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Models for randomly distributed nanoscopic domains on spherical vesicles
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The existence of lipid domains in the plasma membrane of biological systems has proven controversial, primar-
ily due to their nanoscopic size—a length scale difficult to interrogate with most commonly used experimental
techniques. Scattering techniques have recently proven capable of studying nanoscopic lipid domains populating
spherical vesicles. However, the development of analytical methods able of predicting and analyzing domain pair
correlations from such experiments has not kept pace. Here, we developed models for the random distribution
of monodisperse, circular nanoscopic domains averaged on the surface of a spherical vesicle. Specifically, the
models take into account (i) intradomain correlations corresponding to form factors and interdomain correlations
corresponding to pair distribution functions, and (ii) the analytical computation of interdomain correlations for
cases of two and three domains on a spherical vesicle. In the case of more than three domains, these correlations
are treated either by Monte Carlo simulations or by spherical analogs of the Ornstein-Zernike and Percus-Yevick
(PY) equations. Importantly, the spherical analog of the PY equation works best in the case of nanoscopic size
domains, a length scale that is mostly inaccessible by experimental approaches such as, for example, fluorescent
techniques and optical microscopies. The analytical form factors and structure factors of nanoscopic domains
populating a spherical vesicle provide a new and important framework for the quantitative analysis of experimental
data from commonly studied phase-separated vesicles used in a wide range of biophysical studies.

DOI: 10.1103/PhysRevE.97.062405

I. INTRODUCTION

Biological membranes are composed mainly of lipids and
proteins and are populated with substructures ranging in size
from microns to nanometers. For instance, lipid domains (also
known as lipid rafts when they contain proteins) exist as dis-
tinct, ordered regions in biological membranes [1–5]. Domains
play an important physiological role in membrane function
and have been implicated in protein and receptor trafficking,
neurotransmission regulation, and signal transduction [6–11].
However, because biological membranes are highly complex
assemblies, gaining physical insights into their nanoscopic
domain structures and cross correlations has proven difficult,
especially with regard to any analytical description [12–21].
Lipid domains and inclusions (e.g., proteins with circular
symmetry) are commonly observed in lipid model membrane
studies. Predicting the size and morphology of randomly
distributed nanoscopic domains currently represents a compu-
tational challenge. Specifically, from a computational point of
view, randomly distributed domains with circular symmetry
on a spherical vesicle surface possess two main structural
features to consider: (i) intradomain correlations, which in
terms of scattering theory give rise to a form factor, and
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(ii) interdomain correlations, which can be derived from pair
distribution functions (PDFs).

In this work, we present models describing the scattering
from spherical vesicles with circular domains through an
analytical approximation of their form factors and PDFs.
Specifically, we describe the case of (i) “variable thickness
spanning domains,” i.e., domains whose thickness varies up
to a maximum thickness corresponding to the thickness of
the lipid bilayer (herein termed “fully spanning domains”)
[Fig. 1(a)], and (ii) “protruding domains” that extend beyond
the bilayer. These domains can be either “half protruding”
[Fig. 1(b)] or “fully protruding” [Fig. 1(c)].

The exact analytical computation of interdomain correla-
tions for cases of two and three domains with circular sym-
metry on a spherical vesicle is analyzed in detail. The newly
developed models for the random distribution of monodisperse
nanoscopic domains averaged on the surface of a spherical
vesicle extend the results from a previous work [22]. The
Percus-Yevick (PY) equation in conjunction with the Ornstein-
Zernike (OZ) compressibility relation has proven a powerful
theoretical framework used in describing various complex
fluids. In the case where the number of domains is greater
than three, we developed an analytical approximation based on
spherical analogs of the OZ and PY equations – in addition to
a newly developed Monte Carlo (MC) algorithm. Importantly,
the spherical analog of the OZ and PY equations works best
for the description of nanoscopic domains, a length scale that
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FIG. 1. A cross section of a spherical vesicle populated with the
different domains and inclusions. The vesicle’s lipid bilayer (i.e.,
thickness) is made of two lipid leaflets or monolayers (inner and
outer). The lipid bilayer acts as a selective barrier and may also contain
inclusions such as proteins or cholesterol-rich domains.

is mostly inaccessible by most currently used experimental
techniques such as, for example, fluorescent techniques and
optical microscopies.

In summary, we present models describing the scatter-
ing from spherical vesicles with circular domains suitable
for analyzing neutron and x-ray scattering data. Analytical
and semianalytical models were derived for scattering from
monodisperse, circular domains on a vesicle. The analytical
solution involves an expansion of the macroscopic optical
potential in spherical harmonics, which results in a form factor
that is an infinite sum over spherical harmonic orders, and
which accounts for series truncation effects.

II. METHODS

Analysis of the structure and morphology of randomly
distributed nanoscopic domains on spherical vesicles will
enable experiments that will provide understanding at the
molecular level. Scattering techniques are now commonly used
to determine the structure of phase-separated membranes and
their inclusions. However, there are currently no analytical
models that can interpret the data from systems with more
than one domain on the surface of a spherical vesicle.

Here, we introduce mathematical expressions describing
the homogeneous and heterogeneous contributions to the
scattering intensity. The general form of the scattering intensity
can be written as

I (q) = 1

4π

∫
F (q)F (q)∗dq̂, (1)

where F (q) is the scattering amplitude in the Born approxi-
mation:

F (q) = −
∫

ρ(r)e−iq·rd3r, (2)

where r is a vector from the origin to a point within the
scattering object, q is a vector from the origin to the detector,
and ρ(r) is the coherent scattering length density (SLD).

A. Plane wave expansion and scattering length density

In this section we develop the notion of the SLD using the
plane wave expansion. Any plane wave can be expanded as
follows:

e−iq·r = 4π
∑
l,m

(−i)ljl(qr)Ym
l (q̂)Ym∗

l (r̂), (3)

where Ym
l are spherical harmonics of degree l and orders m,

and jl are spherical Bessel functions of degree l. The coherent
SLD ρ(r) can be presented as a sum of the homogeneous
contribution μ(r) with respect to angles θ and ϕ,

μ(r) = μ(r) = ρc(r) − ρm, (4)

and the heterogeneous contribution ω(r),

ω(r) =
{
ρd (r,θ,ϕ) − ρc(r), (θ,ϕ)in,

0, (θ,ϕ)out,
(5)

where ρc is the uniformly distributed continuous SLD within
each phase, ρm is the SLD of a shell of uniform thickness
suspended in an aqueous medium, ρd is the SLD of one
or more circular domains within a shell, subscripts d and c

refer, respectively, to the domain and continuous phases, and
subscripts in and out refer, respectively, to positions inside
and outside of a domain. Finally, we define the expansion
coefficients of the heterogeneous contribution to the SLD
ω(r) as

wm
l (r) =

∫
ω(r)Ym∗

l (r̂)dr̂. (6)

B. The homogeneous contribution

Here, we define the homogeneous radial SLD profile for a
single spherical shell with inner and outer radii, Ri and Ro,
respectively, as

μ(r) =

⎧⎪⎨
⎪⎩

0, r < Ri

ρc − ρm, Ri � r � Ro

0, r > Ro

. (7)

The Fourier transform of the homogenous radial SLD can
be written as∫

μ(r)e−iq·rd3r

= 4π

(
Y 0

0 (q̂)
∫ ∞

0
μ(r)r2j0(qr)dr

∫
Y 0∗

0 (r̂)dr̂

)

= 4π
(
2
√

πY 0
0 (q̂)M0(q)

)
, (8)

where

M0(q) =
∫ ∞

0
μ(r)r2j0(qr)dr

= (ρc − ρm)

q

[
r2

(
sin qr

(qr)2 − cos qr

qr

)]∣∣∣∣
Ro

Ri

. (9)

C. The heterogeneous contribution

The heterogeneous contribution to the SLD [Eq. (5)] can be
expressed as a product of radial- and angular-dependent terms,
such that ω(r) = ω(r)ω̃(r̂), where

ω(r) =

⎧⎪⎨
⎪⎩

0, r < Ri

ρd − ρc, Ri � r � Ro

0, r > Ro

, (10)

ω̃(r̂) = ω̃(θ,ϕ) =
{

1, 0 � θ � αd

0, αd < θ < π
, (11)
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and where αd in Eq. (11) is the angular size of a domain.
Equation (11), therefore, represents the normalized angular
SLD profile of a vesicle and, when substituted into Eq. (6),
results in the normalized expansion coefficients:

w̃m
l (αd ) =

∫
ω̃(r̂)Ym∗

l (r̂)dr̂ =
∫ 2π

0
dϕ

∫ αd

0
Ym∗

l (θ,ϕ) sin θ dθ.

(12)

The heterogeneous form factor can then be written as∫
ω(r)e−iq·rd3r = 4π

∑
l,m

(−i)lY m
l (q̂)w̃m

l (αd )Wl(q), (13)

which contains the radial contribution namely,

Wl(q) =
∫ ∞

0
ω(r)r2jl(qr)dr. (14)

III. RESULTS

A. Averaging over all domain positions

For all cases discussed in this section, the density of each
domain is the product of angular- and radial-dependent factors,
and the domains interact via a hard-core potential. This means
that two domains can come into contact without changing their
shape and cannot overlap each other. The scattered intensity
can be written as [22]

I (q) = 4π

[
2
√

πM0(q) +
∑

J

w̃0(αd,J )W0,J (q)

]2

+ 4π
∑

J

∞∑
l=1

∣∣w̃0
l,J (αd,J )

∣∣2|Wl,J (q)|2

+ 4π
∑
J �=K

∞∑
l=1

〈w̃′∗
l,J (αd,J ),w̃′

l,K (αd,K )〉Wl,J (q)Wl,K (q).

(15)

(The notation used in [22] is defined in the Methods section).
This expression can be generalized further by considering that
the angular and radial terms do not factor out. The form factor,
F (q), for the SLD ρ(r) = μ(r) + ω(r) (see Methods and [22])
can be rewritten as

F (q; P) = −
∫

[μ(r) + ω(r)]e−iq·rd3r

= −4π (Y 0
0 (q̂)

∫ ∞

0
r2j0(qr)dr

∫
μ(rr̂)Y 0∗

0 (r̂)dr̂

+
∑
l,m

(−i)lY m
l (q̂)

∫ ∞

0
r2jl(qr)wm

l (r)dr), (16)

where wm
l (r) are the radially dependent expansion coefficients

of the homogeneous SLD μ(r) in spherical harmonics, which
has its center of gravity at a point P .

One can thus rewrite the scattering intensity I (q) as

I (q) = 4π

[
2
√

πM0(q) +
∑

J

W̃0(αd,J ,q)

]2

+ 4π
∑

J

∞∑
l=1

〈W̃
′∗
l,J (αd,J ,q; PJ ),W̃

′
l,J (αd,J ,q; PJ )〉

+ 4π
∑
J �=K

∞∑
l=1

〈W̃
′∗
l,J (αd,J ,q; PJ ),W̃

′
l,K (αd,K,q; PK )〉,

(17)

where the components of the arrays W̃
′
l,K are given by

W̃
′m
l,J (αd,J ,q) =

∫ ∞

0
r2jl(qr)wm

l (r)dr. (18)

Although this expression looks complicated, Eq. (17) has
the advantage of simplifying the averaging process. To prepare
for this process, we notice that there are terms for individual
and pairs of domains. Since they cannot be treated the same,
Eq. (17) is rewritten as

I (q) = (4π )2|M0(q)|2 + 2(4π )3/2M0(q)
∑

J

W̃0(αd,J ,q)

+ 4π
∑

J

∞∑
l=0

〈W̃
′∗
l,J (αd,J ,q),W̃

′
l,J (αd,J ,q)〉

+ 4π
∑
J �=K

∞∑
l=1

〈W̃
′∗
l,J (αd,J ,q; PJ ),W̃

′
l,K (αd,K,q; PK )〉.

(19)

The first term does not include domains, and the next two
terms involve only individual domains. In this case, the scalar
product does not depend on PJ , because the scalar products

〈W̃
′∗
l,J (αd,J ,q),W̃

′
l,J (αd,J ,q)〉 do not depend on the position

of the domain on the vesicle surface, only on domain shape.
For these terms, all PJ dependencies can be dropped, and we
assume that all domains are located at the vesicle’s north pole.

The PDF of a domain center residing somewhere on the
vesicle is constant. Moreover, being a PDF, its integral is unity;
hence, the integration over angular coordinates for the first
three terms of Eq. (19), is unity. The last term in Eq. (19)
involves a pair of domains, or the probability distribution of
two independent domains on a spherical surface. In this case,
one can imagine distributions such as the following:

(a) The domains are not densely packed on the vesicle
surface and one can therefore assume that their total relative
area is negligible; i.e., they behave similar to a dilute gas.

(b) The domains are in close proximity to each other and
behave like a dense gas or as liquid-like particles.

(c) The domains are densely packed and are expected to
arrange themselves in a manner similar to atoms in a solid.

Since there is only a finite number of domains on a vesicle,
there is no phase transition taking place between these different
arrangements of domains on a spherical vesicle. This holds
true only if there is no “domain reservoir/bath” that can add or
remove domains from a vesicle.

1. An arbitrary number of randomly distributed domains

For an arbitrary number of randomly distributed domains
we compute the average for a pair of domains J �= K .
Terms to be averaged are included in the scalar products and
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expressed as

〈W̃
′∗
l,J (αd,J ,q; PJ ),W̃

′
l,K (αd,K,q; PK )〉. (20)

It should be noted that any rigid rotation does not al-
ter this scalar product. For the case l = 0, the product
W̃0(αd,J )W̃0(αd,K ) remains constant as it depends only on the
relative positions of the domains and is described by three Euler
angles: (αJ,K,βJ,K,γJ,K ). Since the scalar product is invariant
for the different rotations, one can drop the PJ dependence
by using the transformation for the arrays W̃

′
l,K as a result of

rotational symmetry, or:

〈W̃
′∗
l,J (αd,J ,q; PJ ),W̃

′
l,K (αd,K,q; PK )〉

= 〈W̃
∗
l,J (αd,J ), Dl, J→K W̃ l,K (αd,K )〉, (21)

where Dl, J→K is the matrix of Wigner D
m,m′
l; J,K functions corre-

sponding to harmonics of order l—associated with rotation—
where the domain K is relocated from the sphere’s north pole to
a new position relative to domain J [22]. The arrays W̃

∗
l,J (αd,J )

are all considered as above (i.e., located at the north pole), since
the dependencies of PJ and PK are included in the Wigner
matrix Dl, J→K .

The probability distribution for the position of domain K

relative to domain J depends on the angles (αJ,K,βJ,K,γJ,K ),
as was shown previously in [22]. The Wigner functions
D

m,m′
l (α,β,γ ) suffice in describing all rotations, as any func-

tion defined over the rotation group can be expressed as a
linear combination of Wigner functions. Thus, the probability
density, (αJ,K,βJ,K,γJ,K ), or the probability of finding domain
K at a position (αJ,K,βJ,K,γJ,K ) relative to domain J, can be
written as

C(αJ,K,βJ,K,γJ,K )

=
∞∑
l=0

m=l∑
m=−l

m′=l∑
m′=−l

D
m,m′
l (αJ,K,βJ,K,γJ,K )cm,m′

l . (22)

The average for 〈W̃
∗
l,J (αd,J ), Dl, J→K W̃ l,K (αd,K )〉,

〈W̃
∗
l,J (αd,J ), Dl, J→K W̃ l,K (αd,K )〉 is

〈W̃
∗
l,J (αd,J ), Dl, J→K W̃ l,K (αd,K )〉

=
∫

αJ,K ,βJ,K ,γJ,K

〈W̃
∗
l,J (αd,J ), Dl, J→K W̃

∗
l,J (αd,J )〉

×C(αJ,K,βJ,K,γJ,K )dαJ,K sin βJ,KdβJ,KdγJ,K . (23)

C(αJ,K,βJ,K,γJ,K ) is the PDF of domain J relative to
domain K; hence,∫

αJ,K ,βJ,K ,γJ,K

C(αJ,K,βJ,K,γJ,K )dαJ,K sin βJ,KdβJ,KdγJ,K

= 1. (24)

Performing the integrations for orders l � 1 in Eq. (20), we
obtain the following:

〈W̃
∗
l,J (αd,J ), Dl, J→K W̃ l,K (αd,K )〉

= 〈W̃
∗
l,J (αd,J ), C l, JK (αd,J ,αd,K )W̃ l,K (αd,K )〉, (25)

where C l;J,K (αd,J ,αd,K ) is the matrix element
8π2

2l+1C
∗ m,m′
l (αd,J ,αd,K ) [23]. This matrix depends on the

types (e.g., circular, protruding, etc.) of interacting domains,
and on their respective sizes.

2. Domains with circular symmetry

The results described thus far pertain to domains having the
same size and shape (i.e., monodisperse). As described in a pre-
vious work [22], the Wigner functions can be reduced to Legen-
dre polynomials, and only the terms containing m = 0,m′ = 0
are involved; i.e.,

I (q) = 4π

[
2
√

πM0(q) +
∑

J

W̃0,J (αd,J ; q)

]2

+ 4π
∑

J

∞∑
l=1

|W̃l,J (αd,J ; q)|2

+ 4π
∑
J �=K

∞∑
l=1

W̃ 0
l,J (αd,J ; q)W̃ 0

l,K (αd,K ; q)Pl(cos θJK ),

(26)

where J and K represent domains, θJK is the angle between
vectors pointing from the origin to domain centersJ andK , and
W̃ 0

l,J (αd ; q) and W̃ 0
l,K (αd ; q) (both real) are given by Eq. (18).

The PDF for domain centers depends only on the angle
subtended by the chord between the two domain centers θJK .
In this case, the generalized spherical functions are Legendre
polynomials and the series expansions are carried out as in
[22]. As a result, Eq. (25) simplifies to

〈W̃
∗
l,J (αd,J ), Dl, J→K W̃ l,K (αd,K )〉

= W̃ 0
l,J (αd,J ; q)W̃ 0

l,K (αd,K ; q)Cl, JK (αd,J ,αd,K ). (27)

That is, the right-hand side of the equation contains a simple
product instead of a bilinear form.

Variable thickness spanning domains. We recall that the
term “domain” denotes an inclusion (e.g., lipid, protein, etc.)
in the vesicle of different scattering “contrast”—e.g., due
to a difference in chemical composition or isotopic content
(see Fig. 1). Starting from the general form of ω(r) given in
Methods, or

ω(r) =
{
ρd (r,θ,ϕ) − ρc(r), (θ,ϕ)in

0, (θ,ϕ)out
, (28)

we introduce a simplified model, where for all domains it
is assumed that the domain angle αd varies along the thick-
ness of the domain (Ro − Ri) as follows: ω(r) = ω(r)ω̃(r̂ ,r),
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where

ω(r) =

⎧⎪⎨
⎪⎩

0, r < Ri

ρd (r) − ρc(r), Ri � r � Ro

0, r > Ro

, (29)

ω̃(r̂ ,r) = ω̃(θ,ϕ,r) =
{

1, 0 � θ � αd (r)

0, αd (r) < θ < π
, (30)

where Ri is the distance between the center of a spherical
vesicle and the inner edge of the inner leaflet, Ro is the distance
between the center of a vesicle and the outer edge of the outer
leaflet (see Fig. 1), and αd is the angular size of the domain (see
Methods). It is important to note that these functions may also
vary from domain to domain. This implies that the thickness
of the spanning domain can vary as Ri � r � Ro, where the
maximum value of the fully spanning domain is equal to the
membrane thickness. In this case, Eq. (18) reduces to

W̃l(q) =
∫ ∞

0
ω(r)r2j0(qr)

(∫ αd (r)

0
Y 0∗

l (r̂)dr̂

)
dr. (31)

Integrating over r̂ , i.e., (θ,ϕ), one obtains

W̃l(q) =
∫ ∞

0
ω(r)r2j0(qr)w̃0

l (αd (r))dr. (32)

An expression similar to that in [22] is given as

w̃0(αd ) =
∫ 2π

0
dϕ

∫ αd (r)

0
Y 0∗

0 (θ,ϕ) sin θ dθ

= √
π (1 − cos αd (r)), (33)

w̃0
l (αd ) =

√
π (2l + 1)

l
[cos αd (r)Pl(cos αd )

−Pl+1(cos αd (r))]. (34)

The scattering cross sections can thus be written as

I (q) = 4π

[
2
√

πM0(q) +
∑

J

W̃ 0
0,J (q)

]2

+ 4π
∑

J

∞∑
l=1

∣∣W̃ 0
l,J (q)

∣∣2

+ 4π
∑
J �=K

∞∑
l=1

W̃ 0∗
l,J (q)W̃ 0

l,K (q)Pl(cos θJK ). (35)

If the domains are assumed to interact via a hard-core
potential, the average of Pl(cos θJK ) can be expressed as

I (q) = 4π

[
2
√

πM0(q) +
∑

J

W̃ 0
0,J (q)

]2

+ 4π
∑

J

∞∑
l=1

∣∣W̃ 0
l,J (q)

∣∣2

+ 4π
∑
J �=K

∞∑
l=1

W̃ 0∗
l,J (q)W̃ 0

l,K (q)Cl(cos θJK;min). (36)

In the case where all domains are identical, cos θJK;min =
2αd is the minimum angle subtended on the vesicle surface by
the domain centers. This is given in terms of αd , the maximum
value over all angles in αd , as

I (q) = 4π
[
2
√

πM0(q) + NdW̃
0
0 (q)

]2 + 4πNd

∞∑
l=1

∣∣W̃ 0
l (q)

∣∣2

+ 4πNd (Nd − 1)
∞∑
l=1

∣∣W̃ 0
l (q)

∣∣2
Cl(2αd ). (37)

For multilamellar vesicles, M0(q) is expressed in the man-
ner (see Methods)

M0(q) =
∫ ∞

0
μ(r)r2j0(qr)dr, (38)

where μ(r) varies with r . This model includes several sub-
models, but we will discuss only two, namely, those of half
and fully protruding domains.

Half protruding domains. Figure 1(b) shows a lipid bilayer
with a protein extending beyond the vesicle surface. As was
described in Methods, we can represent the case of a half
protruding domain as

Wl(q,Ri,Ri,domain) = (ρd − ρm)

q3

∫ qRi

qRi, domain

z2jl(z)dz, (39)

where the inner radius of the vesicle is replaced by the
inner radius of the domain [see Fig. 1(b)], W̃ 0∗

l,J (q) =
w̃0∗

l,J Wl(q,Ri,Ri,domain), where Ri,domain and Ro,domain define
the inner and outer protruding parts of the domain. In the
case where a vesicle contains a domain spanning the vesicle
thickness, Eq. (39) is modified to yield

Wl(q,Ri,Ri,Ro,domain) = (ρd − ρm)

q3

∫ qRi,

qRi,domain

z2jl(z)dz

+ (ρd − ρc)

q3

∫ qRo,domain

qRi

z2jl(z)dz.

(40)

In this case, all domains have the same radii (i.e., they are
monodisperse), and the factors w̃0

l (αd ) are unaffected.
Fully protruding domains. The more complicated case of a

protruding domain is solved in two parts. First, we modified
the circular domain scenario presented in [22] to apply to a
protruding domain, as explained in Appendix B in [24]. The
only difference is w̃0

l (αd ), namely,

w̃0(αin,αd ) =
∫ 2π

0
dϕ

∫ αd

αin

Y 0∗
0 (θ,ϕ) sin θ dθ

= √
π (cos αin − cos αd ). (41)

Hence,

w̃0
l (αin,αd ) = 2π

∫ αd

αin

(
2l + 1

4π

)1/2

Pl(cos θ ) sin θdθ

=
√

π (2l + 1)
∫ cos αin

cos αd

Pl(x)dx (42)
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and

w̃0
l (cos αin,αd )

=
√

π (2l + 1)

l
[cos αdPl(cos αd ) − Pl+1(cos αd )

− cos αinPl(cos αin) + Pl+1(cos αin)], (43)

where αin is the angular size of the domain, and αin < αd . Note
that the interdomain correlation functions remain unaltered
because the domains are hard. In other words, for a fully
protruding domain with circular symmetry the remaining
equations are identical to those for a spanning domain with
circular symmetry. The angular part, w̃0

l (cos αin,αd ), remains
constant through the length of the domain; however, the radial
component includes the following three terms describing (i)
the protruding domain portion inside the vesicle, (ii) the
domain part spanning the thickness of the vesicle, and (iii)
the protruding domain portion extending beyond the vesicle.
These terms are related as follows:

Wl(q,Ri,Ro,Ri,domain,Ro,domain)

= (ρd − ρm)

q3

∫ qRi,

qRi,domain

z2jl(z)dz + (ρd − ρc)

q3

∫ qRo

qRi

z2jl(z)dz

+ (ρd − ρm)

q3

∫ qRo,domain

qRo

z2jl(z)dz. (44)

The fully protruding domain allows the model more flex-
ibility; i.e., a domain with protrusions inside and outside a
vesicle can be modeled as a combination of spanning and half
protruding domains, as shown in Figs. 1(a) and 1(b). Therefore,
as in the case of the spanning domains with circular symmetry,
we can describe such a scenario as

W̃l(q,Ri,Rm,Ro) =
N∑

K=1

w̃0
l (αi,K,αo,K )Wl(q,Ri,K,Ro,K ),

(45)

where αi,K = 0. The maximum angle used to characterize the
correlation between domain centers is given by

max
1�K�N

αo,K. (46)

B. Probability distribution between centers of domain pairs

1. The case of two spanning domains with circular symmetry

To begin with, we assume that domain centers are uniformly
distributed in their allowed region and that the domains are
hard, implying that they interact via a hard-core potential. As
a result, we obtain the following PDF:

C(α, cos θJK,γ )

=
{

0, 1 � cos θJK � cos(αd,J + αd,K )
S, cos(αd,J + αd,K ) > cos θJK < −1 . (47)

To simplify the notation, we denote

θJK;min = αd,J + αd,K. (48)

The constant S in Eq. (47) is determined by denoting it as
a PDF C(α,β,γ ) satisfying Eq. (24):

4π2S(1 + cos θJK;min) = 1. (49)

Hence, the average is

Pl(cos θJK ) = 4π2S

∫ cos θJK;min

−1
Pl(x)dx

= [(Pl+1(x) − xPl(x))]|cos θJK;min

−1

l(1 + cos θJK;min)

= Cl(θJK;min). (50)

One has also to consider that∫ 1

−1
Pl(x)dx, l > 0. (51)

This leads to∫ cos θJK;min

−1
Pl(x)dx = −

∫ 1

cos θJK;min

Pl(x)dx, (52)

and

Pl(cos θJK ) = − [(Pl+1(x) − xPl(x))]|1cos θJK;min

l(1 + cos θJK;min)

= Cl(θJK;min). (53)

Thus, the average over different domains with circular
symmetry on a vesicle’s surface is given by

I (q) = 4π

[
2
√

πM0(q) +
∑

J

w̃0,J (αd,J )W0,J (q)

]2

+ 4π
∑

J

∞∑
l=1

∣∣w̃0
l,J (αd )Wl,J (q)

∣∣2

+ 4π
∑
J �=K

∞∑
l=1

w̃ 0
l,J (αd )W ∗

l,J (q)w̃0
l,K (αd )Wl,K (q)

×Cl(cos θJK;min). (54)

In the case of identical size domains this yields

I (q) = 4π [2
√

πM0(q) + Ndw̃0(αd )W0(q)]2

+ 4πNd

∞∑
l=1

∣∣w̃0
l (αd )

∣∣2|Wl(q)|2

+ 4πNd (Nd − 1)
∞∑
l=1

∣∣w̃0
l (αd )

∣∣2|Wl(q)|2Cl(2αd ).

(55)

This model is exact for the case of two domains. Moreover,
the model is also expected to be valid when the total surface
of these domains is small compared to the vesicle total surface
area.

2. The case of two or more identical spanning domains

A general solution for two or more domains. Analysis for the
two-domain correlation function is similar to correlation func-
tions in Euclidean space. In other words, it involves distances
and an integral over the volume in Euclidean n-dimensional
space. The volume element in Euclidean space corresponds to
the unit sphere surface integral over d 

 = sin θdθdϕ, while
the lengths correspond to the minimum arclength (geodesic)
between two points having directions 

 and 

′. The minimum
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arclength between these points is given by the arccos ( 

 · 

′);
for convenience, the functions are assumed to depend on
the scalar product 

 · 

′, as it is easier to analyze this in
spherical coordinates. Isotropy of the potential translates to
a dependence of the potential only for the smallest arclength
between two domain centers. As was pointed out earlier, the
domains interact only through a hard-core potential.

We define the PDF as

H (α1,α2, 

1 · 

2) = exp(−V1,2( 

1 · 

2)), (56)

where V1,2( 

1 · 

2) is the potential for two domains located
at 

1 and 

2, and is defined as

H (α1,α2, 

1 · 

2) =
{

0, 1 � 

1 · 

2 � cos (α1 + α2)

1, cos (α ) > 

1 · 

2 < −1
.

(57)

Similar to the Euclidean space correlation function (see
[25]), for the case of more than two domains, we define

Cfull( 

1 · 

2) =
∫∫∫

3, 4,...,N

∏n
i=3 d 

i

∏
1<i<j<N exp(−Vi,j ( 

i · 

j))∫∫∫

2,...N

∏n
i=2 d 

i

∏
1<i<j<N exp(−Vi,j ( 

i · 

j))

. (58)

Equation (58) can be rewritten as

Cfull(α1,..,αN, 

1 · 

2) =
∫∫∫

3, 4,...,N

∏n
i=3 d 

i

∏
1<i<j<N H(αi,αj , 

i · 

j)∫∫∫

2,...,N

∏n
i=2 d 

i

∏
1<i<j<N H(αi,αj , 

i · 

j)

. (59)

An important difference between Euclidean space and a spherical surface is that, because a sphere is bounded, the number of
domains on a spherical surface is finite. However, if there are processes that add or remove domains from the spherical surface,
one can then introduce a chemical potential, a notion that will not be developed any further in this paper.

The case of three domains. For any approximate equation it is useful to have examples where the exact solution is known. For
the case of spanning domains on a spherical surface, the case of three domains allows for such a solution. This solution can then
be used as a model for any approximation of domain distribution, because the number of domains is small, and their areas can be
varied.

For the three-domain case we assume that the first domain is located at the sphere’s north pole, and the positions of the second
and third domains are defined by the angles θ2, ϕ2 and θ3, ϕ3, respectively, or as

Cfull(α1,α2,α3, 

1 · 

2) = H(α1,α2, 

1 · 

2)
∫∫∫

d 

3H(α2,α3, 

2 · 

3)H(α1,α3, 

1 · 

3)∫∫∫
d 

2d 

3H(α1,α2, 

1 · 

2)H(α2,α3, 

2 · 

3)H(α1,α3, 

1 · 

3)

. (60)

Since the numerator is a constant, only the integral of the
numerator needs to be evaluated. However, having a geometric
interpretation helps us to evaluate the integral. The two H
functions denote the joint exclusion areas around the two
domains, and the integral estimates the area into which the
center of the third domain is allowed. Its complement is called
the exclusion area. When far from each other, the exclusion
areas are not in contact. The total area permitted for the third
domain center is thus any area that is not occupied by the two
exclusion zones, i.e.,

4 π − 2π (1 − cos (α2 + α3)) − 2π (1 − cos (α1 + α3)). (61)

However, when the domains approach each other, at first,
their exclusion areas become tangential, and then they inter-
sect. Hence, the total exclusion area is smaller than the sum of
the exclusion areas, as shown in Fig. 2.

We denote the angle of separation between the two domain
centers as β. To compute the total exclusion area, one has
to estimate the areas of the two domain sectors and of the
two congruent “spherical” triangles whose sides are related by
angles α2 + α3, α1 + α3, and β. The area of one triangle is

s� = A + B + C − π, (62)

and the domain sectors have areas

s1 = (2π − 2C)(1 − cos(α2 + α3)),
(63)

s2 = (2π − 2A)(1 − cos(α1 + α3)),

FIG. 2. Spherical geometry of two domains (circles) and their
exclusion zones. The domain boundaries are depicted by the thick
lines. The exclusion area boundaries are shown by the dashed curves.
To highlight the difference between the domains and the triangle on
the sphere (“spherical” triangle), the triangle’s sides are drawn as
straight lines.
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where

cos A = cos(α2 + α3) − cos β cos(α2 + α3)

sin β sin(α2 + α3)
, (64)

cos B = cos β − cos(α2 + α3) cos(α2 + α3)

sin(α2 + α3)sins(α2 + α3)
, (65)

cos C = cos(α1 + α3) − cos β cos(α1 + α3)

sin β sin(α1 + α3)
. (66)

Equations (48) and (49) are the equations for “spherical” triangles in a spherical geometry [26]. β varies between α1 + α2 and
α1 + α2 + 2α3 so that the domains do not touch each other, but their exclusion areas still intersect. The free area is then given by∫∫∫

3
d 

3H(α, 

2 · 

3)H(α, 

1 · 

3)

=
{

4 π − 2π (1 − cos(α2 + α3)) − 2π (1 − cos(α1 + α3)) if β > α1 + α2 + 2α3

4π − s1 − s2 − 2s� if α1 + α2 � β � α1 + α2 + 2α3.
(67)

To normalize this function, the nominator can be obtained
by numerical integration of the numerator. Also, the computa-
tion of the Legendre coefficients of the normalized correlation
function is best performed by numerical quadrature. It is
important to mention that the exact solution for the case of
more than three domains is nontrivial.

C. Positionally correlated and uncorrelated domains

Here, we describe cases where the inner leaflet domain is po-
sitionally correlated across the membrane with an outer leaflet
domain, and where the two domains can move independently
of each other (i.e., not positionally correlated to each other). In
both cases, we looked at deterministic and random distributions
of domains on a vesicle.

In the case where domains are positionally correlated, the
domains can be described as having angles αd,in and αd,out,
and densities ρd,in and ρd,out. The lipid bilayer has densities
ρc,in and ρc,out, and the interface between the inner and outer
leaflets (see Fig. 1) is of radius Rm.

W̃l can thus be written as

W̃l(q,Ri,Rm,Ro)

= w̃0
l (αd,in)

(ρd,in − ρc,in)

q3

∫ qRm,

qRi

z2jl(z)dz

+ w̃0
l (αd,out)

(ρd,out − ρc,out)

q3

∫ qRo

qRm

z2jl(z)dz, (68)

or as

W̃l(q,Ri,Rm,Ro) = w̃0
l (αd,in)Wl(q,Ri,Rm)

+ w̃0
l (αd,out)Wl(q,Rm,Ro). (69)

This equation is useful when the difference between the
two cases of domains (positionally correlated or uncorrelated)
needs to be computed. If one assumes that the domains are
positioned at fixed angles θJK to each other, and the inner and
outer leaflet domains are positionally correlated, the scattered
intensity can be written as follows:

I1(q) = 4π

[
2
√

πM0(q) +
∑

J

[
w̃0

0,J (αd,in)W0(q,Ri,Rm) + w̃0
0,J (αd,out)W0(q,Rm,Ro)

]]2

+ 4π
∑

J

∞∑
l=1

∣∣w̃0
l (αd,in)Wl(q,Ri,Rm) + w̃0

l (αd,out)Wl(q,Rm,Ro)
∣∣2

+ 4π
∑
J �=K

∞∑
l=1

[
w̃0∗

0,J (αd,in)W0(q,Ri,Rm) + w̃0∗
0,J (αd,out)W0(q,Rm,Ro)]

× [
w̃0

0,J (αd,in)W0(q,Ri,Rm) + w̃0
0,J (αd,out)W0(q,Rm,Ro)

]
Pl(cos θJK ). (70)

However, when the inner and outer leaflet domains are positionally independent of each other, the scattered intensity is

I2(q) = 4π

[
2
√

πM0(q) +
∑

J

w̃0
0,J (αd,in)W0(q,Ri,Rm) +

∑
J

w̃0
0,J (αd,out)W0(q,Rm,Ro)

]2

+ 4π
∑

J

∞∑
l=1

∣∣w̃0
l,J (αd,in)Wl(q,Ri,Rm)

∣∣2 + 4π
∑

J

∞∑
l=1

∣∣w̃0
l,J (αd,out)Wl(q,Rm,Ro)

∣∣2
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+ 4π
∑
J �=K

∞∑
l=1

Re
[
w̃0∗

l,J (αd,in)Wl(q,Ri,Rm)w̃0
l,K (αd,in)Wl(q,Ri,Rm)

]
Pl(cos θJK )

+ 4π
∑
J �=K

∞∑
l=1

Re
[
w̃0∗

l,J (αd,out)Wl(q,Rm,Ro)w̃0
l,K (αd,out)Wl(q,Rm,Ro)

]
Pl(cos θJK ), (71)

where Re is the real part of a complex number.
The difference between positionally correlated and uncorrelated N identical domains of each type can be expressed as

I1(q) − I2(q) = 8πN

∞∑
l=1

Re
[
w̃0∗

l (αd,in)Wl(q,Ri,Rm)w̃0
l (αd,out)Wl(q,Rm,Ro)

]

+ 8π
∑
J �=K

∞∑
l=1

Re
[
w̃0∗

l,J (αd,in)Wl(q,Ri,Rm)w̃0
l,K (αd,out)Wl(q,Rm,Ro)

]
Pl(cos θJK ). (72)

In this case, the only terms that differ are the ones containing averages over Pl(cos θJK ).
If, however, the domains repel each other, their distribution will be fixed. For instance, four domains will arrange themselves

at the vertices of a tetrahedron, while eight domains occupy the vertices of a cube. If the number of domains does not equal the
vertices of a regular polyhedral, they will arrange themselves in the most regular manner possible. If, however, the domains do
not interact with each other—except through rigid body forces—then the quantity of interest is the site-site correlation function
averaged over all possible domain arrangements on a spherical vesicle. This is given by

4πN (N − 1)
∞∑
l=1

∣∣w̃0∗
l (αd,in)Wl(q,Ri,Rm) + w̃0∗

l (αd,out)W0(q,Rm,Ro)
∣∣2

Cl(2 max(αd,in,αd,out)), (73)

while in the case of domains with fixed positions the relationship is written as

4πN (N − 1)

[ ∞∑
l=1

∣∣w̃0∗
l (αd,in)Wl(q,Ri,Rm)

∣∣2
Cl(2αd,in) +

∞∑
l=1

∣∣w̃0∗
l (αd,out)W0(q,Rm,Ro)

∣∣2
Cl(2αd,out)

]
. (74)

The difference between the two terms is given by

Ī1(q) − Ī2(q) = 8πN

∞∑
l=1

Re
[
w̃0∗

l (αd,in)Wl(q,Ri,Rm)w̃0
l (αd,out)Wl(q,Rm,Ro)

]

+ 4πN (−1)

[
2

∞∑
l=1

Re
[
w̃0∗

l (αd,in)Wl(q,Ri,Rm)w̃0∗
l (αd,out)W0(q,Rm,Ro)

]
Cl(2 max(αd,in,αd,out)

+
∞∑
l=1

∣∣w̃0∗
l (αd,in)Wl(q,Ri,Rm)

∣∣2
(Cl(2 max(αd,in,αd,out) − Cl(2αd,in))

+
∞∑
l=1

∣∣w̃0∗
l (αd,out)W0(q,Rm,Ro)

∣∣2
(Cl(2 max(αd,in,αd,out) − Cl(2αd,out))

]
. (75)

For the case of more than three domains, a better option is
to use an approximation of the PY equation (see [27]) adapted
for a spherical surface. This scenario is described below.

D. Equations for domains on a spherical surface

Following the studies of rigid disks in the Euclidean plane
[28,29], a PY type of approximation [30] is best suited in
describing domains on a spherical surface. Solving the PY
equation results in an approximate, but accurate, solution to
the two-dimensional rigid disk problem in the Euclidean plane
[28,29]. Therefore, by solving a “spherical” analog of the PY
equation, one could calculate pair correlations between more
than two spanning domains with circular symmetry. Although
the topology of a spherical surface does not allow for an infinite
distance between domains, it does allow for a form of isotropy

and for a metric tensor. We begin with an analog of the OZ
equation using the PY conditions.

E. The OZ equation for hard domains on a spherical surface

In obtaining the OZ equation for identical domains on a
spherical surface we start from the general case, where the
potential is short range: we adapted the methods from [27] and
the solution found in [31] for a fixed number of hard spheres
in a box of fixed volume.

An analog of the isotropy condition on a spherical sur-
face is that the two-domain potential depends only on the
length of the geodesic uniting the points i and j , i.e., the
arccos ( 

i · 

j), where 
 is the solid angle and 

 is defined
as 

 = [sin θ cos ϕ, sin θ sin ϕ, cos θ ]. At a practical level,
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a dependence on the scalar product 

i · 

j is preferable. The configurational integral is thus given by

ZN =
∫∫∫

1,...,N

n∏
i=1

d 

i

∏
i<j ;i,j<N

exp(−V ( 

i · 

j)). (76)

As we develop the theory, differences between the spherical surface and Euclidean cases are presented for the spherical case.
The “translational invariance” (that is, moving on a circle irrespective of distance) for the spherical case yields

P
(1)
N ( 

1) =

∫∫∫
2,...,N ; 

1fixed

∏n
i=1 d 

i

∏
i<j ;i,j<N exp(−V ( 

i · 

j))∫∫∫

1,...,N

∏n
i=1 d 

i

∏
i<j ;i,j<N exp(−V ( 

i · 

j))

= 1

4π
. (77)

As in the case of Euclidean space, when the domains are
small they are expected to move quasi-independently. One
can therefore take the ratio of the multidomain probability
and divide it by the respective single-domain probabilities as
follows:

g
(n)
N ( 

1, . . . , 

n) = P

(n)
N ( 

1, . . . , 

n)∏n

i=1 P
(1)
N ( 

i)

= (4π )nP (n)
N ( 

1, . . . , 

n), (78)

where P
(n)
N ( 

1, . . . , 

n) is defined similarly to P

(1)
N ( 

1), but

instead of just 

1 being removed from the integration in the
numerator, all variables 

1, . . . , 

n are deleted. The function
Cfull( 

1 · 

2), used previously, is equal to

Cfull( 

1 · 

2) = P
(2)
N ( 

1, 

2)

P
(1)
N ( 

1)

= g
(2)
N ( 

1, 

2)P (1)

N ( 

1)

= 1

4π
g

(2)
N ( 

1, 

2). (79)

Because g
(2)
N ( 

1, 

2) depends only on the minimum cir-

cle arclength joining points 

1 and 

2, g
(2)
N ( 

1, 

2) =

g
(2)
N ( 

1 · 

2). The function g

(2)
N ( 

1 · 

2) is the spherical sur-

face analog of the radial distribution function and is specific to
the spherical case. As only g

(2)
N was used, g

(2)
N = gN .

Since a spherical surface is closed, the domains cannot
escape it by moving. If the number of domains, N , is constant,
an approximate OZ equation can be developed, as was done in
[31]. It should be pointed out that proofs (not shown) for the N

finite case are similar to those in [31], except for changes to the
appropriate volume elements and geodesic length (arclength)
for distance.

To obtain an OZ type of equation when N is fixed, we follow
the procedure outlined in [31], while making appropriate
modifications to account for the spherical surface case. This
is written as follows:

∫
S

ρN ( 

)d 

 = N, (80)∫
S

ρ2
N ( 

1, 

2)d 

2 = (N − 1)ρN ( 

1), (81)

ρ2
N ( 

1, 

2) = ρN ( 

1)ρN ( 

2)gN ( 

1, 

2), (82)∫

S

ρN ( 

1)gN ( 

1, 

2)d 

1 = (N − 1). (83)

Defining

hN ( 

1, 

2) = gN ( 

1, 

2) − 1 (84)

implies ∫
S

ρN ( 

1)hN ( 

1, 

2)d 

1 = −1. (85)

As in [20], one can introduce a potential. This potential for
a finite N generates the variational functional

F = F̂ + λN

∫
S

ρN ( 

)d 



= F (λN,ρN ) −
∫

S

ρN ( 

)Vext( 

,λN,[ρN ])d 

. (86)

The remaining variational calculus and algebra are similar
to those in [31] and do not involve geometry. For the case where
N is fixed [31], the corresponding OZ equation is written as

hN (cos θ) − cN (cos θ )

−ρ

∫
cN (cos θ ′)hN (

−→

′ · 

) sin θ ′dθ ′dϕ′ + 1

N
= 0 (87)

and, as previously,

hN (cos θ) = gN (cos θ) − 1. (88)

The PY conditions for the functions gN and cN on the
spherical surface are given as

g(cos θ ) = 0, cos θ < cos 2αd, (89)

c(cos θ ) = 0, cos θ > cos 2αd. (90)

F. Expansion of PY into Legendre polynomials

The expansion of the PY equation in Legendre polynomials
has the advantage that it yields, practically directly (up to the
normalization), the interdomain coefficients. Using Legendre
polynomials for finite N domains, the OZ equation on a
spherical surface transforms into a form that is similar to the
Fourier transform of the OZ equation in Euclidian space. The
starting point is

gN (cos θ ) − 1 − cN (cos θ )

− ρ

∫
cN (cos θ ′)(gN (

−→

′ · 

) − 1) sin θ ′dθ ′dϕ′ + 1

N
= 0.

(91)
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Dropping the index N , the density term is given explicitly
as

ρ = N

4π
. (92)

Equation (91) then becomes

g(cos θ ) − 1 − c(cos θ)

− N

4π

∫
c(cos θ ′)(g(

−→

′ · 

) − 1) sin θ ′dθ ′dϕ′ + 1

N
= 0.

(93)

Following the strategy used to solve the PY equation in
Fourier space [32], Eq. (93) can be written as

g(cos θ ) − c(cos θ ) = 1 − N

4π

∫
c(cos θ ′)(g(

−→

′ · 

) − 1)

× sin θ ′dθ ′dϕ′ + 1

N
. (94)

Since the right-hand side of the equation is a continuous
function of cos θ , we can define the following continuous
function:

τ (cos θ ) = g(cos θ ) − c(cos θ). (95)

Equation (91) can be rewritten as two equations involving
τ (cos θ) and g(cos θ), namely,

τ (cos θ ) = 1 + N

4π

∫
[τ (cos θ ′) − g(cos θ ′)]

× (g(
−→

′ · 

) − 1) sin θ ′dθ ′dϕ′ + 1

N

and

g(cos θ ) = τ (cos θ )κ
(−1, cos 2αd ; cos θ ′), (96)

where κ(−1, cos 2αd ; cos θ ′) is equal to 1 for the interval
[−1, cos 2αd ], and is zero elsewhere.

To proceed further, one has to consider the Legendre
coefficients f̂l of a function f (cos θ) as a form of the integral
transform. These coefficients are given by

f̂l =
∫ π

0
f (cos θ )Pl(cos θ) sin θdθ. (97)

As in the case of other transforms, a convolution operation
is defined by the convolution of Legendre polynomials given
by [33], which we adapted as

êl f̂l ↔ 1

2π

∫
S

e(cos θ ′)f (
−→

′ · 

)d

−→

′ (98)

with



 = [sin θ,0, cos θ] (99)

and where S is the unit sphere surface.
The equation for the zero-order coefficients is relatively

involved, i.e.,

τ̂0 − 2 − N

2

(
τ̂0ĝ0 − ĝ2

0 − τ̂0 + ĝ0
) + 2

N
= 0, (100)

while those for the higher orders have a simpler form, i.e.,

τ̂l − N

2

(
τ̂l ĝl − ĝ2

l − τ̂l + ĝl

) = 0. (101)

Equation (96), a product of functions, is Legendre trans-
formed into a slightly less elegant form: in the case of
Fourier transforms, the transform of a function product is the
convolution of the respective Fourier transforms. The situation
of the Legendre polynomial transform, however, is not as
simple, i.e., the Wigner 3j symbols (i j l

0 0 0) are needed:

ĝl = (2l + 1)
∞∑
i=0

∑
j

(
i j l

0 0 0

)2

κ̂i τ̂j . (102)

This relation results from

Pl1 (cos θ )Pl2 (cos θ) =
∑

l

(2l + 1)

(
l1 l2 l

0 0 0

)2

Pl(cos θ ).

(103)

This solution directly yields a set of coefficients for the
intercenter distribution function. The Wigner 3j symbols can
be computed in advance using methods such as the one in [34].
Following this, the coefficients are normalized so that the PDF
integral is equal to 1.

1. Approximate solution to the PY equation

To develop an approximate solution to the PY equation we
begin with

gN (cos θ ) − cN (cos θ ) − ρ

∫
cN (cos θ ′)[gN (

−→

′ · 

) − 1]

× sin θ ′dθ ′dϕ′ + 1

N
= 0 (104)

or

gN (cos θ ) − cN (cos θ ) = ρ

∫
cN (cos θ ′)[gN (

−→

′ · 

) − 1]

× sin θ ′dθ ′dϕ′ + 1 − 1

N
. (105)

The PY conditions for gN and cN on a spherical surface are

g(cos θ) = 0, cos θ < cos 2αd, (106)

c(cos θ) = 0, cos θ > cos 2αd. (107)

Inserting Eqs. (106) and (107) into Eq. (105) results in the
following equations:

−cN (cos θ ) = ρ

∫
cN (cos θ ′)[gN (

−→

′ · 

) − 1] sin θ ′dθ ′dϕ′

+ 1 − 1

N
, cos θ > cos 2αd (108)

and

gN (cos θ) = ρ

∫
cN (cos θ ′)[gN (

−→

′ · 

) − 1] sin θ ′dθ ′dϕ′

+ 1 − 1

N
, cos θ > cos 2αd. (109)
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To simplify the integration, we change the integration
variables cos θ = μ and

sin θdθdϕ = −dμdϕ. (110)

The μ interval is discretized in a series of meshes after
being partitioned into two subintervals, i.e., [cos 2αd, 1] and
[−1, cos 2αd ]. Uniform mesh sizes are used for the two
subintervals, and their sizes are chosen to be as close to each
other as possible, while still allowing the boundary between
these intervals to equal cos 2αd . [Discontinuities in gN (cos θ )
and cN (cos θ ) would be poorly approximated without taking
these precautions.]

A nonlinear Gauss-Seidel iteration [35] was used, where
each computed value for cN and gN was introduced in the
computation for the next mesh. To increase stability, Gauss-
Seidel sweeps are done alternatively from a low to high mesh
index, and from a high to low index. To prevent iteration
oscillations—which may prevent convergence—ρ is increased
by a constant amount for each mesh sweep, until it reaches its
final value. With ρ at its final value, a number of iterations are
performed until g and c converge.

2. The PY equation for a spherical surface

The exact solutions presented in the previous sections
indicate that even for the case of only three domains, the math-
ematics can get complicated. However, in three-dimensional
(3D) space one can solve the PY equation to yield a reasonable
approximation for the pair correlation function. There are,
however, difficulties in developing the PY equation; namely,
the number of domains, N , is finite and fixed, and the surface
which they occupy is finite and spherical. The first two
obstacles were previously solved by White and Velasco [31]
for a finite number of particles in a box by obtaining an
approximate finite N form of the OZ equation. The third is
tackled by considering the metric of a spherical surface as was
described above; i.e.,

hN (cos θ ) = cN (cos θ ) + ρ

∫
S

hN (cos θ ′)cN ( 

 · 

′)

× sin θ ′dθ ′dϕ′ − 1

N
. (111)

Further,

h(cos θ ) = g(cos θ ) − 1, (112)

Cfull(cos θ ) = 4πg(cos θ ), (113)

ρ = N

4π
. (114)

One can also assume that the PY conditions are true for the
approximate OZ equation. Adapting it, however, requires the
following conditions:

g(cos θ ) = 0 or h(cos θ ) + 1 = 0, cos θ < cos 2αd, (115)

c(cos θ ) = 0, cos θ > cos 2αd. (116)

There are, however, features for this system of equations
that are worth investigating:

FIG. 3. Comparison of PDFs using the PY approach and MC
simulations: five domains with a radial angle of 0.1 rad.

(a) To what extent is the PY approximation for the function
c(cos θ ) applicable to a finite number of hard objects in a closed
finite box, and are there any N -dependent terms and factors that
need to be introduced, instead of the condition c(cos θ ) = 0?
This, however, does not seem to be the case, as the condition
c(cos θ ) is local and cannot be related to the total number of
domains.

(b) It may also be of interest to establish whether Eq. (93)
is exactly solvable or if there are analogs for n-dimensional
“spherical surfaces of radius 1” that are exactly solvable—
similar to the problem in the odd n-dimensional Euclidean
space [36].

Here, we compare PDFs calculated in the framework of
the spherical analog of the PY approach to PDFs computed
using MC simulations (see the Appendix). To check the validity
of the PY approach, and its limits, we consider the case of
five domains on a spherical surface. Equations (92)–(96) and
Eqs. (97) and (98) were solved numerically and were found to
approximate well the PDF for domain centers.

Figures 3–5 show that the PY approach of calculating
PDFs is more accurate for domains with a small angular size
(i.e., 0.1 rad; Fig. 3). It also implies that the PY approach
for calculating PDFs of nanoscopic domains on spherical
vesicles could be used to predict structures that are too small
to be easily “observed” by many of the current experimental
techniques. It should be noted that the agreement between the

FIG. 4. Comparison of PDFs using the PY approach and MC
simulations: five domains with a radial angle of 0.2 rad.
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FIG. 5. Comparison of PDFs using the PY approach and MC
simulations: five domains with a radial angle of 0.3 rad.

PY approach and MC simulations can be improved with the
use of high-throughput computing; hence, the convergence of
our MC algorithm (see the Appendix) can be enhanced.

IV. CONCLUSIONS

The analytical treatment of the scattering signal from
nanoscopic domains populating a spherical vesicle is nontrivial
and presents a computational challenge. Here, we described
an analytical solution for calculating PDFs of same-size, ran-
domly distributed domains on a spherical vesicle. This model
can also be used for fitting scattering data of lipid vesicles with
different contrast lipid and/or protein domains. For the much-
studied example of circular domains on a spherical surface—
commonly observed in model lipid membrane systems—
intra- and interdomain correlations were treated independently.
The treatment of intradomain correlations corresponds to the
treatment of a form factor, while domain-domain correlations
were based on a PDF analysis. Domain-domain correlations
were computed analytically for two and three domains on a
vesicle. The case of greater than three domains was addressed
by a newly developed MC algorithm and by analogs of the OZ
and PY equations, which were developed here. Importantly,
the analytical solutions for intra- and interdomain correlations
of randomly distributed lipid domains on vesicles offer a new
approach for analyzing small-angle x-ray scattering (SAXS)
and small-angle neutron scattering (SANS) data of commonly
studied phase-separated model membrane systems.

In this work, we also derived analytical solutions for
nanoscopic domains occupying only a small fraction of a vesi-
cle’s area using the OZ and PY frameworks. However, when
the domains accounted for a significant fraction of the vesicle
surface (microscopic domains), the analytical description was
less than ideal. In a follow-up paper we will develop a model
that includes a physical basis for domain-domain correlations.

The described PDF treatment is based purely on geo-
metrical considerations and is in good agreement with MC
simulated results. The short-range character of domain-domain
correlations in lipid membranes should also be noted [37].
In the case of giant, micron-size unilamellar vesicles, and
where the domain area fraction is small compared to the
vesicle area, the 3D site-site PDF can be reduced to a two-
dimensional analog. Therefore, using the recently developed
theoretical frameworks, including exactly solvable models, one
can potentially use these treatments to solve domain-domain
PDFs of experimentally studied spherical vesicles [38–44].
Since the complete physical description of both intra- and
interdomain correlations and lipid phase separation is still a
work in progress, the applicability of alternative computational
approaches to interpret experimental data should be of interest
[45–50].

As mentioned, the plasma membrane, which is responsible
for the permeation of molecules into the cell’s interior, such
as water, proteins, peptides, ions, pathogens, etc., is thought
to contain lateral organization whose features range from a
few to tens of nanometers. Importantly, nanoscopic lipid-
protein domains are thought to be responsible for physio-
logical functions such as transmembrane trafficking, signal
transduction, and cell-cell recognition, to name a few. Despite
their importance, and the many studies attempting to detect
and characterize them, they have remained somewhat elusive.
Recently, SANS techniques have proven capable of detecting
nanoscopic domains in spherical vesicles [2] and in living
bacterial cells [3]. However, due to a lack of analytical tools
to interpret the scattering data, their morphologies are still not
well characterized. As a result, the newly developed models
presented in this paper may help us interpret scattering data
in a less model-dependent manner than what has been done
to date, specifically through the calculation of PDFs, structure
factors, and scattering intensities.
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APPENDIX: MONTE CARLO SIMULATION
TO COMPUTE DOMAIN PDFS

MC simulation was used to compute PDFs for Nd domains.
To develop an effective MC method, one has to choose an
appropriate set of coordinates, functions, and variables.

For the general case of identical Nd domains with circular
symmetry, one starts with

Cfull(α, 

1 · 

2) = H(2α, 

1 · 

2)
∫∫∫ ∏

(i,j )�=(1,2) H(2α, 

i · 

j )d 

3d 

4···d 

Nd∫∫∫ ∏
(i,j ) H(2α, 

i · 

j )d 

1d 

2d 

3d 

4···d 

Nd

.
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Examining this expression, it becomes obvious that
Cfull(α, 

1 · 

2) depends only on the radial angle α and on
the vector positions of 

1 and 

2 through the sclalar product


1 · 

2. One then obtains

Cfull(α, 

1 · 

2) = Cfull(α, 

i · 

j ).

Permuting indices 1 and 2 in Cfull (i.e., 1 to i and 2 to j )
allow for the equality to stand. The infinitesimal area element
of the spherical surface is given by sin θdθ dϕ, which is not
uniform over θ [i.e., sin θdθ dϕ = −d(cos θ)dϕ]. This leads
to a further simplification. Moreover, changing to μ = cos θ

and changing the integration from −1 to 1 gives rise to a
differential element of area dμdϕ. Therefore, one can then use
the uniformly distributed random variables μ and ϕ to perform
the MC integration.

The PDF is computed on an interval of μ = cos θ within
cos 2αd . This interval is divided using Ndivs points into Ndivs −
1 equal meshes. Nd uniformly distributed points are generated
on the surface of the unit sphere. This set of Nd points is
accepted if and only if the angular distance between them
is larger than 2αd , where αd is the radial angle of a circular
domain. The Nd point set is rejected if this condition is not
satisfied. Once the set is generated, the angular distances
between the points are collected, increasing correspondingly
the number of points that fall onto the corresponding mesh.
This is a consequence of the definition of Cfull. The process is
then repeated for a new set of randomly generated points, until
a sufficient number of points is accumulated and the random
deviation becomes negligible.

MATLAB code implementing the simulation is available as
Supplemental Material [51].
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