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Strong disorder leads to scale invariance in complex biological systems
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Despite the innate complexity of the cell, emergent scale-invariant behavior is observed in many biological
systems. We investigate one example of this phenomenon: the dynamics of large complexes in the bacterial
cytoplasm. The observed dynamics of these complexes is scale invariant in three measures of dynamics: mean-
squared displacement (MSD), velocity autocorrelation function, and the step-size distribution. To investigate
the physical mechanism for this emergent scale invariance, we explore minimal models in which mobility is
modeled as diffusion on a rough free-energy landscape in one dimension. We discover that all three scale-invariant
characteristics emerge generically in the strong disorder limit. (Strong disorder is defined by the divergence of the
ensemble-averaged hop time between lattice sites.) In particular, we demonstrate how the scale invariance of the
relative step-size distribution can be understood from the perspective of extreme-value theory in statistics (EVT).
We show that the Gumbel scale parameter is simply related to the MSD scaling parameter. The EVT mechanism
of scale invariance is expected to be generic to strongly disordered systems and therefore a powerful tool for the
analysis of other systems in biology and beyond.
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I. INTRODUCTION

Although most biological phenomena have well-defined
and characteristic time and length scales, there are intriguing
examples of emergent scale-invariant behavior that are self-
similar over a wide range of scales [1–3]. In the context
of random motion, diffusion is the canonical scale-invariant
effective model, but our experimental observations argue for
the existence of other generic scale-invariant effective models
describing random motion [4]. In this paper, we propose a
natural mechanism for the emergence of nondiffusive but
scale-invariant behavior, which can be understood from the
perspective of the statistical properties of the extreme values
of random variables [5,6]. Extreme-value theory (EVT) has
already been used in many interesting contexts (see, e.g.,
Refs. [7–12]) and our results suggest that this approach may
be a powerful tool for understanding dynamics in the cell.

The movement of large complexes in the bacterial cyto-
plasm is an example of a biological system with emergent
scale invariance [4]. Our laboratory and others have previously
characterized the dynamics of large exogenous complexes
by tracking the motion of mRNA molecules bound by the
fluorescent fusion MS2-GFP which forms complexes com-
parable in size to the ribosome [4,13–18]. In the following
discussion we shall refer to these molecular complexes as
particles. To avoid the complications introduced by the tighter
confinement of the particle along the short axis of the rod-
shaped bacterium, we shall focus on the one-dimensional
motion of the particle along the long axis of the cell. As we
have previously discussed [4], the observed particle motion is
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scale invariant from the perspective of three distinct metrics:
(i) mean-squared-displacement analysis (MSD), (ii) the step-
size distribution, and (iii) the velocity autocorrelation function.

A. Existing models

Four mechanisms are commonly invoked to model subdif-
fusive phenomena: continuous time random walk (CTRW),
fractional Brownian motion (fBm), inhomogeneous media
(e.g., spatial dependence of the diffusion coefficient), and
scaled-Brownian motion (time-dependent diffusivity) [19,20].
In each of these models, there is a memory mechanism
that results in nondiffusive motion. In a CTRW, particles
execute stochastic hops after a randomly distributed wait time.
Power-law-distributed wait times lead to subdiffusive motion.
In the closely related inhomogeneous media model (patch
model), particles diffuse through quenched patches (i.e. static)
with patch-specific diffusion coefficients. For strong enough
disorder, these models result in subdiffusive motion [21,22].
(Both CTRW and inhomogeneous media are closely related to
the trap model that we will discuss shortly.) In scaled-Brownian
motion, the diffusion coefficient evolves in time [20]. Finally,
fractional Brownian motion (fBm) is a process closely related
to Brownian motion except that that the motion increments
(steps) are not independent but power-law correlated [19,20].

None of these mechanisms predict the observed phe-
nomenology without add mechanisms [4]. For instance, of
these models only fBm describes the observed anticorrelation
between successive steps in the motion [4]. But, the steps in an
fBm are Gaussian distributed, in contrast with the Laplace-
distributed steps of the observed dynamics. One practical
approach to constructing a model with all the desired properties
is to combine the fBm model with one of the mechanisms for
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generating a non-Gaussian steps-size distribution. For in-
stance, Granick and coworkers have proposed a model in
which the diffusion coefficient is exponentially distributed
and quenched (Exp-D) to generate Laplace-distributed steps
[23]. We have recently proposed combining the fBm and
Exp-D models (fBm-Exp-D) to describe the observed dynam-
ics [4]. Although this model can fit most of the observed
phenomenology [4], it is essentially an empirical model where
both the distribution of diffusion coefficients as well as the
fBm Hurst parameter are fit to the data, but the model gives no
insight into either the source of the distribution of diffusion
coefficients nor the mechanisms that give rise to fBm. A
more satisfactory model would demonstrate how these scale-
invariant characteristics are a generic emergent property of the
complex systems. In this paper, we will explore a family of
models where the observed phenomena arise generically in
the strong disorder limit.

The paper is organized as follows: In Sec. II, we briefly de-
scribe the experimental methods used to capture the trajectory
data. (We will present one new experimental result in the anal-
ysis in Sec. IV F.) In Sec. III, we define the models for particle
mobility. In Sec. IV, we characterize the models using numer-
ical simulations. We describe how strong disorder in a barrier
model appears to generically generate the observed scale-
independent motion we observe. In Sec. V, we describe an
analytic framework for understanding the strong disorder limit.

II. EXPERIMENTAL METHODS

We use the MS2-mRNA system as a probe for the dynamics
of large complexes in the cytoplasm. The system (from Gold-
ing) consists of the Escherichia coli strain DH5α-Z1 carrying
two plasmids, the first encoding the GFP-MS2 protein fusion
for labeling the mRNA and the second low copy plasmid carry
an inducible message with a 96-tandem repeat of MS2 binding
sequences [14].

A detailed experimental and imaging protocol is given in
Ref. [18]. In short, the cells were grown overnight in Luria
broth media (LB) with the appropriate antibiotics, diluted and
grown to approximately midlog phase. The cells were then
induced with IPTG (Isopropyl b-D-1-thiogalactopyranoside
1 μM) and aTc (anhydrotetracycline 10 ng/ml) for 15 min
at 30◦C. A 2 ml innoculum of cell culture was spotted
onto agarose-media pads (2% Invitrogen UltraPure LMP
Agarose Ref.: 16520-050) and sealed with VaLP (1:1:1 vase-
line:lanolin:paraffin). Time-lapse phase-contrast and wide-
field-fluorescence microscopy images were collected at 1 s and
1 min time intervals and trajectory data were analyzed using
the custom made MATLAB software (The MathWorks, Natick,
MA) SuperSegger [24]. For the 1-min-time-interval data, only
full-cell-cycle cells were used for the analysis.

III. MODEL

The bacterial cytoplasm is an extremely crowded and
nonequilibrium environment [25] and it has recently been
proposed that it behaves like a glass [26]. Due to the strong
crowding in the cell, it seems natural to investigate random
walks in a disordered free-energy landscape [19]. We model the
cytoplasm as a one-dimensional lattice. We represent integer
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FIG. 1. Panel (a): The dynamics is modeled as transitions between
adjacent occupancy states (integer sites) through transitions states
(half-integer sites). Panels (b) and (c): To understand the generic
model, we study two limiting cases: the trap and barrier models. In the
trap model, the occupancy states have free energies −βX where X is
distributed like a one-dimensional chi-squared random variable and β

is a parameter controlling the disorder strength. In the barrier model,
the transition states have free energies βX. Panel (d): A representative
trajectory from each model is shown. The trap and barrier models have
qualitatively different dynamics. The trap model shows persistent
pausing behavior in the motion corresponding to long-lived trapping
events. The barrier model shows a reflection behavior caused by large
energy barriers. (Simulation details are described in Appendix D 1.)

sites in the lattice as occupancy states and half-integer sites
as transition states [see Fig. 1(a)]. The free energy (in units
of kBT ) of each state is Gi . The hopping rate k and average
hopping time τ from site i to sites i ± 1 have the Arrhenius
dependence:

ki→i±1 = τ−1 = t−1
0 exp

(
Gi − Gi± 1

2

)
, (1)

where t0 represents a fundamental relaxation time in the system
and the free-energy difference in the exponent represents the
height of the free-energy barrier to transition through the
transition state. It is important to stress that the free energies
are effective quantities defined by the transition rates.

We will treat the free energies as quenched disorder: The
free energies are static in time for each lattice site. In reality,
the disorder is dynamic, but this approximation is motivated
by the assumption that there are barriers whose dynamics are
slower than the dynamics of interest. (In fact, this assumption
has significant experimental support. We have explicitly in-
vestigated the dynamics of nearly all nondiffuse proteins in E.
coli and shown that there is structural disorder that persists on
times scales comparable to the cell cycle [27].) In the most
general model, the free energies of both the occupancy and
transition states are represented as random variables [19]. But,
it is useful to consider two limiting cases: In the trap model,
the depth of the transition state is stochastic whereas the free
energies of all transition states are 0. In the barrier model, the
free energies of the barriers are stochastic, whereas the free
energies of the occupancy states are 0 [Fig. 1(c)]. These models
were originally studied in the context of electron transport in
the 1980s [19,28,29], and it is already well known that strong
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disorder, defined by the divergence of the disorder-averaged
hopping time,

〈τ 〉G → ∞, (2)

results in subdiffusion [19]. It is necessary to choose a semi-
infinite interval distribution for the free energy so that the traps
and barriers preserve their nature (Gi± 1

2
> Gi) and to achieve

the strong disorder limit. A canonical distribution with these
properties is the one-dimensional chi-squared distribution,
multiplied by a unitless disorder strength β. As we will show,
the explicit functional form of the free-energy distribution will
not be of central importance. It is straightforward to show
that in the chi-squared disorder model, β � 1

2 satisfies the
definition of strong disorder [Eq. (2)].

IV. SIMULATED RESULTS

We begin our investigation with a numerical experiment:
We simulate particle dynamics in the trap and barrier models.
(A detailed description of the simulations can be found in
Appendix B.) We compare the simulated characteristics of the
motion to the experimental characteristics we have previously
described in detail [4,18].

A. Disorder strength determines MSD scaling

A common metric for the analysis of particle trajectories is
the mean-squared displacement (MSD), which takes the form
of a power law for scale-invariant systems:

〈[�x2(t)]t=0〉G ≈ 2Dδtα, (3)

which we will call E-MSD for ensemble-averaged MSD where
the angle brackets represent an ensemble average, �x(t) ≡
x(t + δt) − x(t) is the displacement over lag time δt with
start time t , α is the scaling exponent, and D is a generalized
diffusion coefficient. The motion is characterized by the scaling
exponent α: If α = 1, the motion is diffusive and α < 1
corresponds to subdiffusive motion.

To understand the relation between disorder strength and
the dynamics, we compute the MSD for different disorder
strengths in both the barrier and trap models. (See Fig. 2 for
simulations of the barrier model. Simulations of trap model are
analogous but not shown.) As the roughness of the free-energy
landscape increases, we expect the motion to slow down and
result in a reduction in the MSD. This reduction could be
realized via two distinct changes in the MSD: A reduction in
the effective diffusion coefficient D or the scaling exponent
α. For weak disorder β < 1

2 , only the effective diffusion
coefficient D decreases with increasing disorder strength β

and the scaling exponent α = 1 is diffusive at long times
[30]. But, for strong disorder, β > 1

2 , the scaling exponent
α decreases with increasing β. Simulation suggests a simple
approximate relation between disorder strength and the scaling
exponent in the strong-disorder limit: α ≈ β−1. [See Fig. 2(b).]
In conclusion, both the trap and the barrier model can match
the observed subdiffusive MSD.

B. Ergodicity

Another key characteristic of subdiffusive motion is ergod-
icity: the equivalence of temporal and ensemble averaging.
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FIG. 2. Panel (a): Disorder strength controls mobility. Simulated
MSD curves for a range of disorder strength β as a function of
lag time δt . (Simulation details are described in Appendix D 2.)
Panel (b): MSD scaling coefficient α versus disorder strength β. The
dynamics in the barrier model were diffusive (α = 1) for β < 1

2 and
subdiffusive for β > 1

2 . The disorder strength is α ≈ β−1 in the strong
disorder limit. (Simulation details are described in Appendix D 3.)
Panel (c): Ergodicity. Simulations suggest that the barrier model is
ergodic: E-MSD and T-MSD are equal. The trap model is nonergodic:
There is a large mismatch between E-MSD and T-MSD due to aging
phenomena. (Simulation details are described in Appendix D 4.)

The failure of these two averages to be equivalent is typically
interpreted to reveal an aging phenomena [19]. To probe the
ergodicity we compare an ensemble-averaged MSD [Eq. (3)]
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to the time time-averaged MSD (T-MSD):

〈�x2(t)〉t,G, (4)

which are averaged over both the start time as well as ensem-
bles.

As we have previously discussed [4], the experimental data
reveals little ergodicity breaking on short timescales and some
on timescales comparable to the cell cycle which is consistent
with the large-scale cellular changes that occur on these
timescales [see the inset in Fig. 2(c)]. To test the trap and barrier
models, we computed both the ensemble and time-averaged
MSDs in the two models. Simulations reveal strong ergodicity
breaking in the trap model and no ergodicity breaking in the
barrier model [see Fig. 2(c)]. The mechanism of ergodicity
breaking (i.e., aging) in the trap model is already well known
in the context of the closely related CTRW [19]: Over time, the
number of trapped particles grows, leading to a reduction in the
average mobility. Although ergodicity breaking is observed in
experiment, it is not significant at short times, in contrast to the
predictions of the trap model. Therefore, the observed absence
of ergodicity breaking at short times is consistent with the
barrier model but not the trap model.

C. Anticorrelated motion

Although both trap and barrier models are subdiffusive, the
trajectories shown in Fig. 1(d) are clearly distinct at a qual-
itative level. The trap model shows characteristic long-lived
pausing events which were qualitatively absent in the observed
traces. (Experimental trajectories are shown in Ref. [18].) In
contrast, the presence of barriers has a much more subtle effect
on the motion. Barriers lead to the reflection of the particles
but stochastic changes in direction are present in canonical
Brownian motion, making the reflection phenomenon difficult
to distinguish from regular brownian motion by inspection. We
find that the reflection phenomenon does lead to a clear statis-
tical signature: negative velocity autocorrelation, as discussed
below.

A canonical method to characterize the memory is comput-
ing the correlation between steps using the velocity autocorre-
lation function (VAC—i.e., a displacement correlator):

Cv(�t ; δt) ≡ 〈�x(t) �x(t + �t)〉G/〈�x(t) 〉2
G, (5)

where �x is the displacement over lag time δt and the expec-
tation is over multiple ensembles of disorder (G). As we have
previously reported, the observed velocity-autocorrelation
function Cv(�t ; δt) is negative for �t > δt and roughly scale
invariant [4] (see Fig. 3).

To test the barrier and trap models, we simulated the VAC
in the two models. The predictions of the trap model do not
match experiment: The VAC is 0 for �t > δt . On the other
hand, the barrier model predictions are in excellent quantitative
agreement with experiment (see Fig. 3). The VAC is both
negative and scale invariant (depends only on �t/δt) and has
no additional fitting parameters since the disorder strength β

is determined from fitting the MSD. The simulations clearly
support the barrier and are inconsistent with the trap model.

The observation of a negative velocity-autocorrelation func-
tion is often interpreted to imply that the medium is viscoelas-
tic [16], but this is an emergent rather than a microscopic
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FIG. 3. Velocity autocorrelation function (VAC) for trap and
barrier model. The velocity autocorrelation function Cv(�t ; δt) is
shown for the trap and barrier model for strong disorder, where �t is
the delay time and δt is the lag time over which the displacements are
calculated. The barrier model shows excellent qualitative and quan-
titative agreement with experimental observations (δt = 10 s). The
trap has no anticorrelation between successive steps, and therefore is
inconsistent with observations. (Simulation details are described in
Appendix D 5.)

characteristic of the barrier model. The agreement between
the observed and predicted velocity autocorrelation process
is unremarkable from another perspective: For stationary
processes, the velocity autocorrelation function is half the
second derivative of the MSD. In the context of strong disorder,
the trap model is nonstationary and therefore their velocity
autocorrelation function and MSD are not equivalent. For this
reason, it is essential to measure and analyze both the MSD
and the VAC independently [4,16].

D. Step sizes are Laplace distributed for strong disorder

The last striking scale-invariant feature of the motion is the
relative step-size distribution [4]:

p(�x/σ ; δt) ≡ 〈p(�x/σ ; δt)〉G, (6)

measured by histogramming step sizes from multiple tra-
jectories and computed by averaging over the ensemble. To
test the barrier model, simulated the disorder-averaged step-
size distribution. In the strong disorder limit (β > 1

2 ), we
discovered that the step-size distribution is Laplace-like and
scale invariant [Figs. 4(a) and 4(b)], qualitatively matching
the observed distribution. Since the choice of the chi-squared
distribution was motivated by convenience not physics, the
agreement between the model and observations suggest that
the Laplace-like step-size distribution must be universal. To
investigate this hypothesis, we simulated a number of other
distributions: exponential, normal, and Gumbel. In all cases,
strong disorder resulted in step-size distributions which are
Laplace-like, whereas weak disorder results in Gaussian-like
distributions in the long time limit [Fig. 4(c)]. These simula-
tions suggest a renormalization-group behavior: The functional
form of the macroscopic step-size distribution is insensitive
to the underlying microscopic distribution of the free-energy
barriers. In summary, the barrier model naturally reproduces
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2 ) results is Gaussian-like step-size distributions. (Sim-
ulation details are described in Appendix D 7.) Panel (c): In the strong
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distribution of the random free energies G, which is demonstrated by
the first three disorder models: Chi-squared, exponential, and Gumbel.
For weak disorder (Normal model), Laplace-like distributions can
still be observed at short lag times (red dots) but at long times, the
distribution approaches Gaussian (red dashed). (Simulation details
are described in Appendix D 8.)

the step-size distribution in the strong disorder limit without
the need to tune the distribution of barrier free energies.

E. Testing the quenched diffusion constant model

We have previously proposed that the mechanism that gives
rise to the observed Laplace distribution is an exponential
distribution of quenched diffusion coefficients. This model
predicts that the distribution of step sizes within a single
trajectory is Gaussian. The Laplace distribution arises from
pooling the data from multiple trajectory with exponentially
distributed quenched diffusion coefficients. Unfortunately, the
step-size histograms for individual trajectories are not well
sampled, but it is straightforward to analyze this question
statistically. Consider two competing models for the stepping
process: (i) Steps are Gaussian distributed around 0 with a
trajectory-specific variance σ 2

I versus (ii) steps are Laplace
distributed with an trajectory-specific decay rate λI . To mea-
sure the relative statistical support for the two models we use
information-based inference [31,32]: We compute the Akaike
information criterion (AIC) for the two models. The model
with the smallest AIC value is selected. (The expression for
AIC in the respective models has a simple analytic form
that can be written in terms of empirical expectations over
moments of the observed steps, as shown in Appendix A 1.)
The difference in the information criteria is

AIC(i) − AIC(ii) = 1.8 × 103 nats, (7)

strongly favoring the Laplace over the Gaussian distributed
model. (The relative statistical weight, the Akaike weight, is
the exponential of �AIC [31,32].)

Since a trajectory-specific diffusion coefficient is not re-
quired to generate Laplace-distributed steps in the barrier
model, it is therefore informative to test whether the data sup-
ports trajectory-specific models or a single model describing all
steps. Again, we can compute the difference in AIC for a (iii)
single decay constant model versus (ii) a trajectory-specific
decay constant model:

AIC(iii) − AIC(ii) = 3.4 × 104 nats, (8)

strongly favoring the trajectory specific-decay-constant model.
This evidence suggests that there is potentially particle-to-
particle or cell-to-cell variation, a conclusion that is not
surprising in a biological context.

F. Conditional probability and memory

The form of the MSD, VAC, and step-size distribution
were all known prior to our proposing the barrier model to
describe the mobility. We wished to predict the dependence of
an uncharacterized metric of motion to test the barrier model.
The velocity-autocorrelation function can be understood as a
moment of the conditional probability distribution for step size,
p[�x(t + δt)|�x(t)], which provides a more informative test
than the velocity autocorrelation function alone. Furthermore,
the models make qualitatively different predictions for the
distribution, as is shown in Fig. 5(a). Since competing models
make qualitatively different predictions for the structure of
the conditional probability, we believe this distribution is
a powerful tool for distinguishing between models of the
dynamics.

To test our model, we computed the kernel-density-estimate
(KDE) of the conditional probability distribution for step size
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and compared it to the models. Both the barrier and fBM-
Exp-D model [4] provides excellent qualitative agreement with
the observed distribution [Fig. 5(b)]. In both the observed
data and the model, there is a strong diagonal band that rep-
resents the characteristic anticorrelation between subsequent
steps.
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β = 5 for lag times spanning four orders of magnitude. To illustrate
the stochastic self-similarity, the position x is rescaled (zoomed-
out) with increasing lag time to keep the MSD fixed. (The length
of the white scale bar is fixed in unscaled units.) The stochastic
block-diagonal structure of the Green’s function is scale-free. The
block-diagonal form implies the motion is limited by the slowest step
on all scales. (Simulation details are described in Appendix D 11.)

G. Mechanism for subdiffusion

To understand the mechanism for subdiffusion, it is in-
formative to compute the Green’s function p[x(t + δt)|x(t)]
without averaging over disorder (see Fig. 6). The characteristic
feature of the Green’s function is the block-diagonal structure,
which is the consequence of the largest stochastic barriers.
The physical mechanism for this structure can be understood
intuitively: In the strong disorder limit, particles rapidly jump
over barriers with hop times τ less than the lag time δt ,
but the particle motion is limited by the presence of barriers
where the hop time is much longer than the lag time (τ 	
δt). The uniformity of the probability density in the blocks
demonstrates that the motion is limited by these large barriers
for strong disorder (β 	 1

2 ).
Qualitatively, the motion can be understood as follows: As

the timescale increases, the free energy of the largest barrier
that can be jump increases logarithmically. Displacement and
free energy have an analogous relation: The largest free energy
encountered grows logarithmically with displacement.

H. Mobility in Dim > 1

So far, we have worked in one spatial dimension, along the
long axis of the cell, to avoid consideration of the confinement
along the short axis. An important consideration is to consider
how our results generalize to three dimensions. The dynamics
of random uncorrelated barrier models changes fundamentally
in the long-lag-time limit in larger dimension: No matter how
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FIG. 7. Barrier models in higher dimension. Even though motion
is diffusive at sufficiently long lag times, the crossover time between
subdiffusion and regular diffusion may be extremely long for strong
disorder. The step-size distribution for very strong chi-squared disor-
der is shown above. The EVT shape is preserved even in the longest
lag times shown. (Simulations details in Appendix D 12.)

strong the disorder, large barriers can be avoided by traveling a
circuitous path. Barrier models are therefore always diffusive
at sufficiently long times in dimensions greater than one [33].
These models are qualitatively similar to obstructed diffusion
(obstacles, Lorentz-like, and fence models [34]). However, we
hypothesized that dynamics observed in one dimension might
still be applicable for finite lag times, which is supported by
simulation (see Fig. 7). In practice, the crossover between
subdiffusive dynamics and diffusion may be extremely long.
On shorter times, the qualitative effect of the added dimensions
is to renormalize (i.e., reduce) the effective one-dimensional
barrier strength.

V. ANALYTIC RESULTS

The scale-invariant and generic properties of the motion
observed in simulation suggest that a simple analytic frame-
work may describe many characteristics of the motion. In this
section, we will describe just such an approach that leverages
results from extreme value theory.

A. Slowest-step model

The observation from simulation that the dynamics are
limited by the slowest step motivates a simple model for the
step-size distribution roughly analogous to the Beer-Lambert
law (see, e.g., Ref. [35]). Consider the probability of the
particle escaping over n barriers with lattice spacing x0: If the
motion is limited by the largest barrier, we can approximate
this probability as the probability that all n barriers are smaller
than the largest barrier g that can be jumped in lag time δt :

Pr{�x > nx0} ≈ Pr{G1...n < g} = [FG(g)]n, (9)

where the FG is the CDF for barrier height G. If we substitute
the relative displacement |�x| = n x0 for the barrier number
n, the pdf for for displacement is a Laplace-like distribution:

〈p(�x)〉G ≈ 1
2λ e−λ|�x|, (10)
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FIG. 8. Limiting barrier height grows with displacement. The
barrier free energies for two realizations of G (β = 1) are plotted
versus position on a linear-log plot. The EVT curve represents the
extreme value prediction for the height of the maximum barrier as a
function of displacement (�x/x0).

as observed, where the decay constant is specified by the CDF:

λ ≡ −x−1
0 log FG(g), (11)

where x0 is the lattice-size and step-size variance:

〈�x2〉G = λ−2 = [x0/ log FG(g)]2. (12)

A more rigorous derivation and an exact expression for Eq. (10)
are given in the Appendix [see Eq. (A19)]. The slowest-step
model can therefore be understood to imply the universal
Laplace-like shape of the step-size distribution function (see
Fig. 8). The Laplace-like step-size distribution had previously
been proposed in the barrier model but on a purely numerical
basis [36].

The slowest-step model also explains strong-disorded-like
behavior of normally distributed barriers (weak disorder) at
short lag times. In this case, the disorder does not satisfy
the strong disorder condition and therefore the step-size dis-
tribution is Gaussian and MSD is diffusive in the long time
limit. However, for large variance, the step-size distribution is
Laplace distributed and the MSD is subdiffusive for interme-
diate times, as was previously reported [37] [see Fig. 4(c)].
This phenomenology arises since the motion is limited by the
slowest step on short times but not long times.

B. Extreme value theory

Does the slowest-step model also give rise to a scale-
independent MSD? The fact that the behavior is dominated
by the largest barrier suggests the use of extreme-value theory
[5,6]. In loose analogy to the central limit theorem, the
Fisher-Tippett-Gnedenko theorem states that the CDF for the
maximum G(n) of n independent and identically distributed
random variables G in the large n limits takes the form of the
generalized-extreme-value distribution:

F (g; ξ,σ,μ) =
{

exp[−(1 + ξs)−1/ξ ] ξ 
= 0

exp[− exp(−s)] ξ = 0
, (13)
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if the limit exists, where s ≡ (g − μ)/σ , which depends only
on three parameters: a location μ, scale σ and shape ξ [5,6].
To exploit the EVT result, we coarse grain the system. We
group adjacent lattice sites to generate a coarse-grained lattice:
x0 → x ′

0 = 
 x0. We will assume that in the coarse-grained
system: (i) the motion is still limited by largest barrier and
(ii) the dilation 
 is large enough such that the Generalized-
extreme-value distribution [Eq. (13)] can be substituted for FG′

in Eq. (12). Finally, the limiting barrier height g scales with
lag time δt :

g ≈ log δt/t ′0 + μ, (14)

where t ′0 is a constant time scale that absorbs the location
parameter μ and fundamental relaxation time t0. Combing this
with Eqs. (13) and (12) gives an expression for the E-MSD:

〈�x2〉G ≈ 2 x ′2
0

{
[1 + (ξ/σ ) log δt/t ′0]2/ξ ξ 
= 0

(δt/t ′0)2/σ ξ = 0
, (15)

where ξ is the shape parameter and σ is the scale parameter of
the generalized extreme value distribution.

We now consider three conditions on the shape parameter:
ξ > 0, ξ < 0, and ξ ≈ 0. (i) If ξ < 0, the distribution of G

falls into the basin of attraction of the (reversed) Weibull
distribution. In this case G is bounded from above and therefore
the strong disorder assumption [Eq. (2)] is violated and the
motion becomes diffusive in the long lag time limit. (ii) If
ξ > 0, the limiting distribution is Fréchet (e.g., the distribution
of G has power-law tails) and the MSD grows more slowly
than a power-law. In this case, the effective MSD scaling
exponent decreases with time. (iii) Finally, for disorder where
the limiting distribution is Gumbel-like (ξ ≈ 0), the MSD is
scale invariant with an MSD scaling parameter:

α = 2/σ, (16)

related to the EVT scale parameter σ . In this case, the E-MSD
is scale invariant:

〈�x2〉G ≈ 2D δt2/σ , (17)

and the lattice spacing x ′
0 and timescale t ′0 are absorbed into

the generalized diffusion coefficient D in the MSD formula.
In the special case that the disorder is modeled by a scaled chi-
squared, α = β−1 as was observed empirically in simulation.
(See Appendix A 3. An analogous limiting expression can be
derived for the MSD using other methods [28].)

In summary, a quenched barrier model does generically
result in a scale-invariant MSD, provided that the distribution
of barrier free energies is strongly disordered (but without
power-law tails). This analysis reveals that the EVT scale pa-
rameter for the distribution of barrier free energies determines
the MSD scaling exponent [Eq. (16)].

VI. DISCUSSION

The observed particle motion is scale invariant from the
perspective of three metrics of the dynamics: (i) mean-squared-
displacement analysis (MSD), (ii) the step-size distribution,
and (iii) the velocity autocorrelation function [18]. We have
demonstrated that all three of these properties arise generically
in the context of the quenched barrier model in the strong
disorder limit. In particular, the anticorrelation of successive

steps is a key signature of both the barrier model as well as
the observed data. For instance, the competing trap model is
both subdiffusive and has a Laplace-like step-size distribution
(in the strong-disorder limit), but shows no anticorrelation in
successive steps (Fig. 3). Although we previously modeled
this anticorrelation empirically using a fBm mechanism [4],
this phenomenology is an emergent feature of barrier models.
In summary, although our previous work demonstrated that
most of the observed phenomenology could be fit to a complex
chimera of the fBm and Exp-D models, this observed phe-
nomenology arises generically in the context of barrier models.
Furthermore, we tested whether the motion was consistent
with a quenched diffusion coefficient combined with Gaussian
distributed steps, as predicted by the fBm-Exp-D model. Even
at the single trajectory level, the step-size distribution was
better modeled by a Laplace distribution, as predicted by the
barrier model (Sec. IV E).

We have made a number of formal assumptions in our
model: (i) We first assumed that the free-energy landscape is
quenched or static in time. From a practical perspective, it is
necessary only that the dynamics of the quenched disorder
is slow compared to the observed dynamics. If the barriers
transition from quenched (static) to annealed (dynamic) on a
short timescale, the particle motion transitions back to diffusive
on longer timescales (see, e.g., Ref. [23]) and the velocity
autocorrelation function would be zero. (ii) We also assume a
strong-disorder limit in which the quenched-disorder-averaged
hop time diverges. This is a convenient formal statistical
assumption that can be violated without significant changes in
the predictions of the model. The relevant physical assumption
is that dynamics is limited by the slowest step, as is the case for
normally distributed barriers with a short lag time [Fig. 4(c)].
(iii) The most consequential assumption is the effective one-
dimensional motion. One-dimensional barriers are interpreted
as effective barrier heights between positions along the long
axis of the cell. The ability of the particles to take circuitous
routes in higher dimension will always result in diffusive
motion in the asymptotic large-time limit [19]. This crossover
is observed in glasses (dim > 1) [38] as well as simulations
of the barrier model, where the long-time-limit dynamics
transitions between subdiffusive and diffusive (not shown).
Likewise, the step-size distribution can be initially described by
a Laplace-like distribution at short times before transitioning to
a Gaussian distribution at very long times (see Fig. 7). But these
properties do not compromise the applicability of the barrier
model in the context of our experiments. The finite length of
the cell and cell cycle prevents an analogous long-time limit
from being characterized experimentally. Furthermore, in the
bacterial system, the confinement due to the cell membrane and
nucleoid exclusion may act to make the dynamics effectively
one-dimensional in the long-time limit [18].

A number of different physical mechanisms could generate
the hypothesized rough free-energy landscape. A traplike
landscape is a natural model for particles that can bind with a
distribution of binding free energies (e.g., transcription factors
binding the chromosome). The trap model applies because the
forward and backward jump rates are expected to be equal since
hopping is limited by unbinding. On-the-other-hand, a barrier
model would be a natural model for crowding and exclusion
phenomena where entropic barriers frustrate the transition
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between open sites on the lattice (see, e.g., Ref. [35]). The
forward and backward hop rates are expected to be distinct
since these transitions hop over different configurations of
crowders (see Fig. 1).

A. More realistic models

The proposed model is not intended to capture every aspect
of the dynamics, but should be understood as an attempt to
study a minimal model with the characteristics of the observed
dynamics. For instance, the exclusion of particles from the
nucleoid results in biases in the motion on long timescales,
which we have already characterized in some detail [18].
Furthermore, in many analogous tracking experiments, there
does appear to be some ergodicity breaking [39,40]. This
phenomenology is naturally present in the models we have
discussed by introducing traps and barriers. In many systems
there may also be a significant degree of quenched disorder
in the diffusion coefficient itself, consistent with our statistical
analysis in Sec. IV E.

B. Barrier versus fBm models

The barrier model shares many phenomenological features
with fBm and therefore it is natural to ask whether the barrier
model is one specific realization of a more general fBm class of
models. Barrier and fBm models are distinct (e.g., fBm have
Gaussian step-size distributions). Another key distinction is
their motivation. Barrier models are easily motivated by the
underlying physics and there are no hidden states or variables
since the memory of the system is encoded in the particle posi-
tion. In contrast, fBm models are essentially phenomenological
in nature [20,41], although they can be justified in some cases
(see, e.g., Ref. [42]). Therefore, the barrier model provides a
simple, but yet noncanonical, mechanism for the emergence of
the macroscopic phenomenon of velocity anticorrelation.

C. Strong disorder is generic in biology

The EVT mechanism may predict emergent scale-invariant
behavior in other systems since strong disorder appears to be
ubiquitous in biology. For instance, the motion of lipids and
proteins in the membrane appear to show a barrier-hopping
like phenomenology in some contexts. Lipids and membrane
proteins appear to undergo relatively rapid motion in small
confined membrane domains, then exhibit a slower hopping
behavior between neighboring domains [43–45], which have
been described by fence models [34]. If the interdomain
hopping rate is strongly disordered, we would expect to see
scale-invariant behavior due to an EVT mechanism. (Strong
quenched disorder in the hopping rates is the essential as-
sumption here since, in some simple simulated lipid systems,
the dynamics appears to show relatively small deviations from
diffusion [46,47].) Another interesting potential application is
chemical kinetics. In metabolism, reactions are often limited
by the slowest step. If we treat these effective reaction rates as
random variables, EVT might be used to predict the scaling of
average reaction rate with reactant number. In the context of
evolution, EVT has already been applied to describe fitness
and beneficial mutations [9–11]. The framework may also
have interesting applications beyond dynamics as well. For

instance, high-resolution characterizations of DNA flexibility
have previously reported bending probabilities with Laplace-
like distributions suggesting that similar arguments may apply
in mechanical contexts as well when studying the flexibility of
DNA molecules with sequence dependent flexibility [48].

D. Conclusion

We have demonstrated that diffusion on a quenched rough
free-energy landscape with strongly disordered barriers natu-
rally gives rise to motion with the same scale-invariant dynam-
ics observed for large complexes in the bacterial cytoplasm. In
the strong disorder limit, this barrier model generically pre-
dicts all three observed scale-invariant phenomena: (i) MSD,
(ii) relative step-size distribution, and (iii) the velocity autocor-
relation function as well as making other nontrivial predictions
about the dynamics. We explain the emergent scale-invariant
properties of model using an extreme value theory framework.
We expect this approach will be applicable to describing
dynamics in many other biological systems.
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APPENDIX A: ANALYSIS

1. Model selection by information-based inference

a. Information-based model selection

Let the candidate probability distribution function be
q(X|θ ), where X are the observations and θ ∈ � are the
parameters. (For simplicity, we will consider only models
where the steps are independent and identically distributed over
a trajectory.) The Shannon information is defined

h(X|θ ) ≡ − log q(X|θ ). (A1)

The maximum likelihood (minimum information) estimate for
the parameters are defined

θ̂X ≡ arg min
θ

h(X|θ ), (A2)

and the minimum information is h(X|θ̂X). The unbiased
estimator of the information for a second data set (of the
same sample size and structure as X), generated by the same
stochastic process and encoded by parameters θ̂X is the Akaike
information criterion (AIC) [31,32]:

AIC(X) = h(X|θ̂X) + K (nats), (A3)

where K is the complexity which is equal to the model dimen-
sion (K = dim �) for a regular statistical model in the large
sample size limit [31,32]. The model with the smallest AIC
value is selected. (See the statistical weight, defined below.)
The complexity corrects for the overfitting phenomenon and
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facilitates the direct comparison of models of different model
dimension. AIC was originally defined in information units
of demi-nats instead of nats (base-e). The historical definition
therefore contains an extra factor of two multiplying the right-
hand side of Eq. (A3) [31,32]. The Akaike weight (relative
statistical weight) for model i is

wi ∝ e−AICi . (A4)

The information-based approach is particularly powerful in
the context of selecting between multiple nonnested models
[31,32].

b. Empirical expectations

Let �xiI be the ith step in the I th trajectory, the number of
steps in the I th trajectory be nI , the number of trajectories be
N and the total number of steps in all trajectories be nT. We
define empirical expectation of function f over trajectory I

f (�xI ) ≡ n−1
I

ni∑
i=1

f (�xiI ), (A5)

and over all trajectories

f (�x) ≡ n−1
T

N∑
I=1

nIf (�xI ). (A6)

c. Gaussian distribution with trajectory-specific variance

For the Gaussian distribution with trajectory-specific vari-
ance σ 2

I , the total information for trajectory I is

h
(
�xI |σ 2

I

) = nI

2

[
log 2πσ 2

I + �x2
I

σ 2
I

]
. (A7)

It is straight forward to show that σ̂ 2
I ≡ �x2

I by minimizing h.
AIC for trajectory I is

AIC(�xI ) = nI

2

[
log 2π�x2

I + 1
] + 1, (A8)

where K = 1, since there is one unknown parameter (σ 2
I ).

AIC for all N trajectories is computed by summing over the
individual trajectories:

AIC(�x) =
N∑

I=1

nI

2

[
log 2π�x2

I + 1
] + N. (A9)

d. Laplace distribution with trajectory-specific decay constants

For the Laplace distribution with trajectory-specific decay
constant λI , the information for trajectory I is

h(�xI |λI ) = nI

[
log

2

λI

+ λ|�xI |
]
. (A10)

It is straightforward to show that λ̂I ≡ |�xI |−1
by minimizing

h. AIC for trajectory I is

AIC(�xI ) = nI [log 2|�xI | + 1] + 1, (A11)

where K = 1, since there is one unknown parameter (λI ).
AIC for all N trajectories is computed by summing over the

individual trajectories:

AIC(�x) =
N∑

I=1

nI [log 2|�xI | + 1] + N. (A12)

e. Laplace distribution with one decay constants

For the Laplace distribution with a single λ the computation
is analogous to that shown above,

AIC(�x) = nT[log 2|�x| + 1] + 1, (A13)

where K = 1 since there is one unknown parameter λ.

f. Comments

Note that since �x has units, AIC has a unit-dependent
offset that drops out when difference of AIC are computed. A
convenient check of the information-based statistical approach
is to compute �AIC for simulated Gaussian and Laplace
distributed data with the same structure as the observed
data. For Laplace distributed data, �AIC = 1.5 × 104 nats,
strongly favoring the Laplace-distributed model. For Gaussian
distributed data, �AIC = −1.3 × 104 nats, strongly favoring
the Gaussian-distributed model, as expected.

2. Exact treatment of slowest step model

We shall assume that the particle begins at lattice site i = 0
and that over lag time t the particle equilibrates over the lattice
sites between the trapping barriers at positions −J and K ,
respectively. Let ε be the probability that a given barrier is too
large to hop. The probability for the limiting barrier positions
are

pJ

(
j − 1

2

) = ε(1 − ε)j−1, (A14)

pK

(
k − 1

2

) = ε(1 − ε)k−1, (A15)

respectively, with �L(J,K) = J + K accessible lattice sites,
where j and k are natural numbers and the barriers are located
at half-integer positions. The equilibration assumption implies
that the probability of occupancy of a site between the limiting
barriers is

p(i| − J,K) = �L−1. (A16)

We then compute the marginal likelihood p(i) by marginaliz-
ing over J and K using probabilities in Eqs. (A14) and (A15):

p(i) =
∞∑

k=1,j=|i|+1

pJ

(
j − 1

2

)
pK

(
k − 1

2

)
�L

(
j − 1

2 ,k − 1
2

) , (A17)

=
∞∑

k=1,j=|i|+1

ε2(1 − ε)j+k−2

k + j − 1
, (A18)

= e−λ′ |i| ·
∞∑

k=1,j=1

ε2(1 − ε)j+k−2

|i| + k + j − 1
, (A19)

where λ′ ≡ − log(1 − ε). The dominant Laplace-like scaling
with lattice-site displacement i is clear from the first factor in
Eq. (A19). The second factor has a weaker dependence on i.
By Laplace-like distribution, we mean the the log probability
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has the following scaling in the lattice displacement i:

log p(i) = −λ′ |i| + O(log |i|), (A20)

where O denotes the order of scaling.

3. Gumbel parameters for chi-squared distribution

In this section, we compute the scale and location pa-
rameters for the chi-squared distribution. The cumulative
distribution for a chi-squared is

Prχ2
1
{X > x} = Fχ2

1
(x) = �−1

(
1
2

)
γ
(

1
2 , x

2

)
, (A21)

where � is the γ function and γ is the lower incomplete
gamma function γ (s,z). To find the Gumbel location and scale
parameters, we solve the following approximate equality for
large x and N :

exp
[−N exp

(− x−μ

σ

)] ≈ − log N + x
2 + log �(s)

− (s − 1) log log N + ... (A22)

Matching up terms on the right and left, we have

σN ≡ 2, (A23)

μN ≡ 2 log N − log log N − 2 log �
(

1
2

) + ... (A24)

We now convert to the free-energy random variable G ≡ βX,
which β is the variance. The reparameterization results in

δg ≡ 2β, (A25)

g0 ≡ 2β
[− 1

2 log log N − log �
(

1
2

)] + ..., (A26)

which leads to a simple result for the scaling exponent: α =
β−1, i.e., the inverse of the disorder strength for strong disorder.

APPENDIX B: SIMULATIONS

For all simulations, we begin with the initial condition that
all sites on the lattice have equal initial probability.

1. Master equation

The master equation describing the lattice hopping model
is

ṗi = ki−1/2pi−1 + ki+1/2pi+1 − (ki−1/2 + ki+1/2)pi, (B1)

where pi is the probability distribution of the particles at the
occupancy state i and ki+1/2 is the hopping rate through the
transition state i + 1/2. We use periodic boundary conditions
at the end points. To solve the master equation for individual
realizations of the quenched disorder, we use the built-in matrix
exponentiation in MATLAB (expm):

p(t ; {G}) = eK ({G})t p(0), (B2)

where K is the rate matrix given free energies G.

2. Gillespie simulation

For the simulations of the trajectories we use a stochastic
Gillespie simulation [49,50]. To obtain the next occupancy site
at regular time intervals, we use a modification of the Gillespie
simulation [51]. In short, for each time step �t ′ we define

the total hopping rate ktot, equal to the sum of the hopping
rates to every neighboring lattice site. The probability that the
particle has transitioned to a neighboring state during the time
step �t ′ is dictated by CDF P (�t ′) = 1 − exp(−ktot�t ′). The
transition occurs if a random number r1, uniformly distributed
between 0 to 1, is smaller than the CDF P (�t ′). If the transition
is to take place, the new occupancy state is found using a second
random number r2, evenly distributed from 0 to 1, and the
cumulative probability distribution of the adjacent hopping
rates. To allow for additional transitions between tnew and
tcurrent + �t ′ we repeat the same procedure with a shortened
time step:

δt ′ = tcurrent + �t ′ − tnew. (B3)

The process is repeated until no transition takes place.

APPENDIX C: FREE-ENERGY PROBABILITY
DISTRIBUTIONS

For convenience, we include explicit definition of the
probability distributions, which were used in the article for the
free-energy barriers. In each case, the disorder strength β of
the free energies was defined by multiply the random variable
X by the disorder strength:

G ≡ βX. (C1)

The chi-squared distribution is defined by the PDF:

p(x; k) = 1

2k/2�(k/2)
xk/2−1 e−x/2 , (C2)

for dimension k and x has support x ∈ [0,∞). In our simu-
lations, we used dimension k = 1. The normal distribution is
defined

p(x; μ,σ ) = 1√
2πσ 2

e−(x−μ)2/2σ 2
, (C3)

for mean μ and standard deviation σ and x has support x ∈
(∞,∞). In our simulations we used μ = 0 and σ = 1. The
exponential distribution is defined

p(x; k) = k e−kx, (C4)

where k is the rate and x has support x ∈ [0,∞). In our
simulations, we used rate k = 1. The Gumbel distribution is
defined by the CDF:

P (x; μ,σ ) = exp{− exp[−(x − μ)/σ ]}, (C5)

where μ is the position and σ is the scale parameter, respec-
tively, and x has support x ∈ (∞,∞). For our simulations, we
used μ = 0 and σ = 1.

In each case we use the CDF method for generating random
variables: We first generate uniformly distributed random
variable (Y ) with support on the interval Y ∈ [0,1] and then
use the inverse CDF to generate X:

Xi ≡ P −1(Yi). (C6)

APPENDIX D: PLOT SIMULATION DETAILS

1. Details for Fig. 1(d)

Trap model: Chi-squared distributed traps: Gi = −βX and
Gi+ 1

2
= 0 with β = 1.5 and t0 = 1 [Eq. (1)] to define the
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rates. Trajectories were generated using a Gillespie simulation
(Sec. B 2). The time interval shown was T = 1000 t0.

Barrier model: Chi-squared distributed barriers: Gi = 0 and
Gi+ 1

2
= βX with β = 1.5 and t0 = 1 [Eq. (1)] to define the

rates. Trajectories were generated using a Gillespie simulation
(Sec. B 2). The time interval shown was T = 1000 t0.

2. Details for Fig. 2(a)

All model curves: Barrier model with chi-squared dis-
tributed barriers: Gi = 0 and Gi+ 1

2
= βX and t0 = 1 [Eq. (1)]

to define the rates. MSDs were computed using the master
equation (Sec. B 1). Simulations were performed on a 105 site-
lattice with periodic boundary conditions. N = 50 realizations
were averaged.

3. Details for Fig. 2(b)

Same as above. Scaling exponent α was estimated by fitting
on the interval δt/t0 ∈ [106,108].

4. Details for Fig. 2(c)

Barrier model: Chi-squared distributed barriers: Gi = 0
and Gi+ 1

2
= βX, β = 1.5, and t0 = 1 [Eq. (1)] to define the

rates. Trap model: Chi-squared distributed barriers: Gi = 0
and Gi+ 1

2
= βX, β = 1.5, and t0 = 1 [Eq. (1)] to define the

rates. For the T-MSD: The total time interval averaged over
was T = 1010 t0. The initial conditions for both models was a
uniform distribution over all lattice points.

5. Details for Fig. 3

Trap model: Chi-squared distributed traps: Gi = −βX and
Gi+ 1

2
= 0 with β = 1.5 and t0 = 1 [Eq. (1)] to define the rates.

Barrier model: Chi-squared distributed barriers: Gi = 0 and
Gi+ 1

2
= βX with β = 1.5 and t0 = 1 [Eq. (1)] to define the

rates. VACs/DACs were computed using the master equation
(Sec. B 1). Simulations were performed on a 104 site-lattice
with periodic boundary conditions.

6. Details for Fig. 4(a)

Barrier model: Chi-squared distributed barriers: Gi = 0 and
Gi+ 1

2
= βX with β = 5 and t0 = 1 [Eq. (1)] to define the

rates. Relative step-size distributions were computed using the
master equation (Sec. B 1).N = 50 realizations were averaged.
Simulations were performed on a 104 site-lattice with periodic
boundary conditions.

7. Details for Fig. 4(b)

Barrier model: Chi-squared distributed barriers: Gi = 0 and
Gi+ 1

2
= βX and t0 = 1 [Eq. (1)] to define the rates. Rela-

tive step-size distributions were computed using the master
equation (Sec. B 1) for time interval δt = 100 t0. N = 50
realizations were averaged. Simulations were performed on
a 104 site-lattice with periodic boundary conditions.

8. Details for Fig. 4(c)

Barrier model: This disorder strengths and time interval
were: β = 5 and δt = 103 t0 for Chi-squared, exponential,
and Gumbel, β = 3.0 and t0 = 0.1 t0 for short normal and
β = 0.3 and t0 = 0.1 t0 for long normal. Relative step-size
distributions were computed using the master equation (Sec.
B 1) for time interval δt = 100 t0. N = 50 realizations were
averaged. Simulations were performed on a 104 site-lattice
with periodic boundary conditions.

9. Details for Fig. 5(a)

Barrier model: Chi-squared with disorder strengths and time
interval: β = 5 and δt = 103 t0. N = 50 realizations were av-
eraged. Simulations were performed on a 104 site-lattice with
periodic boundary conditions. Conditional step-size distribu-
tions were computed using the master equation (Sec. B 1) Trap
model: Chi-squared with disorder strengths and time interval:
β = 5 and δt = 103 t0. N = 50 realizations were averaged.
Simulations were performed on a 104 site-lattice with periodic
boundary conditions. Conditional step-size distributions were
computed using the master equation (Sec. B 1) fBm model:
The built-in MATLAB function wfbm was used to generate
fBM trajectories. To match the observed scaling exponent
(α ≈ 0.65), we used a Hurst parameter H = 0.32. fBm-Exp-D
model: Same as fBm, but the trajectories were scaled to gener-
ate an exponential distribution of diffusion coefficients on the
interval [0.005,5.2]. Exp-D model: Canonical diffusion with
quenched diffusion coefficient. The diffusion coefficient was
exponentially distributed on the interval [0.005,5.2]. The time
interval was δt = t0. Conditional step-size distributions were
computed analytically at fixed D then weighted numerically
over D. Diffusion model: Conditional step-size distributions
were computed analytically.

10. Details for Fig. 5(b)

Barrier model: Chi-squared with disorder strengths and
time interval: β = 5 and δt = 103 t0. N = 50 realizations were
averaged. Simulations were performed on a 104 site-lattice
with periodic boundary conditions. Conditional step-size dis-
tributions were computed using the master equation (Sec. B 1).
KDE: The kernel was normal with σ = 0.2.

11. Details for Fig. 6

Barrier model: Chi-squared with disorder strength β = 5.
Simulations were performed on a 104 site-lattice with periodic
boundary conditions. The Greens function was computed using
the master equation (Sec. B 1).

12. Details for Fig. 7

Barrier model: Chi-squared with disorder strength β = 18
and t0 = 1 in two dimensions. Simulations were performed
on a 103 × 103 site-lattice with periodic boundary conditions.
Trajectories were simulated using the Gillespie simulation
method (Sec. B 1). N = 100 realizations were averaged for
106 step trajectories.
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