). (a) A stripe initially
at a higher temperature, T = 4 (ε ≈ 0.76). (b) A stripe initially with
all up-spins at T = 2.7.
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shear homogenization and in Fig. 9(b) mimicking differential
adsorption, should be valid, because this is traceable back
to a fundamental, model-independent distinction between the
dynamics of processes requiring local reorganization and long-
range diffusive transport.

To summarize, we have found that E. coli bacteria swim-
ming in a critical mixture of water and the surfactant C5E12

leave transient trails. That these trails are bright in phase-
contrast imaging together with analytic modeling and simu-
lations suggest strongly that they are due to a preferentially
adsorbed water-rich layer on cell surfaces of mesoscopic extent
due to proximity to criticality. This is advected downstream as
cells swims. The same basic physics—preferential affinity near
criticality—underlies critical Casimir forces between colloids
in critical fluid mixtures [31–34], and gives trails in simulations
of passive particles being dragged through a critical fluid
[23,24]. The underlying diffusive phenomenology behind the
trail dissipation strongly suggests that the trails are not due to
shear from flagella.

Finally, active matter dispersed in complex passive media
can act as a probe of the latter. Thus, e.g., fast spinning bacterial
flagella can be seen as a probe of the local high-shear rheology
of polymer solutions on the nanoscale [6]. Here, we have
shown that self-propelled bacteria can be used to measure the
dynamical critical exponent for diffusivity via fitting of the
transverse intensity profile of our trails. Future experiments
would no doubt demonstrate other examples of such use of
active matter as local probes.

ACKNOWLEDGMENTS

We thank J. Arlt, A. Brown, B. Guy, V. Martinez, and
T. Vissers for discussions. We additionally acknowledge two
anonymous referees whose comments allowed for a significant
improvement of this work. N.K. was partially funded by the EU
(H2020-MSCA-IF-2014, ActiDoC No. 654688). All received
funding from UK EPSRC (EP/J007404/1) and ERC (Advanced
Grant ERC-2013-AdG 340877-PHYSAP).

[1] S. Ramaswamy, Ann. Rev. Condens. Matter Phys. 1, 323
(2010).

[2] W. C. K. Poon, in Physics of Complex Colloids, edited by C.
Bechinger, F. Sciortino, and P. Ziherl, Proceedings of the Interna-
tional School of Physics Enrico Fermi (IOS Press, Netherlands,
2013), pp. 317–386.

[3] M. E. Cates, Rep. Prog. Phys. 75, 042601 (2012).
[4] J. Stenhammar, R. Wittkowski, D. Marenduzzo, and M. E. Cates,

Sci. Adv. 2, e1501850 (2016).
[5] J. Arlt, A. M. Martinez, A. Dawson, T. Pilizota, and W. C. K.

Poon, Nat. Commun. 9, 768 (2018).
[6] V. A. Martinez, J. Schwarz-Linek, M. Reufer, L. G. Wilson,

A. N. Morozov, and W. C. K. Poon, Proc. Natl. Acad. Sci. USA
111, 17771 (2014).

[7] A. T. Brown, I. D. Vladescu, A. Dawson, T. Vissers, J. Schwarz-
Linek, J. S. Lintuvuori, and W. C. K. Poon, Soft Matter 12, 131
(2016).

[8] I. D. Vladescu, E. J. Marsden, J. Schwarz-Linek, V. A.
Martinez, J. Arlt, A. N. Morozov, D. Marenduzzo, M. E.
Cates, and W. C. K. Poon, Phys. Rev. Lett. 113, 268101
(2014).

[9] E. Lushi, H. Wioland, and R. E. Goldstein, Proc. Natl. Acad.
Sci. USA 111, 9733 (2014).

[10] S. Zhou, A. Sokolov, O. D. Lavrentovich, and I. S. Aranson,
Proc. Natl. Acad. Sci. USA 111, 1265 (2014).

[11] P. C. Mushenheim, R. R. Trivedi, H. H. Tuson, D. B. Weibel,
and N. L. Abbott, Soft Matter 10, 88 (2014).

[12] O. A. Croze, G. P. Ferguson, M. E. Cates, and W. C. K. Poon,
Biophys. J. 101, 525 (2011).

[13] P. Galajda, J. Keymer, P. Chaikin, and R. Austin, J. Bact. 189,
8704 (2007).

[14] H. Wioland, F. G. Woodhouse, J. Dunkel, and R. E. Goldstein,
Nat. Phys. 12, 341 (2016).

[15] I. Buttinoni, G. Volpe, F. Kümmel, G. Volpe, and C. Bechinger,
J. Phys.: Condens. Matter 24, 284129 (2012).

[16] I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, and
T. Speck, Phys. Rev. Lett. 110, 238301 (2013).

[17] S. Roy, S. Dietrich, and F. Höfling, J. Chem. Phys. 145, 134505
(2016).

[18] J. Schwarz-Linek, J. Arlt, A. Jepson, A. Dawson, T. Vissers,
D. Miroli, T. Pilizota, V. A. Martinez, and W. C. K. Poon,
Colloids Surf. B 137, 2 (2016).

[19] K. Hamano, T. Sato, T. Koyama, and N. Kuwahara, Phys. Rev.
Lett. 55, 1472 (1985).

[20] K. Hamano, K. Fukuhara, N. Kuwahara, E. Ducros, M.
Benseddik, J. Rouch, and P. Tartaglia, Phys. Rev. E 52, 746
(1995).

[21] C. Sinn and D. Woermann, Ber. Bunsenges. phys. Chem. 96, 913
(1992).

[22] L. Emmerling, Jackson Pollock, 1912-1956: At the Limit of
Painting (Taschen, Los Angeles, 2009).

[23] A. Furukawa, A. Gambassi, S. Dietrich, and H. Tanaka,
Phys. Rev. Lett. 111, 055701 (2013).

[24] V. Démery and D. S. Dean, Phys. Rev. Lett. 104, 080601 (2010).
[25] I. A. Martinez, C. Devailly, A. Petrosyan, and S. Ciliberto,

Entropy 19, 77 (2017).
[26] F. Giavazzi, A. Fornasieri, A. Vailati, and R. Cerbino, Eur. Phys.

J. E 39, 103 (Oct 2016).
[27] M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in

Statistical Physics (Oxford University Press, New York, 1999).
[28] K. Kawasaki, Phys. Rev. 145, 224 (1966).
[29] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.97.062604 for movies of swimming cells.
[30] B.-H. Chen, C. A. Miller, J. M. Walsh, P. B. Warren, J. N.

Ruddock, P. R. Garrett, F. Argoul, and C. Leger, Langmuir 16,
5276 (2000).

[31] C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, and C.
Bechinger, Nature (London) 451, 172 (2008).

[32] A. Gambassi, A. Maciołek, C. Hertlein, U. Nellen, L. Helden,
C. Bechinger, and S. Dietrich, Phys. Rev. E 80, 061143 (2009).

062604-6

https://doi.org/10.1146/annurev-conmatphys-070909-104101
https://doi.org/10.1146/annurev-conmatphys-070909-104101
https://doi.org/10.1146/annurev-conmatphys-070909-104101
https://doi.org/10.1146/annurev-conmatphys-070909-104101
https://doi.org/10.1088/0034-4885/75/4/042601
https://doi.org/10.1088/0034-4885/75/4/042601
https://doi.org/10.1088/0034-4885/75/4/042601
https://doi.org/10.1088/0034-4885/75/4/042601
https://doi.org/10.1126/sciadv.1501850
https://doi.org/10.1126/sciadv.1501850
https://doi.org/10.1126/sciadv.1501850
https://doi.org/10.1126/sciadv.1501850
https://doi.org/10.1038/s41467-018-03161-8
https://doi.org/10.1038/s41467-018-03161-8
https://doi.org/10.1038/s41467-018-03161-8
https://doi.org/10.1038/s41467-018-03161-8
https://doi.org/10.1073/pnas.1415460111
https://doi.org/10.1073/pnas.1415460111
https://doi.org/10.1073/pnas.1415460111
https://doi.org/10.1073/pnas.1415460111
https://doi.org/10.1039/C5SM01831E
https://doi.org/10.1039/C5SM01831E
https://doi.org/10.1039/C5SM01831E
https://doi.org/10.1039/C5SM01831E
https://doi.org/10.1103/PhysRevLett.113.268101
https://doi.org/10.1103/PhysRevLett.113.268101
https://doi.org/10.1103/PhysRevLett.113.268101
https://doi.org/10.1103/PhysRevLett.113.268101
https://doi.org/10.1073/pnas.1405698111
https://doi.org/10.1073/pnas.1405698111
https://doi.org/10.1073/pnas.1405698111
https://doi.org/10.1073/pnas.1405698111
https://doi.org/10.1073/pnas.1321926111
https://doi.org/10.1073/pnas.1321926111
https://doi.org/10.1073/pnas.1321926111
https://doi.org/10.1073/pnas.1321926111
https://doi.org/10.1039/C3SM52423J
https://doi.org/10.1039/C3SM52423J
https://doi.org/10.1039/C3SM52423J
https://doi.org/10.1039/C3SM52423J
https://doi.org/10.1016/j.bpj.2011.06.023
https://doi.org/10.1016/j.bpj.2011.06.023
https://doi.org/10.1016/j.bpj.2011.06.023
https://doi.org/10.1016/j.bpj.2011.06.023
https://doi.org/10.1128/JB.01033-07
https://doi.org/10.1128/JB.01033-07
https://doi.org/10.1128/JB.01033-07
https://doi.org/10.1128/JB.01033-07
https://doi.org/10.1038/nphys3607
https://doi.org/10.1038/nphys3607
https://doi.org/10.1038/nphys3607
https://doi.org/10.1038/nphys3607
https://doi.org/10.1088/0953-8984/24/28/284129
https://doi.org/10.1088/0953-8984/24/28/284129
https://doi.org/10.1088/0953-8984/24/28/284129
https://doi.org/10.1088/0953-8984/24/28/284129
https://doi.org/10.1103/PhysRevLett.110.238301
https://doi.org/10.1103/PhysRevLett.110.238301
https://doi.org/10.1103/PhysRevLett.110.238301
https://doi.org/10.1103/PhysRevLett.110.238301
https://doi.org/10.1063/1.4963771
https://doi.org/10.1063/1.4963771
https://doi.org/10.1063/1.4963771
https://doi.org/10.1063/1.4963771
https://doi.org/10.1016/j.colsurfb.2015.07.048
https://doi.org/10.1016/j.colsurfb.2015.07.048
https://doi.org/10.1016/j.colsurfb.2015.07.048
https://doi.org/10.1016/j.colsurfb.2015.07.048
https://doi.org/10.1103/PhysRevLett.55.1472
https://doi.org/10.1103/PhysRevLett.55.1472
https://doi.org/10.1103/PhysRevLett.55.1472
https://doi.org/10.1103/PhysRevLett.55.1472
https://doi.org/10.1103/PhysRevE.52.746
https://doi.org/10.1103/PhysRevE.52.746
https://doi.org/10.1103/PhysRevE.52.746
https://doi.org/10.1103/PhysRevE.52.746
https://doi.org/10.1002/bbpc.19920960711
https://doi.org/10.1002/bbpc.19920960711
https://doi.org/10.1002/bbpc.19920960711
https://doi.org/10.1002/bbpc.19920960711
https://doi.org/10.1103/PhysRevLett.111.055701
https://doi.org/10.1103/PhysRevLett.111.055701
https://doi.org/10.1103/PhysRevLett.111.055701
https://doi.org/10.1103/PhysRevLett.111.055701
https://doi.org/10.1103/PhysRevLett.104.080601
https://doi.org/10.1103/PhysRevLett.104.080601
https://doi.org/10.1103/PhysRevLett.104.080601
https://doi.org/10.1103/PhysRevLett.104.080601
https://doi.org/10.3390/e19020077
https://doi.org/10.3390/e19020077
https://doi.org/10.3390/e19020077
https://doi.org/10.3390/e19020077
https://doi.org/10.1140/epje/i2016-16103-9
https://doi.org/10.1140/epje/i2016-16103-9
https://doi.org/10.1140/epje/i2016-16103-9
https://doi.org/10.1140/epje/i2016-16103-9
https://doi.org/10.1103/PhysRev.145.224
https://doi.org/10.1103/PhysRev.145.224
https://doi.org/10.1103/PhysRev.145.224
https://doi.org/10.1103/PhysRev.145.224
http://link.aps.org/supplemental/10.1103/PhysRevE.97.062604
https://doi.org/10.1021/la9913497
https://doi.org/10.1021/la9913497
https://doi.org/10.1021/la9913497
https://doi.org/10.1021/la9913497
https://doi.org/10.1038/nature06443
https://doi.org/10.1038/nature06443
https://doi.org/10.1038/nature06443
https://doi.org/10.1038/nature06443
https://doi.org/10.1103/PhysRevE.80.061143
https://doi.org/10.1103/PhysRevE.80.061143
https://doi.org/10.1103/PhysRevE.80.061143
https://doi.org/10.1103/PhysRevE.80.061143


MOTILE BACTERIA IN A CRITICAL FLUID MIXTURE PHYSICAL REVIEW E 97, 062604 (2018)

[33] U. Nellen, L. Helden, and C. Bechinger, Europhys. Lett. 88,
26001 (2009).

[34] O. A. Vasilyev, Phys. Rev. E 90, 012138 (2014).
[35] A. Okubo and S. A. Levin, Diffusion and Ecological Problems:

Modern Perspectives (Springer, New York, 2001).
[36] K. Drescher, R. E. Goldstein, N. Michel, M. Polin, and I. Tuval,

Phys. Rev. Lett. 105, 168101 (2010).

[37] M. S. Elliot and W. C. Poon, Adv. Colloid Interface Sci. 92, 133
(2001).

[38] A. Onuki, J. Phys.: Condens. Matter 9, 6119 (1997).
[39] P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435

(1977).
[40] R. Folk and G. Moser, J. Phys. A: Math. Gen. 39, R207

(2006).

062604-7

https://doi.org/10.1209/0295-5075/88/26001
https://doi.org/10.1209/0295-5075/88/26001
https://doi.org/10.1209/0295-5075/88/26001
https://doi.org/10.1209/0295-5075/88/26001
https://doi.org/10.1103/PhysRevE.90.012138
https://doi.org/10.1103/PhysRevE.90.012138
https://doi.org/10.1103/PhysRevE.90.012138
https://doi.org/10.1103/PhysRevE.90.012138
https://doi.org/10.1103/PhysRevLett.105.168101
https://doi.org/10.1103/PhysRevLett.105.168101
https://doi.org/10.1103/PhysRevLett.105.168101
https://doi.org/10.1103/PhysRevLett.105.168101
https://doi.org/10.1016/S0001-8686(00)00070-1
https://doi.org/10.1016/S0001-8686(00)00070-1
https://doi.org/10.1016/S0001-8686(00)00070-1
https://doi.org/10.1016/S0001-8686(00)00070-1
https://doi.org/10.1088/0953-8984/9/29/001
https://doi.org/10.1088/0953-8984/9/29/001
https://doi.org/10.1088/0953-8984/9/29/001
https://doi.org/10.1088/0953-8984/9/29/001
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1088/0305-4470/39/24/R01
https://doi.org/10.1088/0305-4470/39/24/R01
https://doi.org/10.1088/0305-4470/39/24/R01
https://doi.org/10.1088/0305-4470/39/24/R01



