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Anesthesia modifies subthreshold critical slowing down in a stochastic Hodgkin-Huxley-like model
with inhibitory synaptic input
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The dynamics of a stochastic type-I Hodgkin-Huxley-like point neuron model exposed to inhibitory synaptic
noise are investigated as a function of distance from spiking threshold and the inhibitory influence of the general
anesthetic agent propofol. The model is biologically motivated and includes the effects of intrinsic ion-channel
noise via a stochastic differential equation description as well as inhibitory synaptic noise modeled as multiple
Poisson-distributed impulse trains with saturating response functions. The effect of propofol on these synapses
is incorporated through this drug’s principal influence on fast inhibitory neurotransmission mediated by γ -
aminobutyric acid (GABA) type-A receptors via reduction of the synaptic response decay rate. As the neuron
model approaches spiking threshold from below, we track membrane voltage fluctuation statistics of numerically
simulated stochastic trajectories. We find that for a given distance from spiking threshold, increasing the magnitude
of anesthetic-induced inhibition is associated with augmented signatures of critical slowing: fluctuation amplitudes
and correlation times grow as spectral power is increasingly focused at 0 Hz. Furthermore, as a function of
distance from threshold, anesthesia significantly modifies the power-law exponents for variance and correlation
time divergences observable in stochastic trajectories. Compared to the inverse square root power-law scaling
of these quantities anticipated for the saddle-node bifurcation of type-I neurons in the absence of anesthesia,
increasing anesthetic-induced inhibition results in an observable exponent < −0.5 for variance and > −0.5 for
correlation time divergences. However, these behaviors eventually break down as distance from threshold goes
to zero with both the variance and correlation time converging to common values independent of anesthesia.
Compared to the case of no synaptic input, linearization of an approximating multivariate Ornstein-Uhlenbeck
model reveals these effects to be the consequence of an additional slow eigenvalue associated with synaptic
activity that competes with those of the underlying point neuron in a manner that depends on distance from
spiking threshold.
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I. INTRODUCTION

Modern clinical anesthesia is a broadly successful enter-
prise. The ability to reversibly transition a patient between
wakeful and unconscious states is both exceedingly useful and
necessary for a variety of therapeutic and diagnostic purposes.
However, belying the clinical use of general anesthetics is an
unsatisfactory understanding of the biophysical mechanisms
by which these drugs exert their profound effects. For exam-
ple, consider the commonly used general anesthetic propo-
fol whose activity is thought to be predominantly mediated
through the γ -aminobutyric acid (GABA) type-A family of
ligand-gated ion channels in the central nervous system (CNS)
[1,2]. These channels mediate both synaptic and extrasynaptic
inhibitory neural interactions [3] and propofol is known to
potentiate their GABA-activated extra- to intracellular chloride
currents [4]. While such molecular level effects are fairly
well characterized, the mechanisms by which they propagate
across the spatial and temporal scales of the mammalian CNS
to produce the macroscopic state known as anesthesia are
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largely unknown. Studies of the electrophysiological effects
of anesthetics at the micro-, meso-, and macroscopic levels
of nervous tissue organization notwithstanding, this topic has
garnered limited interest from the theoretical and computa-
tional communities. Among published reports, the mesoscopic
mean-field approach based on modeling the average behaviors
of interacting populations of excitatory and inhibitory neurons
holds a prominent position [5–10], with only a handful of single
neuron studies.

Using a deterministic Hodgkin-Huxley-like model includ-
ing a slow potassium current (M current) and an inhibitory
GABA type-A synaptic current, McCarthy and Kopell [11]
demonstrated that small magnitude propofol-like effects po-
tentiate postinhibitory rebound spiking that may contribute to
observed low dose propofol-induced paradoxical excitation.
Gottschalk and Haney [12] modeled halothane anesthesia
in the Morris-Lecar model of the barnacle giant muscle
fiber via Hill-equation-mediated reductions in the maximum
conductance of the voltage-gated calcium channel. They
showed the existence of two distinct regions (quiescence and
sustained oscillations) in the calcium-conductance-injected
current parameter space. These authors also investigated the
behavior of the multicompartment Pinsky-Rinzel model of
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CA3 hippocampal neurons. Under conditions of soma-injected
current, halothane-induced reduction of maximal calcium
channel conductance was shown to initially modestly increase
burst frequency and duration followed by the production of
high frequency sustained spike activity. Hutt and Buhry [13]
showed that in the presence of excitatory synaptic activity,
anesthetic-induced potentiation of extrasynaptic GABAergic
inhibition influences the firing rate curves (as a function of
excitatory synaptic conductance) of a type-I leaky integrate-
and-fire model and a type-II Morris-Lecar model. Specifically,
enhanced tonic inhibition shifts the firing rate curve to larger
conductances in type-I neurons and shrinks the firing interval
in type-II neurons. Consistent with the traditional theme of
computational neuroscience, these studies all focus on the
suprathreshold spike-forming behavior of neurons. No compu-
tational studies exist that probe the subthreshold characteristics
of single neurons on approach to spiking threshold under the
influence of anesthesia.

A visually distinct characteristic of single neuron membrane
potential traces in the subthreshold regime on close approach to
the threshold current for action potential (i.e., spike) generation
is the nonlinear phenomenon known as critical slowing down
(CSD). As highly nonlinear systems, the dynamical signatures
of CSD—growth in amplitude simultaneous with decay in
frequency of fluctuations about a stable fixed point—have been
observed in transmembrane potential traces from both exper-
imental and computational work on single neurons. The first
published report of CSD in this setting was by Matsumoto and
Kunisawa [14] in 1978 using the squid giant axon preparation
(a type-II resonator system that undergoes an Andronov-Hopf
birfurcation and upon which the classical Hodgkin-Huxley
model is based). More recently, CSD was experimentally
observed in pyramidal neurons (a type-I integrator system that
undergoes a saddle-node bifurcation) in rat acute neocortical
slices as a function of distance from spiking threshold [15].
Critical slowing has also been shown to develop in simulated
voltage trajectories of type-I and type-II model neurons as
a natural consequence of intrinsic biological noise modeled
as either additive white-noise [16] or via Markov chain de-
scriptions of stochastic voltage-gated ion channel dynamics
[17]. Notably, using mean-field theory it has been proposed
that the observable surge in electroencephalographic power
at anesthetic-induced loss of consciousness—known as the
biphasic effect [18,19]—results from critically slowed fluc-
tuations of an average excitatory “soma voltage” state variable
that grow in magnitude as anesthesia modulates an inhibitory
neurotransmitter rate constant thereby driving the system
toward a transition point between two stable branches of a fixed
point manifold [20,21]. Within this “anesthetodynamic” phase
transition framework, CSD is induced by the combination of
noisy subcortical drive and the external constraint of propofol-
like anesthesia; neither alone is sufficient.

Given these findings, we seek to characterize the influence
of anesthesia on the subthreshold dynamics of single neurons
using stochastic Hodgkin-Huxley-like models. This topic, to
the best of our knowledge, has not been previously inves-
tigated and the current investigation represents a theoretical
contribution whose experimental verification remains an open
question. Specifically, we investigate the influence of propofol-
like GABAergic anesthesia on CSD in a type-I mammalian

pyramidal point neuron model endowed with stochastic ion
channel kinetics and driven by random inhibitory GABA
type-A synaptic activity on close approach to spiking thresh-
old. For biologically motivated parameters we demonstrate
that anesthetic-induced augmentation of inhibitory synaptic
interactions modifies the intrinsic critically slowed dynamics
of the transmembrane potential trajectory. Notably, anesthesia
tends to enhance the qualitative signatures of critical slowing
down—voltage fluctuation amplitude, correlation time, and
spectral power at 0 Hz are all increased—over a range of
dimensionless distances from spiking threshold. On closer
approach to threshold, this trend breaks down with both
the variances and correlation times converging to common
values. However, while the qualitative features of CSD are re-
tained, anesthesia significantly modifies the anticipated inverse
square root power-law scalings for saddle-node bifurcation.
For variance and correlation time, divergences observable
in simulated stochastic trajectories display exponents less
than and greater than −0.5, respectively. Using a linearized
Ornstein-Uhlenbeck approximation of the full model, we show
that this behavior is due to anesthetic-induced alterations in
the model’s underlying eigenvalue structure. An additional
slow eigenvalue associated with synaptic activity, that is
significantly influenced by anesthesia, competes with those
of the underlying point neuron for dominance. Linear theory
predicts that synaptic dynamics will dominate unless distance
from threshold is sufficiently diminished at which point the
dynamics of the underlying bifurcation structure of the type-I
neuron emerge. Independently of anesthesia, collapse of the
signatures of CSD in stochastic trajectories on close approach
to threshold noted above is the result of increasingly nonlinear
behavior necessary for spike generation.

II. MODEL

We consider a synaptically driven Hodgkin-Huxley-like
point neuron model. In its most general form the model is

C
dV

dt
= IDC − gNa(t)(V − ENa) − gK(t)(V − EK)

− gL(V − EL) − Isyn, (1)

where V is transmembrane potential measured with respect
to the extracellular environment; C is membrane capacitance;
IDC is an injected stimulus current; gNa(t) and gK(t) are time-
dependent total sodium and potassium channel conductances;
gL is the leakage channel conductance; and ENa, EK, and EL

are, respectively, the sodium, potassium, and leakage ion chan-
nel reversal potentials. The last term, Isyn, is the total current
induced by synaptic interactions where here we consider only
inhibitory synapses designed to model phasic GABA type-A
input. Note that if Isyn is set to zero and the sodium and
potassium channel dynamics are described deterministically
such that gNa(t) → ḡNam

3h and gK(t) → ḡKn4, the traditional
form of the Hodgkin-Huxley model [22],

C
dV

dt
= IDC − ḡNam

3h(V − ENa) − ḡKn4(V − EK)

− gL(V − EL), (2a)

dx

dt
= αx(V )(1 − x) − βx(V )x, (2b)
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TABLE I. Voltage-dependent gating variable rate constants for
the Nowotny and Rabinovich [29,30] parametrization of the Eq. (2)
deterministic type-I integrator model as well as the Figs. 1 and 2
Markov chains. Rate constant units are ms−1 and voltage, V , is
measured in mV.

Symbol Function

αn(V ) −0.032(V + 50)/{exp[−(V + 50)/5] − 1}
αm(V ) −0.32(V + 52)/{exp[−(V + 52)/4] − 1}
αh(V ) 0.128 exp[−(V + 48)/18]

βn(V ) 0.5 exp[−(V + 55)/40]

βm(V ) 0.28(V + 25)/{exp[(V + 25)/5] − 1}
βh(V ) 4/{exp[−(V + 25)/5] + 1}

is recovered. Here ḡNa and ḡK are the maximum sodium
and potassium channel conductances; x ∈ {n,m,h} where
n,m, and h are gating variables that describe the kinetics
of potassium channel activation, sodium channel activation,
and sodium channel inactivation, respectively; and the αx(V )
and βx(V ) functions are transmembrane potential-dependent
first-order rate constants for gate opening and closing (see
Table I). Although biologically motivated, this deterministic
model fails to account for the significant influence of thermally
induced random state transitions responsible for the observed
stochastic dynamics of ion channels. In order to incorporate
these effects with those of synaptic noise on transmembrane
potential dynamics, we use stochastic descriptions of both the
ion channel kinetics, gNa(t) and gK(t), and synaptic interac-
tions, Isyn.

A. Channel-based stochastic differential equation

The mathematical description of ion channel stochasticity
is typically achieved via one of two general approaches:
continuous time, discrete state Markov chains or their diffusion
approximations. Considered the default gold standard method,
Markov chains are accurate but extremely time consuming to
numerically simulate—even when implemented using efficient
methods such as the Gillespie algorithm [23]. For the sodium
and potassium channels of the Eq. (2) Hodgkin-Huxley-like
model, the corresponding Markov chains that provide the
correct deterministic (i.e., large channel number) limiting
behavior are given in Figs. 1 and 2. Formulated by Fox and
Lu [24] as a method to approximate the fraction of channels

n0 n1 n2 n3 n4
4αn 3αn 2αn αn

4βn3βn2βnβn

FIG. 1. Markov-chain model (kinetic scheme) of the Hodgkin-
Huxley potassium channel with four activation n gates. There are
five states in total, each characterized by a different number of
open gates, and eight possible state transitions. The only fully open
and conducting state is n4. State subscripts indicate the number of
open n gates and voltage-dependent transition rates are given next
to the associated arrow. The potassium channel state occupancy
vector is XK = [X0,X1,X2,X3,X4]T with X

open
K = X4. See Table I

for definitions of the αn and βn rates.

m0h1 m1h1 m2h1 m3h1

m0h0 m1h0 m2h0 m3h0

3αm 2αm αm

3βm2βmβm

3αm 2αm αm

3βm2βmβm

αh βh αh βh αh βh αh βh

FIG. 2. Markov-chain model (kinetic scheme) of the Hodgkin-
Huxley sodium channel with three activation m gates and one
inactivation h gate. There are a total of eight states, each characterized
by a different number of open gates, and twenty possible state
transitions. The only fully open and conducting state is m3h1. State
subscripts indicate the number of open m and h gates and transition
rates are given next to the associated arrow. The sodium channel state
occupancy vector is YNa = [Y00,Y10,Y20,Y30,Y01,Y11,Y21,Y31]T with
Y

open
Na = Y31. See Table I for definitions of the αm, αh, βm, and βh

rates.

in each Markov state in a large ensemble of Markov chains,
the diffusion approximation utilizes multivariate stochastic
differential equations (SDEs) with appropriately weighted
white-noise perturbations. In this approach, the sodium and
potassium conductances are described as gi = ḡi f

open
i for

i ∈ {Na,K}, where f
open
i is the fraction of open channels and ḡi

is the maximal conductance. Of the available diffusion approx-
imations, we follow [25] and write the so-called channel-based
model as

C
dV

dt
= IDC − ḡNaY

open
Na (V − ENa)

− ḡKX
open
K (V − EK) − gL(V − EL), (3a)

dYNa

dt
= ANaYNa + 1√

NNa
SNa(YNa)ξNa(t), (3b)

dXK

dt
= AKXK + 1√

NK
SK(XK)ξK(t), (3c)

where YNa and XK are 8- and 5-element column vectors con-
taining each channel’s state occupancy fractions (see Figs. 1
and 2); ANa(K) is the sodium (potassium) channel drift matrix;
SNa(K) = √

DNa(K) with DNa(K) the state-occupancy-dependent
sodium (potassium) channel diffusion matrix; NNa(K) is the
total number of sodium (potassium) channels being modeled;
and ξNa(t) and ξK(t) are multivariate independent Gaussian
white-noise processes delta-correlated in time (i.e., infinite
variance) with zero mean. Exact expressions for the ANa(K)

and SNa(K) matrices can be found in Ref. [25]. Note that this
model is consistent with the deterministic behavior of Eq. (2)
in the limit of large membrane area, A, via the relationships
NNa(K) = AρNa(K), where ρNa(K) are the channel densities.

While generally computationally more efficient than direct
simulation of the associated Markov chains, the class of
diffusion approximations are not without numerical difficul-
ties. Reviewed in [26], these include maintaining physically
meaningful boundary conditions and normalization (i.e., Xi ∈
[0,1] and

∑
Xi = 1 for some state vector X) on the fractional

state occupancies of each channel. If these constraints are
violated it becomes possible for the square root of the diffusion
matrix to produce unphysical complex values. In response,
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various formulations of the diffusion approximation have been
proposed, each characterized by the methods employed to
circumvent these issues. As demonstrated in [26] and [27],
the implementation due to Orio and Soudry [25] is the most
satisfactory based on numerical comparisons. These authors
used a novel method to directly write the S matrices from the
Markov chain diagrams, thereby avoiding the matrix square
root operation necessary when the diffusion matrix is used
to numerically obtain S. Although this formulation does not
directly address the boundary constraint, the normalization
requirement can be implemented within the numerical algo-
rithm thereby modeling a reduced 12-variable system rather
than the original 14-variable system. In addition, and most
importantly, this approach has been shown to give results
statistically indistinguishable from Markov chain simulations
for channel numbers in excess of approximately 103. For
smaller channel numbers, direct Markov chain simulation may
be the most appropriate and efficient choice [27]. Because
the model parametrizations used here correspond to sodium
and potassium channel numbers of order ∼104, we utilize
the Orio and Soudry [25] diffusion approximation to directly
incorporate ion channel noise.

B. Synaptic interactions

The total synaptic current, Isyn in Eq. (1), due to phasic
GABA type-A inhibitory input is given by

Isyn = gGABA(t)(V − EGABA), (4)

where gGABA(t) is the total inhibitory synaptic conductance
per unit area and EGABA is the inhibitory synaptic reversal
potential. To model gGABA(t), we imagine Nsyn inhibitory
synapses incident on a neural membrane of area A such that
this total conductance can be expressed as

gGABA(t) = ḡGABA

⎛
⎝ 1

Nsyn

Nsyn∑
i=1

ri(t)

⎞
⎠

= ḡGABAR(t), (5)

where ri(t) is the inhibitory synaptic response function of the
ith synapse, ḡGABA is the maximum specific conductance due
to all inhibitory synaptic interactions, and the quantity R(t)
represents the proportion of this maximal conductance realized
at time t . The time dependence of each ri(t) is described by
the ordinary differential equation [28]

dri

dt
= α Ti(t)(1 − ri) − β

γ
ri, (6)

driven by a train of presynaptic rectangular impulses, Ti(t),
Poisson distributed in time with mean rate λ. Here α and
β/γ describe the kinetics of the rise and fall of the synaptic
response, respectively, and γ � 1 is a dimensionless parameter
used to simulate the effect of increasing concentration of the
GABAergic anesthetic agent propofol on the decay rate, with
γ = 1 corresponding to no anesthesia. When γ > 1, decay
of the synaptic response is prolonged resulting in enhanced
synaptic inhibition. This modeling approach is consistent
with experimental observations [4] and captures the essential
feature of anesthetics which, generally speaking, induce loss

of consciousness in a concentration dependent manner. In
this sense, the γ parameter captures the notion of “anesthetic
effect,” a term used frequently throughout this paper. Note
that Ti(t) is a shot noise process with a rectangular response
function and that both ri(t) and R(t) are saturating processes
contained in the interval [0,1]∀t . The synaptic response to a
single (i.e., unitary) presynaptic impulse is shown in Fig. 3 as
a function of the anesthetic effect parameter γ . To make closer
contact with the channel-based SDE model and its dependence
on the area of membrane being modeled, note that ḡGABA

can also be expressed as g
syn
GABANsyn/A where g

syn
GABA is the

maximum individual synaptic conductance.

C. Full stochastic model

Combining Eqs. (1) and (3)–(6), the full model investigated
in this study is given by the following set of equations:

C
dV

dt
= IDC − ḡNaY

open
Na (V − ENa)

− ḡKX
open
K (V − EK) − gL(Vm − EL)

− ḡGABAR (V − EGABA), (7a)

dYNa

dt
= ANaYNa + 1√

NNa
SNa(YNa)ξNa(t), (7b)

dXK

dt
= AK XK + 1√

NK
SK(XK)ξK(t), (7c)

dri

dt
= α Ti(t)(1 − ri) − β

γ
ri, (7d)

where i ∈ {1,2, . . . ,Nsyn}. To complete these equations, we
parametrize them in two steps. First, for the channel-based
SDE portion, we use the parameter set from Nowotny and
Rabinovich [29,30], based on the mammalian hippocampal
pyramidal cell model of Traub and Miles, that describes type-I
integrator behavior (see Table II). Based on previous work
[17], the membrane area is set to 3000 μm2 in order to
sufficiently attenuate ion channel noise-induced spontaneous
subthreshold spike production. Treating IDC as the bifurcation
parameter, in the absence of inhibitory synaptic input this
model undergoes a deterministic saddle-node bifurcation at
IDC ≈ 0.35577 μA cm−2. Note that the parameters given in
[29] and [30] have been scaled here to a standard specific capac-
itance value of 1 μF cm−2. For the second step, we parametrize
the GABA type-A synaptic response function according to the
work of Destexhe et al. [28] whereby α = 5 ms−1 mM−1, β =
0.18 ms−1, and each presynaptic rectangular GABA impulse
has width 1 ms and magnitude 1 mM (see Fig. 3). The inhibitory
synaptic reversal potential, EGABA, is set to −70 mV [31].

The remaining free parameters, ḡGABA, Nsyn, and λ, are
more challenging to constrain. In part, this is due to nontrivial
difficulties associated with taking physiologic data obtained
from real neurons with spatial extent and nonuniform distribu-
tions of synaptic contacts and distilling these to values appro-
priate for a model devoid of spatial scale. To address this issue,
we again look to the work of Destexhe and co-workers [32]
who developed a pyramidal neuron “point conductance” model
from both electrophysiological whole cell recordings and
morphologically reconstructed multicompartment biophysical
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FIG. 3. Anesthesia is modeled (a) by reducing the unitary synaptic response ri(t) (i.e., the response to a single presynaptic impulse) decay
rate, β, of Eq. (6) via the parameter γ � 1. The condition of no anesthesia corresponds to γ = 1 and the effective decay rate of the response
is β/γ while the characteristic timescale of the decay is γ /β. Presynaptic activity is modeled (b) using 1 ms wide rectangular impulses of
magnitude 1 mM [28]. (c) The integrated area under the unitary synaptic response curve (AUC), normalized to the γ = 1 value, as a function
of γ . This quantity is anticipated to be proportional to the total charge transferred during a unitary response. Modeling propofol’s influence
on the synaptic response decay rate using the γ parameter, including the resultant linear relationship between AUC and γ , is consistent with
experimental observations [4].

models that included physiologic data on synaptic distribu-
tions and conductances. For excitatory and inhibitory synaptic
conductances, these authors found Ornstein-Uhlenbeck SDEs
to satisfactorily model their overall impact in the reduced
“point conductance” model. Across four different neuronal
morphologies, the mean and standard deviation of the total

TABLE II. Model constants for the mammalian pyramidal neuron
model due to Nowotny and Rabinovich [29,30] which demonstrates
type-I integrator behavior.

Symbol Value Unit

C 1 μF cm−2

ENa 50 mV

EK −95 mV

EL −63.563 mV

ḡNa 50 mS cm−2

ḡK 10 mS cm−2

gL 0.187 mS cm−2

ρNa 60 channels μm−2

ρK 18 channels μm−2

I crit
DC ≈ 0.35577 μA cm−2

inhibitory specific conductances were reported [32] to be of
order ∼0.1 and ∼0.01 mS cm−2. Guided by this work, we
initially explored values of ḡGABA, Nsyn, and λ consistent with
these results as well as with synaptic densities and firing rates
reported in the literature. Because such parameter sets admitted
excessively high near-threshold spike-forming behavior in
simulated stochastic trajectories, we ultimately focused on
ḡGABA = 0.1 mS cm−2, Nsyn = 300, and λ = 5 Hz. In the
absence of anesthesia (i.e., for γ = 1), these parameters give
an inhibitory synaptic conductance with mean and standard
deviation ∼0.003 and ∼0.0007 mS cm−2. These lower values
compared to those of Ref. [32] were used to attenuate near
threshold spike formation and allow for sufficiently long
epochs of spike-free activity for analysis. However, we note
broad agreement of the qualitative findings reported here over
a range of parameters including 30 � Nsyn � 1500 and 5 �
λ � 20 Hz. For all parameter sets, subthreshold transmem-
brane potential dynamics were explored as a function of both
dimensionless proximity to threshold, ε = (I crit

DC − IDC)/I crit
DC ,

and anesthetic effect parameter, γ ∈ {1,2,4,8}.

D. Critical current for spike formation

Because we focus on subthreshold transmembrane potential
behavior as a function of proximity to spiking threshold,
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ε, and magnitude of anesthetic effect, γ , it is necessary to
determine, for each parameter set, the critical input current
for spike formation, I crit

DC . The value of I crit
DC is defined within

a deterministic framework wherein the sodium and potas-
sium channel conductances are described by their traditional
Hodgkin-Huxley forms [see Eq. (2)] and synaptic contributions
are taken in the mean. For the parametrization used here, the
model’s saddle-node bifurcation at I crit

DC is located as the IDC

value at which the number of fixed points transitions from three
to one. Fixed points of the model are determined by setting all
time derivatives to zero and substituting for the m∞, n∞, and
h∞ steady-state values of the gating variables as well as for the
mean total synaptic activation, μR [see Eq. (9)], to obtain

0 = IDC − ḡNam
3
∞h∞(V − ENa) − ḡKn4

∞(V − EK)

− gL(V − EL) − ḡGABAμR(V − EGABA). (8)

The I crit
DC value is then numerically located using a bisection

search algorithm on the number of transmembrane potential
fixed points.

One difficulty in this process is due to the saturating nature
of differential equation (7d) describing the synaptic response
variables [i.e., both ri(t) and R(t) are confined to the unit inter-
val]. Despite being driven by Poisson-distributed impulses, it
is not possible to analytically solve for the mean and variance
of R(t) (as is possible for nonsaturating response functions
using Campbell’s theorem). Rather, we obtain estimates of
these quantities by numerically simulating long realizations
of the R(t) process via

μR = 1

T

∫ T

0
R(t)dt ≈ �t

T

∑
j

R(tj ), (9)

σ 2
R = 1

T

∫ T

0
[R(t) − μR]2dt ≈ �t

T

∑
j

[R(tj ) − μR]2, (10)

where T is the total simulation time and, typically, T ∼ 105 ms.
Note that the necessity to numerically estimate the value of
μR results in slight variation of the realized value from one
simulation to the next due to pseudorandom production of
the Poisson-distributed driving impulses. Uncertainty in the
value of μR translates to uncertainty in the computed values of
I crit

DC and, therefore, in the values of the applied current for set
proximity parameter ε via IDC = (1 − ε)I crit

DC . This introduces
a problem: as ε → 0 (i.e., as IDC → I crit

DC ), there is an ever in-
creasing risk of unknowingly exceeding the true I crit

DC value and
thereby simulating suprathreshold, rather than subthreshold,
voltage trajectories. Numerical studies of the propagation of
uncertainty inμR to I crit

DC suggest that at ε = 0.01, the likelihood
of accidentally exceeding I crit

DC is minimal (see Table III).
In practice, suprathreshold trajectories are quite difficult to
reliably distinguish from their close-to-threshold subthreshold
counterparts due to the nature of type-I neuron dynamics
wherein the emergence of spike formation occurs at arbi-
trarily low rates. Consequently, for ε � 0.01, contamination
of stochastic voltage trajectory realizations with unintended
suprathreshold trajectories is possible. However, given that
noise is an innate feature of biology to which neurons are con-
stantly exposed, complete discrimination between the sub- and
suprathreshold regimes may not be desirable or meaningful.

TABLE III. Dependence of uncertainty in the numerical deter-
mination of the mean total synaptic activation, μR , on the anesthetic
effect parameter, γ , and propagation of that error to determinations
of the total synaptic activation variance, σ 2

R , and critical current
for spike formation, I crit

DC . These illustrative data are for ḡGABA =
0.1 mS cm−2, λ = 5 Hz, and Nsyn = 300 and are based on 100
independent 105 ms long realizations of the R(t) process. Data are
presented as mean ± one standard deviation.

γ μR σ 2
R(×10−4) I crit

DC (μA cm−2)

1 0.02974 ± 0.00007 0.5025 ± 0.0055 0.3862 ± 0.0001
2 0.05517 ± 0.00013 0.8716 ± 0.0134 0.4122 ± 0.0001
4 0.1022 ± 0.0002 1.479 ± 0.031 0.4604 ± 0.0002
8 0.1832 ± 0.0004 2.308 ± 0.067 0.5445 ± 0.0004

E. Linearization

Following [16] and [17], we linearize the full model to
gain insight into the numerical simulation results. Because
a straightforward linearization is not possible due to the
presence of the Poisson-distributed driving term in Eq. (6), we
approximate the overall effect of the inhibitory synapses by
replacing the Nsyn differential equations for the ri(t) variables
with a single Ornstein-Uhlenbeck (OU) process designed to
mimic their influence. Specifically, we linearize the modified
Eq. (7) system

C
dV

dt
= IDC − ḡNaY

open
Na (V − ENa)

− ḡKX
open
K (V − EK) − gL(Vm − EL)

− ḡGABAR̃ (V − EGABA), (11a)

dYNa

dt
= ANaYNa + 1√

NNa
SNa(YNa)ξNa(t), (11b)

dXK

dt
= AK XK + 1√

NK
SK(XK)ξK(t), (11c)

dR̃

dt
= − 1

τ
(R̃ − μR) +

√
D ξR̃(t), (11d)

where τ = γ /β,μR is given by Eq. (9), D = 2σ 2
R/τ , and the

R̃(t) process approximates the R(t) process. The relationships
defining the τ and D parameters of the approximating OU
process in Eq. (11) have been adopted from [33] and are strictly
only exact for an OU process approximating a large number
of independent shot-noise processes with nonsaturating expo-
nential response functions.

By explicitly implementing the normalization requirements
to eliminate the X0 and Y00 variables, we work with a reduced
13-variable system and linearize about the steady-state Z0 =
[V 0,X0

1,X
0
2,X

0
3,X

0
4,Y

0
10,Y

0
20,Y

0
30,Y

0
01,Y

0
11,Y

0
21,Y

0
31,R̃]T to form

the multivariate OU process

d

dt
z(t) = −Az(t) + S�(t), (12)

where z(t) = Z(t) − Z0 is a 13-element column vector con-
taining the fluctuation of each variable about its steady-state
value; A is the 13 × 13 drift matrix of the aggregate system; S is
the 13 × 16 square root of the diffusion matrix of the aggregate
system; and � is a column vector containing the independent
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white-noise perturbations with �1 = 0 (i.e., there is no direct
noise perturbation of the transmembrane potential). Note that
the S matrix has block diagonal form S = diag(0,SK,SNa,

√
D)

with the dimensions of SK and SNa being, respectively, 4 × 4
and 7 × 10. The drift matrix, A, is equal to the negative of the
Jacobian matrix, J, of Eqs. (11) evaluated at the nominated
steady state (i.e., A = −J)

J = ∂(FV ,FX1 , . . . ,FY31 ,FR̃)

∂(V,X1, . . . ,Y31,R̃)

∣∣∣∣
Z0

. (13)

Note that there is no simple relationship between the drift
matrix A of Eq. (12) and the AK(Na) matrices of Eqs. (11b)
and (11c), unlike the direct relationship between S and SK(Na).
See the Appendix for additional details on the linearization.

Stationary solutions to Eq. (12) will exist in the subthreshold
regime where each of the 13 eigenvalues, 0 > λ1 � λ2 �
· · · � λ13, of the Jacobian matrix are negative or have negative
real part. Note that the inverse of the real part of each
eigenvalue defines a characteristic timescale for the dynamical
development of perturbations in a region close to the steady
state. The dominant (i.e., the least negative) eigenvalue, λ1,
determines the slowest of these timescales: Tslow = −1/λ1.

Following Gardiner [34], stochastic calculus gives the
general solution to Eq. (12) in the subthreshold regime as

A� + �AT = SST, (14)

where � is the 13 × 13 covariance matrix. The �11 ele-
ment of the covariance matrix gives the variance, var{δv},
of transmembrane potential deviations, δv(t) = V (t) − V 0,
about the V 0 steady state at each input current. To capture the
essential components of dynamical slowing—growth in ampli-
tude simultaneous with decay in frequency of transmembrane
potential fluctuations—we consider the probability density
of fluctuations together with the time-correlation matrix and
its Fourier transform, the spectrum matrix. For the Eq. (11)
multivariate, linear OU process, the probability density of
voltage fluctuations is predicted to be Gaussian with zero mean
and variance given by �11. The time-correlation matrix, C(τ ),
with symmetry property C(−τ ) = [C(τ )]T, is given by [34]

C(τ ) = e−Aτ�, (15)

where τ � 0 is the time lag. Likewise, the spectrum matrix,
G(ω), is given by [34]

G(ω) = 1

2π
(A + iωI)−1SST(AT − iωI)−1, (16)

where ω is frequency, i is the imaginary unit, and I is the
identity matrix. Note that the linear analysis presented here
is only applicable in the subthreshold regime: on crossing
threshold at least one eigenvalue of the Jacobian matrix will
satisfy Re(λi) > 0 and a stationary solution to Eq. (12) will no
longer exist.

Predictions derived from Eqs. (14), (15), and (16) are
compared to transmembrane potential fluctuation statistics ob-
tained from numerical simulation of the full stochastic model.
When combined with eigenvalue analysis of the Jacobian
matrix, the linearized system is used to provide insight into
the observed dynamical behavior on approach to threshold.

III. NUMERICAL SIMULATIONS

The full stochastic model, Eq. (7), was implemented in
MATLAB, version 2016b. All computations were preformed
using double-precision (64-bit) floating-point arithmetic. We
simulated stochastic transmembrane potential trajectories as
a function of dimensionless proximity to threshold (ε) for
various combinations of the mean rate of inhibitory impulses
(λ), the number of synaptic connections (Nsyn), the anesthetic
effect parameter (γ ), and the maximal conductance of the
inhibitory synaptic interactions (ḡGABA). Spike detection in
simulated traces was accomplished via an algorithm based
on the transmembrane potential crossing a threshold value
(typically chosen to be 0 mV). For each detected spike,
both the prior and subsequent 50 ms of simulated time were
excluded from analysis. Increasing these exclusion times did
not significantly influence the fluctuation statistics computed
from the spike-free epochs likely due to minimal overall spike
formation (<5 Hz) in the majority, but not all, of the simulated
trajectories (the likelihood of spike formation increases as
ε → 0). Simulation times of 20.5 s were used for each
parameter set at each ε value. The initial conditions for each
simulation corresponded to the average input current density
dependent deterministic equilibrium state. The first 0.5 s of
each simulated trace was discarded prior to analysis. The Euler-
Maruyama algorithm was used for numerical integration with
a deterministic time step �t = 0.005 ms. Over the range of
conditions considered here, the smallest timescale associated
with either the underlying point neuron model or the synaptic
dynamics was ∼0.09 ms—an order of magnitude larger than
this time step—and simulations using �t = 0.001 ms did
not influence the results. For each γ value, transmembrane
potential trajectories were simulated for 1 � ε � 0.001 with
ε → 0 corresponding to increasingly close approach to spiking
threshold. To account for uncertainty in I crit

DC values for each
{λ,ḡGABA,γ,Nsyn} parameter set—as illustrated in Table III—
100 independent transmembrane potential trajectories were
computed for each parameter combination at each ε value.

To characterize the subthreshold behavior of the model for
each parameter set, we computed probability distribution den-
sities, autocorrelation functions, and power spectral densities
of subthreshold voltage fluctuations, δv. Probability densities
were estimated from their respective voltage time series by
computing transmembrane potential fluctuation histograms
and then dividing by N�V with N = 2001 the number of
bins and �V the bin width. Autocorrelation functions were
computed with the MATLAB xcorr function by averaging auto-
correlations from 2000 ms non-overlapping segments. Power
spectral densities were computed with the MATLAB spectro-
gram function using a top-hat window and 100 ms epochs
with 50% overlap. Linearized predictions were obtained from
Eqs. (15) and (16) by first solving Eq. (14) for the covariance
matrix, �, using the MATLAB sylvester function.

IV. RESULTS

Sample transmembrane potential stochastic trajectories are
presented in Fig. 4 to illustrate the impact of anesthesia
on the subthreshold dynamics of the Eq. (7) full stochastic
model. There are noticeable increases in the magnitude and

062403-7



BUKOSKI, STEYN-ROSS, PICKETT, AND STEYN-ROSS PHYSICAL REVIEW E 97, 062403 (2018)

FIG. 4. Raw 1 s duration transmembrane potential stochastic trajectories computed from the Eq. (7) full model for order-of-magnitude
reductions of the dimensionless distance from spiking threshold, ε = (I crit

DC − IDC)/I crit
DC (see legend), and various levels of anesthetic effect

[(a) γ = 1, (b) γ = 2, (c) γ = 4, and (d) γ = 8]. For those trajectories that include spikes, discontinuities are an artifact of suppressing full
spike magnitudes. These illustrative traces are for ḡGABA = 0.1 mS cm−2, λ = 5 Hz, and Nsyn = 300. Trajectories have been offset vertically
for consistent alignment and to reduce overlap.

duration of subthreshold excursions from equilibrium as the
distance from spiking threshold, ε, approaches zero and as
the anesthetic effect parameter, γ , increases. To quantify these
effects, voltage fluctuation statistics computed from multiple
realizations of the full stochastic model are given in Fig. 5
for the same sequence of order-of-magnitude differences in
proximity to spiking threshold and γ values. Column 1 gives
probability density functions (PDFs) which are seen to grow
in breadth—corresponding to growth in voltage fluctuation
amplitude—as ε → 0 for set γ and as γ increases for set ε.
However, for ε � 0.01 it appears that PDF width becomes in-
creasingly less dependent on γ concurrent with the appearance
of negative skew indicating departure from the symmetric,
Gaussian predictions of linear theory. The predominance of
negative fluctuations is consistent with the lack of excitatory
synaptic input in the full model such that lower membrane
potentials are favored in the subthreshold regime. Overall,
these observations for ε � 0.01, despite deletion of all spiking
activity prior to analysis, are consistent with the increasingly
significant role of nonlinear dynamics as ε → 0 (i.e., as
IDC → I crit

DC ): spike formation at threshold is an inherently
nonlinear phenomenon. Note that for ε = 0.01 and 0.001,
the PDF thorns appearing at δv = 0 are an artifact of spike
exclusion from the raw voltage trajectories and serve as a visual

indicator of stochastic spike formation. Columns 2 and 3 of
Fig. 5 give power spectral densities (PSDs) and autocorrelation
functions (ACFs) for the same ε and γ values as for column 1.
Qualitatively consistent with the dynamics of critical slowing
down, we observe growth in the 0 Hz component of the PSDs
and in the width of the ACFs for increasing γ and decreasing ε.
However, as for PDF width discussed above, these trends break
down for ε � 0.01 indicating the appearance of nonlinear
behavior necessary for spike emergence at threshold.

The trends in stochastic trajectory fluctuation variance and
correlation time noted in Fig. 5, together with their eventual
collapse as ε → 0, are readily apparent in Figs. 6 and 7(a),
respectively. In addition, these figures clearly illustrate the
presence of divergences in these quantities as ε → 0 for setγ as
well as a γ -dependent enhancement of variance and correlation
time for set ε. The collapse of these behaviors for ε � 0.01,
with both the variances and correlation times trending toward
common values regardless of anesthetic effect, is also easier
to quantify. In addition to fluctuation statistics computed from
stochastic trajectories, Figs. 6 and 7(a) provide mean variance
and correlation time predictions computed from linearization
of the approximating multivariate OU process. Agreement be-
tween linear theory and full stochastic model statistics is shown
to be excellent for ε > 0.01 but breaks down for ε < 0.01.
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FIG. 5. Transmembrane potential fluctuation probability density functions (PDF; column 1), power spectral densities (PSD; column 2), and
autocorrelation functions (ACF; column 3) for variable proximity to spiking threshold, ε (decreases from row 4 to row 1), and anesthetic effect
parameter, γ (see legend), for ḡGABA = 0.1 mS cm−2, λ = 5 Hz, and Nsyn = 300. Each curve is an average of the results for 100 independent
realizations of the underlying transmembrane potential trajectories. Appropriate units for the ordinates of each column are given in the column
heading. The thorns riding on top of the ε = 0.01 and 0.001 PDFs are a signature artifact generated by spike exclusion from raw voltage
trajectories.

For the linear theory predictions in both Figs. 6 and 7(a), there
is eventual convergence to 1/

√
ε scaling behavior as ε → 0

for all γ values as expected for the saddle-node bifurcation of
type-I neuron dynamics. Notably, this behavior is never fully
realized in the statistics computed from stochastic trajectories
due to the appearance of nonlinearities necessary for spike
formation. A final observation from these figures is that power-
law divergence exponents for mean fluctuation statistics from
simulated stochastic trajectories based on results for ε � 0.01

would give values < −0.5 for variance divergence and > −0.5
for correlation time divergence when γ > 1. Thus the quantita-
tive 1/

√
ε divergence scalings characteristic of the saddle-node

bifurcation of the underlying point neuron are not observable
but the qualitative trends associated with critical slowing are
preserved as a function of both proximity to threshold and anes-
thetic effect. In this way, anesthesia modifies critical slowing
down by altering the quantitative aspects, while retaining the
qualitative aspects, of this nonlinear phenomenon.
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FIG. 6. Divergence of transmembrane potential fluctuation variance in the Eq. (7) type-I integrator neuron model with inhibitory synaptic
input as a function of proximity to instability threshold, ε, and anesthetic effect parameter, γ , for ḡGABA = 0.1 mS cm−2, λ = 5 Hz, and
Nsyn = 300. Thick color (gray scale) lines represent results computed from simulation of the Eq. (7) full stochastic model and thinner gray
dashed lines represent predictions based on linearization of the Eq. (11) Ornstein-Uhlenbeck system. Results are based on 100 independent
transmembrane potential trajectories computed for each {ε,γ } pair. For the full model, error bars represent ± two standard deviations while
only mean results are presented for the linear model. The topmost thick dashed black line has a slope of −0.5 for reference. Note that for all γ

values the linear OU divergences approach 1/
√

ε as ε → 0 but this behavior is never fully realized in the stochastic trajectories which converge
towards a common value starting at ε ∼ 0.01.

Also shown in Fig. 7(b) are the timescales corresponding
to the two most dominant eigenvalues of the approximating
linearized OU model. For each value of the anesthetic effect
parameter γ , there is an associated threshold proximity, ε,
where the dominant eigenvalue transitions from a constant
value to divergence with ε as 1/

√
ε. Prior to these transitions,

the dominant timescales for γ = 1, 2, 4, and 8 are, respectively,
6.1, 11.1, 22.2, 44.4 ms. These values closely track the
characteristic timescales of the inhibitory synaptic decay, given
by γ /β, which are 5.6, 11.1, 22.2, and 44.4 ms for the same
gamma values. The exception to this behavior is the γ = 1
case wherein the dominant timescale is divergent over the
entire ε range investigated. These results indicate that, within
the linear approximation, the behavior of the full model as
ε → 0 can be explained by a dynamical competition between
the underlying point neuron and synapses: there is an initial
dominance of synaptic activity followed by emergence of the
point neuron dynamics. This emergence is possible because
of the constant nature of the synaptic dynamics which are
independent of proximity to threshold. Additionally, the extent
to which the characteristic subthreshold divergences of the
underlying point neuron are observed in stochastic trajectories
is determined by an interplay between the appearance of
nonlinearity necessary for spike formation, leading to the
eventual collapse of divergences, and the influence of synaptic

interactions as affected by anesthesia. To illustrate this effect,
consider the results shown in Fig. 7. For γ = 1, the ε value in
Fig. 7(b) at which eigenvalue dominance shifts from synaptic
to point neuron dynamics is effectively unity and, comparing
the stochastic trajectory results of Fig. 7(a), this curve most
rapidly conforms to the anticipated −0.5 divergence exponent
as ε decreases. At the other extreme, the γ = 8 curve in
Fig. 7(a) never fully attains a divergence exponent of −0.5
because divergence collapse due to nonlinearity occurs at
approximately the same ε value [i.e., at log10(ε) ∼ −2] at
which the eigenvalue dominance changes. In this case, the
dynamics of the underlying point neuron model are effectively
masked by the synaptic dynamics.

Note that results have been presented in Figs. 5, 6, and 7
using the dimensionless parameter ε = (I crit

DC − IDC)/I crit
DC be-

cause nonlinear dynamics predicts that the signatures of critical
slowing down should scale with distance from threshold (i.e.,
proximity to bifurcation) and not the magnitude of the bifurca-
tion parameter. Given that I crit

DC varies with γ (see Table III) and
that ion channel dynamics are voltage dependent, this raises the
question of the comparability of mean subthreshold voltages
between trajectories characterized by different γ values for
some particular ε value. Mean voltages computed from spike-
deleted stochastic realizations for set ε values but different
γ values reveals agreement to within 0.5 mV. This indicates
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FIG. 7. (a) Divergence of correlation times, τcorr, for transmembrane potential fluctuations computed as the time required for the
autocorrelation function to decay to 1/e of the zero-lag peak. Thick color (gray scale) lines represent results computed from simulation of the
Eq. (7) full stochastic model and thinner gray dashed lines represent predictions based on linearization of the Eq. (11) Ornstein-Uhlenbeck
(OU) system. For the full model, error bars represent ± two standard deviations while only mean results are presented for the linear model.
The thick dashed black line has a slope of −0.5 for reference. Note that for all γ values the linear OU divergences approach 1/

√
ε as ε → 0.

However, this behavior is never fully realized in the stochastic trajectories which converge toward a common value of ∼40 ms for ε � 0.01.
(b) Mean behavior of the two largest characteristic times τi = −1/λi with i = 1,2 predicted from the two largest eigenvalues, λi with
0 > λ1 � λ2, of the linearized Eq. (11) OU system. For each γ value, τ1 is given by the solid line and τ2 by the dashed line. In both (a) and (b),
results are presented as a function of proximity to instability threshold, ε, and anesthetic effect parameter, γ , for ḡGABA = 0.1 mS cm−2, λ = 5 Hz,
and Nsyn = 300. All results are based on 100 independent transmembrane potential trajectories computed for each {ε,γ } pair.

that the effects of γ presented here are not due to underlying
variation of ion channel dynamics induced by dissimilar mean
voltages.

V. DISCUSSION

Extending our previous work [17] on the subthreshold
dynamics of stochastic Hodgkin-Huxley-like point neuron
models to include inhibitory synaptic interactions and the
effect of GABAergic anesthetics such as propofol, we have
demonstrated how anesthesia modifies the observable statis-
tical signatures of critical slowing down as a model point
neuron approaches spiking threshold from below. Specifically,
qualitative features including growth of fluctuation amplitude,
focusing of spectral power toward 0 Hz, and increasing corre-
lation time as spiking threshold is approached from below, for
a set magnitude of anesthetic-induced inhibition, are retained.
Additionally, these same features are enhanced by augmented
anesthetic-induced inhibition for set proximity to threshold
(see Figs. 6 and 7). Prior to collapse of these trends due to
the necessary emergence of highly nonlinear spike-forming
dynamics on sufficiently close approach to threshold, the
quantitative inverse square root divergences for fluctuation
variance and correlation time of the underlying point neuron
model’s saddle-node bifurcation structure as threshold is ap-
proached from below are increasingly difficult to observe in
stochastic trajectories as the effect of anesthesia is increased
due to an anesthetic-enhanced dominance of synaptic dynam-

ics. Linearization of an approximating multivariate Ornstein-
Uhlenbeck process was used to illustrate the dynamical mecha-
nism underpinning this behavior: the addition of an eigenvalue
associated with the synaptic dynamics to those of the bare
point neuron model. Because this eigenvalue is independent
of distance from spiking threshold, there exists a competition
for dominance between it and those of the underlying point
neuron which continuously diverge as the system moves closer
to spike formation. Within the linear approximation the system
must make a sufficiently close approach to spiking threshold
for the saddle-node bifurcation dynamics to fully emerge.
Importantly, anesthesia tends to suppress this emergence by
augmenting the dominance of the eigenvalue associated with
the synaptic dynamics. Despite excellent agreement between
linear theory and the full stochastic model for moderate
distances from spiking threshold, divergence between these
linear predictions and the statistics of stochastic trajectories is
significant at about 1% from threshold presumably due to the
increasing importance of nonlinear behavior (i.e., the dynamics
of spike formation that must necessarily emerge at threshold).

Our principal motivations for studying the influence of
anesthesia on neuronal dynamics in the subthreshold regime
were twofold. First, because suprathreshold spike-forming
behavior (i.e., neurocomputational properties traditionally de-
fined by the statistics of spike formation such as interspike
intervel distributions) must necessarily emerge from the sub-
threshold regime, alterations of subthreshold dynamics may
be a significant contributor to alterations in suprathreshold
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dynamics. For example, although it is well known that different
bifurcation structures—such as the saddle-node bifurcation of
type-I neurons and the Andronov-Hopf bifurcation of type-
II neurons—lead to characteristic firing rate behaviors, the
introduction of random perturbations to such systems has
been demonstrated to have complex dynamical effects. In
their study of the Morris-Lecar model parametrized to achieve
either type-I or type-II behavior, Tateno and Pakdaman [35]
found that while additive white noise destroys the bifurcation
structures that characterize these classes of activity (in the
sense of the evolution of probability densities), the reliability of
stimulus-evoked responses in each class was maintained. Other
interesting effects of additive noise on the spike-forming char-
acteristics of neural models have also been reported including
the inhibition, rather than enhancement, of spiking by weak
noise (see [36], [37], and references therein).

Our second motivation for carrying out this work is broad in-
terest in the mechanisms by which anesthetics exert their wide
ranging effects on the central nervous system including effects
at the single neuron level. As suggested in the Introduction,
how anesthetics influence the dynamics of single neurons and
how these effects translate across the spatiotemporal domains
of the central nervous system are open questions. As externally
and dynamically applied constraints on inherently nonlinear
neural structures which function far from equilibrium, anes-
thetics clearly give rise to a massively useful and interesting
phenomenon. In relation to the work presented here, to the
extent that anesthetics at clinically relevant concentrations
reduce spike formation in single neurons, these findings imply
that the synaptic influence of GABAergic anesthesia on single
neuron dynamics in the subthreshold regime is more complex
than a straightforward enhancement of inhibition. To this point,
our model predicts that GABAergic anesthesia will enhance,
rather than diminish, the variance of subthreshold voltage
fluctuations.

The significance of these findings for the mechanisms by
which anesthetics induce and maintain unconsciousness is
unclear. To our knowledge, critical slowing down has not been
observed at the single neuron level during anesthetic-induced
loss of consciousness. This contrasts with the prediction of
mean-field cortical models that the biphasic effect observed in
electroencephalographic recordings during loss of conscious-
ness is an observable manifestation of critical slowing down of
an excitatory mesoscopic state variable. Because a necessary
and sufficient condition for loss of consciousness has not
been defined—other than the administration of anesthetics—it
would be premature to speculate on the position of the current
work in the context of anesthesia as an integrated whole.

However, in the single neuron setting we believe that the
effects of GABAergic anesthesia illustrated by our model could
be tested in an electrophysiological laboratory using suitable
neural preparations via, perhaps, the dynamic clamp method-
ology of Destexhe and co-workers [33] designed to mimic the
collective behavior of realistic synaptic interactions. However,
based on the recent work of Meisel and colleagues [15] who
provided the first quantitative evidence of critical slowing using
whole-cell patch-clamp recordings from pyramidal neurons
and fast-spiking interneurons in rat acute neocortical slices,
this may be critically dependent on the magnitude of synaptic
noise. As they note in [15] regarding the use of observable

signatures of critical slowing to predict the occurrence of
bifurcations, “Although prediction performance is naturally
impeded by stochastic perturbations which can trigger critical
transitions even before the bifurcation point is reached ...
given sufficient data and moderate noise levels, reasonable
quantitative predictions become possible.” The results given
here suggest that the ability to detect such signatures will
critically depend not only on the noise magnitude but also
on the dynamical interaction between the characteristics of
the synaptic noise and those of the neuron being exposed to
the noise. Despite this reservation, a scenario in which these
findings could have biological significance is for subthreshold
neuron-to-neuron communication via electrical gap junctions.
Although the exact role of electrical gap junctions is currently
unclear, they have been hypothesized to play a significant
dynamical role in the cerebrum in mean-field theories by
supporting the formation of large-scale Turing structures [38].
If the subthreshold signatures of critical slowing are utilized as
a means of interneuron communication, the results presented
here suggest that anesthesia has the potential to significantly
modify this mechanism.

Regarding limitations of the current work, there are several
considerations. These include (i) the use of a constant input
current, IDC, to drive the model toward threshold in a con-
trolled manner in favor of more realistic excitatory synaptic
interactions that would be present in vivo, (ii) the use of
uniform inhibitory synapses when in fact there is known to be
a great diversity of GABA receptor subtypes [39], and (iii) the
inclusion of only the principal effect of propofol which is also
known to influence the dynamics of voltage-gated ion channels
[40] as well as the rates of presynaptic impulses [41,42].
Such synaptic and ion channel effects could be significant on
close approach to threshold given the dynamics of competition
between synapses and point neuron demonstrated here. Addi-
tionally, appropriately parametrizing a spatially reduced model
is a nontrivial task for the reasons noted in Sec. II C. In this
respect, the ḡGABA parameter may be the most significant as
it primarily controls the overall magnitude of the inhibitory
synaptic input. We note that numerical simulations carried
out for ḡGABA = 0.01 mS cm−2, a value 10-fold lower than
that used here, give results consistent with what would be
expected in the ḡGABA → 0 limit: regression to the behavior
demonstrated for the stochastic point neuron model without
synaptic input [17]. On the other hand, increasing ḡGABA by
an order of magnitude to 1 mS cm−2 results in complete
dominance of the synaptic interactions. For GABA type-A
maximal specific conductances intermediate to these extremes,
the qualitative results described here are consistently observed.

As noted by an anonymous referee, despite their
popularity in computational neuroscience studies, single-
compartment Hodgkin-Huxley-like models—while biologi-
cally motivated—lack the phenomenologically realistic rapid
spike initiation dynamics observed in cortical neurons [43,44].
Despite using spike-deleted stochastic trajectories for compu-
tation of the statistical signatures of critical slowing down,
this dynamical deficiency could potentially impact the results
presented here. This is because we studied dynamics as a func-
tion of the threshold proximity parameter, ε, as ε → 0. Aside
from using computationally more intensive multicompartment
models endowed with suitable ion channel dynamics [43],
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models with defined thresholds such as those in the integrate-
and-fire (IF) family [45] could be utilized to investigate the
influence of spike initiation dynamics on the results reported
here. While defined threshold models would circumvent the
problems associated with defining the critical currents for
spike formation noted in Sec. II D, it is unclear how to include
realistic ion channel noise. Likewise, it would be important to
select a model, such as the quadratic IF model, that incorporates
a suitable bifurcation structure (e.g., the leaky IF model is
linear and thus incapable of demonstrating critical slowing
down). These issues are deserving of further study given that
spike initiation dynamics may have functional consequences
in neural ensembles communicating via suprathreshold spike
trains [46].

One aspect of this work that is perhaps surprising is the
overall robustness of linear theory in the subthreshold regime
in the presence of synaptic input. In addition to excellent
general agreement with statistics obtained from stochastic
trajectories, linearization provides a dynamical explanation
for the observed results: the inverse square root scaling char-
acteristic of saddle-node bifurcations is effectively masked
by the timescales of the synaptic interactions such that the
variance scaling exponent can appear less than −0.5 and the
correlation time scaling exponent can appear greater than
−0.5. This implies that observable scalings from stochastic
trajectories are predicted to approach the anticipated −0.5

exponent for situations in which the dynamical impact of the
synaptic interactions is reduced such as for reduced presynaptic
firing rates which, importantly, may result from the effects of
anesthetics [41,42].

In conclusion, we have shown that the effects of GABAergic
anesthesia on inhibitory synapses modifies the characteristics
of subthreshold critical slowing in a type-I Hodgkin-Huxley-
like model that includes stochastic ion channel dynamics.
While it is well known that ion channel stochasticity can lead
to the generation of spontaneous action potentials, there are
few studies that explicitly include these dynamics when other
noise sources are present. Based on previous work [17], we
used a stochastic differential equation description to capture
this component of neural dynamics and added inhibitory
synaptic noise modeled to allow straightforward inclusion of
the effects of GABAergic anesthetics like propofol. We find
that while anesthesia both enhances and retains the qualitative
features of critical slowing on approach to spiking threshold,
it also significantly modifies the anticipated inverse square
root scaling behavior for divergence of the voltage fluctuation
variance and correlation time. To the best of our knowledge,
this is the first computational study of the subthreshold effects
of anesthetics and the predictions presented here have not been
reported in experimental preparations. Future experimental
work is required to determine the presence and significance
of these results in neural tissue.

APPENDIX: LINEARIZATION

The Eq. (11) approximating multivariate Ornstein-Uhlenbeck channel-based model is composed of the following system of
15 stochastic differential equations:

C
dV

dt
= IDC − ḡNaY31(V − ENa) − ḡKX4(V − EK) − gL(V − EL) − ḡGABAR̃(V − EGABA),

dX0

dt
= −4αnX0 + βnX1 +

√
4αnX0 + βnX1

ξK
1 (t)√
NK

,

dX1

dt
= 4αnX0 − βnX1 − 3αnX1 + 2βnX2 −

√
4αnX0 + βnX1

ξK
1 (t)√
NK

+
√

3αnX1 + 2βnX2
ξK

2 (t)√
NK

,

dX2

dt
= 3αnX1 − 2βnX2 − 2αnX2 + 3βnX3 −

√
3αnX1 + 2βnX2

ξK
2 (t)√
NK

+
√

2αnX2 + 3βnX3
ξK

3 (t)√
NK

,

dX3

dt
= 2αnX2 − 3βnX3 − αnX3 + 4βnX4 −

√
2αnX2 + 3βnX3

ξK
3 (t)√
NK

+
√

αnX3 + 4βnX4
ξK

4 (t)√
NK

,

dX4

dt
= αnX3 − 4βnX4 −

√
αnX3 + 4βnX4

ξK
4 (t)√
NK

,

dY00

dt
= −3αmY00 + βmY10 − αhY00 + βhY01 +

√
3αmY00 + βmY10

ξNa
1 (t)√
NNa

+
√

αhY00 + βhY01
ξNa

4 (t)√
NNa

,

dY10

dt
= 3αmY00 − βmY10 − 2αmY10 + 2βmY20 − αhY10 + βhY11 −

√
3αmY00 + βmY10

ξNa
1 (t)√
NNa

+
√

2αmY10 + 2βmY20
ξNa

2 (t)√
NNa

+
√

αhY10 + βhY11
ξNa

5 (t)√
NNa

,

dY20

dt
= 2αmY10 − 2βmY20 − αmY20 + 3βmY30 − αhY20 + βhY21 −

√
2αmY10 + 2βmY20

ξNa
2 (t)√
NNa

+
√

αmY20 + 3βmY30
ξNa

3 (t)√
NNa

+
√

αhY20 + βhY21
ξNa

6 (t)√
NNa

,
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dY30

dt
= αmY20 − 3βmY30 − αhY30 + βhY31 −

√
αmY20 + 3βmY30

ξNa
3 (t)√
NNa

+
√

αhY30 + βhY31
ξNa

7 (t)√
NNa

,

dY01

dt
= −3αmY01 + βmY11 + αhY00 − βhY01 +

√
3αmY01 + βmY11

ξNa
8 (t)√
NNa

−
√

αhY00 + βhY01
ξNa

4 (t)√
NNa

,

dY11

dt
= 3αmY01 − βmY11 − 2αmY11 + 2βmY21 + αhY10 − βhY11 −

√
3αmY01 + βmY11

ξNa
8 (t)√
NNa

+
√

2αmY11 + 2βmY21
ξNa

9 (t)√
NNa

−
√

αhY10 + βhY11
ξNa

5 (t)√
NNa

,

dY21

dt
= 2αmY11 − 2βmY21 − αmY21 + 3βmY31 + αhY20 − βhY21 −

√
2αmY11 + 2βmY21

ξNa
9 (t)√
NNa

+
√

αmY21 + 3βmY31
ξNa

10 (t)√
NNa

−
√

αhY20 + βhY21
ξNa

6 (t)√
NNa

,

dY31

dt
= αmY21 − 3βmY31 + αhY30 − βhY31 −

√
αmY21 + 3βmY31

ξNa
10 (t)√
NNa

−
√

αhY30 + βhY31
ξNa

7 (t)√
NNa

,

dR̃

dt
= − 1

τ
(R̃ − μR) +

√
D ξR̃(t),

where the voltage dependence of the α and β state transition rates (see Table I) has been suppressed for clarity. Note that the
potassium channel equations contain 5 variables and 4 independent Gaussian white-noise terms ξK

i for i ∈ {1,2,3,4} while the
sodium equations contain 8 variables and 10 such terms ξNa

i for i ∈ {1,2, . . . ,10}. We seek to write this system as
⎡
⎢⎣

Ż1(t)
...

Ż15(t)

⎤
⎥⎦ =

⎡
⎢⎣

F1
...

F15

⎤
⎥⎦ +

⎡
⎢⎢⎣

0 0 0 0
0 SK 0 0
0 0 SNa 0
0 0 0

√
D

⎤
⎥⎥⎦

⎡
⎢⎣

0
�K(t)
�Na(t)
ξR̃(t)

⎤
⎥⎦ ↔ Ż(t) = F + S �(t),

where Ż(t) = dZ/dt is a column vector containing the first time derivative of each state variable Zi for i ∈ {1,2, . . . ,15};
S = diag(0,SK,SNa,

√
D) is a matrix that controls the magnitudes of the additive Gaussian white-noise terms;� = [0,�K,�Na,ξR̃]T

is a column vector containing the Gaussian white-noise terms with �K = [ξK
1 , . . . ,ξK

4 ]T and �Na = [ξNa
1 , . . . ,ξNa

10 ]T; and F is a
column vector containing the deterministic portions of the original equations. The S matrix is 15 × 17 due to the nonsquare
dimensions of SNa which itself is 8 × 10. The SK and SNa matrices are structured as follows:

SK = 1√
NK

⎡
⎢⎢⎢⎣

0 x1 0 0 0
0 −x1 x2 0 0
0 0 −x2 x3 0
0 0 0 −x3 x4

0 0 0 0 −x4

⎤
⎥⎥⎥⎦,

SNa = 1√
NNa

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 0 0 y4 0 0 0 0 0 0
−y1 y2 0 0 y5 0 0 0 0 0

0 −y2 y3 0 0 y6 0 0 0 0
0 0 −y3 0 0 0 y7 0 0 0
0 0 0 −y4 0 0 0 y8 0 0
0 0 0 0 −y5 0 0 −y8 y9 0
0 0 0 0 0 −y6 0 0 −y9 y10

0 0 0 0 0 0 −y7 0 0 −y10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The matrix elements of SK are

x1 =
√

4αnX0 + βnX1,

x2 =
√

3αnX1 + 2βnX2,

x3 =
√

2αnX2 + 3βnX3,

x4 =
√

αnX3 + 4βnX4,

and those of SNa are

y1 =
√

3αmY00 + βmY10,

y2 =
√

2αmY10 + 2βmY20,

y3 =
√

αmY20 + 3βmY30,

y4 =
√

αhY00 + βhY01,
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y5 =
√

αhY10 + βhY11,

y6 =
√

αhY20 + βhY21,

y7 =
√

αhY30 + βhY31,

y8 =
√

3αmY01 + βmY11,

y9 =
√

2αmY11 + 2βmY21,

y10 =
√

αmY21 + 3βmY31.

Finally, the elements of the vector F are

F1 = 1

C
{IDC − ḡNaY31(V − ENa)

− ḡKX4(V − EK) − gL(V − EL)

− ḡGABAR̃ (V − EGABA)},
F2 = −4αnX0 + βnX1,

F3 = 4αnX0 − βnX1 − 3αnX1 + 2βnX2,

F4 = 3αnX1 − 2βnX2 − 2αnX2 + 3βnX3,

F5 = 2αnX2 − 3βnX3 − αnX3 + 4βnX4,

F6 = αnX3 − 4βnX4,

F7 = −3αmY00 + βmY10 − αhY00 + βhY01,

F8 = 3αmY00 − βmY10 − 2αmY10 + 2βmY20

− αhY10 + βhY11,

F9 = 2αmY10 − 2βmY20 − αmY20 + 3βmY30

− αhY20 + βhY21,

F10 = αmY20 − 3βmY30 − αhY30 + βhY31,

F11 = −3αmY01 + βmY11 + αhY00 − βhY01,

F12 = 3αmY01 − βmY11 − 2αmY11 + 2βmY21

+ αhY10 − βhY11,

F13 = 2αmY11 − 2βmY21 − αmY21 + 3βmY31

+ αhY20 − βhY21,

F14 = αmY21 − 3βmY31 + αhY30 − βhY31,

F15 = − 1

τ
(R̃ − μR).

For each subthreshold input current-density IDC < I crit
DC , the

equilibrium state Z0 = [V 0,X0
0, . . . ,Y

0
31,R̃

0]T is given by the
solution to the deterministic system F = 0. Temporarily setting
the additive noise terms to zero and expanding the remaining
equations to first order in the variable z(t) = Z(t) − Z0, rep-
resenting the instantaneous fluctuation of each state variable
about its steady-state value, gives

d

dt
z(t) = Jz(t) + S�(t)

as the linearized version of the approximating system where
J is the Jacobian matrix of the deterministic system Ż(t) =
F. Formulating this equation as a conventional Ornstein-
Uhlenbeck process gives

d

dt
z(t) = −Az(t) +

√
D �(t),

where A = −J is the drift matrix and D = S2 is the diffusion
matrix [compare to Eq. (12)]. Note that in practice, the
normalization conditions on the XK and YNa vectors are used
to reduce the dimensionality of this system from 15 to 13 state
variables.

In its fully expanded form—taking the sodium and potas-
sium state vector normalization conditions into account to
eliminate the X0 and Y00 states—the 13 × 13 Jacobian matrix,
J, of the linearized system is

J = ∂(FV ,FX1 ,FX2 ,FX3 ,FX4 ,FY10 ,FY20 ,FY30 ,FY01 ,FY11 ,FY21 ,FY31,FR̃)

∂(V,X1,X2,X3,X4,Y10,Y20,Y30,Y01,Y11,Y21,Y31,R̃)

∣∣∣∣
Z0

,

where, importantly, evaluation occurs at the deterministic equilibrium state Z0 defined by IDC. Of the 132 = 169 Jacobian matrix
elements, only 60 are nonzero giving J the following general form:

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J1,1 0 0 0 J1,5 0 0 0 0 0 0 J1,12 J1,13

J2,1 J2,2 J2,3 J2,4 J2,5 0 0 0 0 0 0 0 0
J3,1 J3,2 J3,3 J3,4 0 0 0 0 0 0 0 0 0
J4,1 0 J4,3 J4,4 J4,5 0 0 0 0 0 0 0 0
J5,1 0 0 J5,4 J5,5 0 0 0 0 0 0 0 0
J6,1 0 0 0 0 J6,6 J6,7 J7,8 J6,9 J6,10 J6,10 J6,12 0
J7,1 0 0 0 0 J7,6 J7,7 J7,8 0 0 J7,11 0 0
J8,1 0 0 0 0 0 J8,7 J8,8 0 0 0 J8,12 0
J9,1 0 0 0 0 J9,6 J9,7 J9,8 J9,9 J9,10 J9,11 J9,12 0
J10,1 0 0 0 0 J10,6 0 0 J10,9 J10,10 J10,11 0 0
J11,1 0 0 0 0 0 J11,7 0 0 J11,10 J11,11 J11,12 0
J12,1 0 0 0 0 0 0 J12,8 0 0 J12,11 J12,12 0

0 0 0 0 0 0 0 0 0 0 0 0 J13,13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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with nonzero entries

J1,1 = −(ḡNaY31 + ḡKX4 + gL + ḡGABAμR)/C,

J1,5 = ḡK(EK − V )/C,

J1,12 = ḡNa(ENa − V )/C,

J1,13 = ḡGABA(EGABA − V )/C,

J2,1 = 4α̇n(1 − X3 − X4) + (2β̇n − 4α̇n)X2 − (7α̇n + β̇n)X1,

J2,2 = −(7αn + βn),

J2,3 = 2βn − 4αn,

J2,4 = −4αn,

J2,5 = −4αn,

J3,1 = 3α̇nX1 + 3β̇nX3 − 2(α̇n + β̇n)X2,

J3,2 = 3αn,

J3,3 = −2(αn + βn),

J3,4 = 3βn,

J4,1 = 2α̇nX2 + 4β̇nX4 − (α̇n + 3β̇n)X3,

J4,3 = 2αn,

J4,4 = −(αn + 3βn),

J4,5 = 4βn,

J5,1 = α̇nX3 − 4β̇nX4,

J5,4 = αn,

J5,5 = −4βn,

J6,1 = 3α̇m(1 − Y30 − Y01 − Y21 − Y31)

+ (2β̇m − 3α̇m)Y20 + (β̇h − 3α̇m)Y11

− (5α̇m + β̇m + α̇h)Y10,

J6,6 = −(5αm + βm + αh),

J6,7 = 2βm − 3αm,

J6,8 = −3αm,

J6,9 = −3αm,

J6,10 = βh − 3αm,

J6,11 = −3αm,

J6,12 = −3αm,

J7,1 = 2α̇mY10 + 3β̇mY30 + β̇hY21

− (α̇m + 2β̇m + α̇h)Y20,

J7,6 = 2αm,

J7,7 = −(αm + 2βm + αh),

J7,8 = 3βm,

J7,11 = βh,

J8,1 = α̇mY20 + β̇hY31 − (3β̇m + α̇h)Y30,

J8,7 = αm,

J8,8 = −(3βm + αh),

J8,12 = βh,

J9,1 = α̇h(1 − Y10 − Y20 − Y30 − Y21 − Y31)

+ (β̇m − α̇h)Y11 − (3α̇m + β̇h + α̇h)Y01,

J9,6 = −αh,

J9,7 = −αh,

J9,8 = −αh,

J9,9 = −(3αm + βh + αh),

J9,10 = βm − αh,

J9,11 = −αh,

J9,12 = −αh,

J10,1 = α̇hY10 + 3α̇mY01 + 2β̇mY21

− (2α̇m + β̇m + β̇h)Y11,

J10,6 = αh,

J10,9 = 3αm,

J10,10 = −(2αm + βm + βh),

J10,11 = 2βm,

J11,1 = α̇hY20 + 2α̇mY11 + 3β̇mY31

− (α̇m + 2β̇m + β̇h)Y21,

J11,7 = αh,

J11,10 = 2αm,

J11,11 = −(αm + 2βm + βh),

J11,12 = 3βm,

J12,1 = α̇hY30 + α̇mY21 − (3β̇m + β̇h)Y31,

J12,8 = αh,

J12,11 = αm,

J12,12 = −(3βm + βh),

J13,13 = −1/τ.

Here dot notation has been used to indicate first derivatives
with respect to voltage [e.g., α̇n = dαn(V )/dV ].
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