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Correlations between synapses in pairs of neurons slow down dynamics in randomly
connected neural networks
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Networks of randomly connected neurons are among the most popular models in theoretical neuroscience.
The connectivity between neurons in the cortex is however not fully random, the simplest and most prominent
deviation from randomness found in experimental data being the overrepresentation of bidirectional connections
among pyramidal cells. Using numerical and analytical methods, we investigate the effects of partially symmetric
connectivity on the dynamics in networks of rate units. We consider the two dynamical regimes exhibited by
random neural networks: the weak-coupling regime, where the firing activity decays to a single fixed point
unless the network is stimulated, and the strong-coupling or chaotic regime, characterized by internally generated
fluctuating firing rates. In the weak-coupling regime, we compute analytically, for an arbitrary degree of symmetry,
the autocorrelation of network activity in the presence of external noise. In the chaotic regime, we perform
simulations to determine the timescale of the intrinsic fluctuations. In both cases, symmetry increases the
characteristic asymptotic decay time of the autocorrelation function and therefore slows down the dynamics
in the network.
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I. INTRODUCTION

The dynamics and function of a network of neurons is to a
large extent determined by its pattern of synaptic connections.
In the mammalian brain, cortical networks exhibit a complex
connectivity that to a first approximation can be regarded as
random. This connectivity structure has motivated the study
of networks of neurons connected through a random synaptic
weight matrix with independent and identically distributed
entries, which have become a central paradigm in theoretical
neuroscience [1–3]. Randomly connected networks of firing-
rate units exhibit a chaotic phase [1], which can be exploited
as a substrate for complex computations [4–6]. Networks
of randomly connected spiking neurons also exhibit rich
dynamics that can account for the highly irregular spontaneous
activity observed in the cortex in vivo [2,3,7,8]. Importantly,
these models are to a large extent amenable to a mathematical
analysis, which allows for a thorough understanding of the
mechanisms underlying their dynamics.

Detailed analyses of experimental data on cortical con-
nectivity have however identified patterns of connectivity
that strongly deviate from the independent and identically
distributed assumption [9–13]. The most prominent of such
deviations is the overrepresentation of reciprocal connections
[9,10,14] and the fact that synapses of bidirectionally con-
nected pairs of neurons are on average stronger than synapses
of unidirectionally connected pairs. These observations are
consistent with a partially symmetric connectivity structure,
intermediate between full symmetry and full asymmetry. How
partial symmetry in the connectivity impacts network dynam-
ics is not yet understood, in part because such partial symmetry
renders the mathematical analyses more challenging [15]. Here

we study the impact of partial symmetry in the connectivity
structure on the dynamics of a simple network model consisting
of interacting rate units. Depending on the overall strength
of coupling, such a network can display either a stable or
a chaotic regime of activity, as in the random asymmetric
case [1]. We examined how the degree of symmetry in the
network influences the temporal dynamics in both regimes.
For the stable regime, we exploited recent results from random
matrix theory [16,17] to derive analytical expressions for the
autocorrelation functions. These expressions demonstrate that
increasing the symmetry in the network leads to a slowing
down of the dynamics. Numerical simulations in the chaotic
regime show a similar effect, with timescales increasing far
more substantially with symmetry than in the fixed-point
regime. Altogether, our results indicate that symmetry in the
connectivity can act as an additional source of slow dynamics,
an important ingredient for implementing computations in
networks of neurons [18].

II. DESCRIPTION OF THE MODEL

We consider a network of N fully connected neurons, each
described by an activation variable (synaptic current) xi , i =
1, . . . ,N , obeying

dxi

dt
= −xi + g

N∑
j=1

Jijφ(xj ), (1)

where g is a gain parameter that modulates the strength of
recurrent connections and φ(·) is the input-output transfer
function that transforms activations xi into firing rates. This
transformation is nonlinear and we model it as φ(x) = tanh(x)
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FIG. 1. (a) Spectrum of eigenvalues of a Gaussian random matrix with zero mean, variance 1/N , and correlation coefficient η between
weights connecting neuronal pairs. (b) Time evolution of the firing rates of five arbitrary neurons, for the fixed-point regime (top) and the chaotic
regime (bottom), and for two different values of η (left and right panels). Next to each trajectory is the eigenspectrum of the corresponding
linearized system along with the real and imaginary axes, which we include for reference. The initial firing rates were the same for all panels.
All connectivity matrices were derived from a single realization of a Gaussian random matrix. To generate connectivity matrices with different
η, we used the upper right and the lower left triangular portions of the Gaussian random matrix to create a symmetric and antisymmetric matrix,
which we then combined to yield a J with the desired symmetry parameter η [for details, see the text surrounding Eq. (D4)]. (c) Activity regimes
as a function of the gain and the degree of symmetry in the connections. The green squares indicate the parameter values used in (b).

for mathematical convenience (see [19–22] for studies of
network models with different choices of φ). The elements
Jij of the connectivity matrix are drawn from a Gaussian
distribution with zero mean, variance 1/N , and correlation

[JijJji]J = η/N,

with the square brackets [·]J denoting an average over real-
izations of the random connections. The parameter η is the
correlation coefficient between the two weights connecting
pairs of neurons and quantifies the degree of symmetry of
the connections. For η = 0 the elements Jij and Jji are
independent and the connectivity matrix is fully asymmetric;
for η = 1 the connectivity matrix is fully symmetric; for
η = −1, it is fully antisymmetric. In Secs. II–III A we study
the full range η ∈ [−1,1], while in Secs. III B–IV we focus on
η ∈ [0,1].

III. DYNAMICAL REGIMES OF THE NETWORK

For fully asymmetric matrices, previous work has shown
that the network activity described by (1) undergoes a phase
transition at g = 1 in the limit of large N [1]. For g < 1
the activity for all units decays to 0, which is the unique
stable fixed point of the dynamics [23], while for g > 1 the
activity is chaotic. Such a transition can be partially understood
by assessing the stability of the fixed point at xi = 0 for
i = 1, . . . ,N . If we linearize Eq. (1) around this fixed point
we obtain the stability matrix with components

Mij = −δij + gJij . (2)

The eigenvalues of Mij are therefore those of the matrix Jij ,
scaled by the gain g, and shifted along the real axis by −1. In
the limit N → ∞, for a connectivity matrix Jij whose entries
are independent and identically distributed Gaussian random
variables of zero mean and variance 1/N , eigenvalues are
uniformly distributed in the unit disk of the complex plane
[24–26]. This implies that the eigenvalues of the stability

matrix have a negative real part as long as g < 1 and therefore
that the fixed point at 0 is stable in that range.

An analogous transition occurs when connections are par-
tially symmetric. The presence of correlations among weights
deforms the spectrum of eigenvalues into an ellipse, elongating
its major radius by a factor of 1 + η and shortening the minor
radius by a factor 1 − η [27–30] [Fig. 1(a)]. This property
is usually referred to as the elliptic law. For the network
described by (1) such a deformation causes the fixed point at
xi = 0 for i = 1, . . . ,N to lose its stability at g = 1/(1 + η)
[Figs. 1(b) and 1(c)]. In other words, symmetry lowers the
critical coupling.

Our goal is to characterize how the degree of symmetry in
the connections affects the network activity on each side of
the instability: the relaxation response of the network at low
gains and the chaotic self-generated activity observed at strong
gains. Our description of the network activity will be based on
the average autocorrelation function

C(τ ) = 1

N

N∑
i=1

[〈xi(t)xi(t + τ )〉]J , (3)

where the average is over both the population and the realiza-
tions of the connectivity matrix [1] and where we are assuming
for now that the system is stationary.

IV. DYNAMICS IN THE FIXED-POINT REGIME

A. Derivation of the autocorrelation function

In the fixed-point regime, the activity decays to zero unless
the network is stimulated by external inputs. To characterize
the dynamics of the network in this regime, we induce network
activity by feeding each neuron with independent Gaussian
white noise [31]. The amplitude of this noise is assumed to be
small enough so that the synaptic activation of all neurons lies
within the linear range of their input-to-rate transfer function
[see Fig. 2(f) for the range of validity of that approximation].
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FIG. 2. (a) The distance of the eigenspectrum to the imaginary axis, or spectral gap, is kept fixed at a value δ independently of the symmetry
parameter η. The color curves represent the rightmost portion of the boundaries of the eigenspectra for η = −0.4,0,0.4 (values indicated next
to each curve). (b) and (c) Analytical prediction and numerical estimate of the average autocorrelation, for different values of the symmetry
parameter η, indicated in the key. Each subplot corresponds to a particular spectral gap δ. Insets show the same curves on a log-log scale.
The numerical estimate of C(τ ) was derived from Eq. (3), using simulated neuronal activity generated by Eq. (4), with N = 10 000 units, and
averaging over time, units, and 200 different realizations of the connectivity matrix. (d) Comparison of our analytical prediction with three
alternative seminumerical predictions (see the text for details). (e) Dependence on η of the timescale τ̂ , estimated here as the mean of an
unnormalized distribution defined by C(τ ): τ̂ = ∫∞

0 sC(s)ds/
∫∞

0 C(s)ds. (f) Changes in the autocorrelation function induced by the nonlinear
activation function �(x) = tanh(x), for two values of the amplitude of the injected noise. The inset shows noise distribution superimposed on
�(x). Autocorrelations were numerically estimated as in (b) and (c). (g) Samples of 20 individual autocorrelation functions for three different
values of η. Solid thick curves indicate the bounds of the interval [mean − std,mean + std], where the standard deviation was estimated from
the full population of of individual autocorrelations.

Under these conditions, φ(x) can be approximated by its
first-order Taylor expansion φ(0) + φ′(x)|x=0x = x and the
dynamical equations become

dx(t)

dt
= (−1 + gJ)x(t) + σ ξ (t), (4)

where x(t) = (x1(t), . . . ,xN (t))T , 1 is the identity matrix, J
is the connectivity matrix, and ξ (t) = (ξ1(t), . . . ,ξN (t))T is
a vector of independent white-noise sources of zero mean
and unit variance 〈ξi(t)〉 = 0, 〈ξi(t)ξj (t ′)〉 = δij δ(t − t ′), with
angular brackets representing averages over noise realizations.
The parameter σ is the standard deviation of the white noise
injected into neurons.

The timescales displayed by a linear system like (4) are
strongly affected by the real part of the eigenvalues of the
system’s stability matrix and, in particular, they get longer as
eigenvalues get closer to the imaginary axis. To disentangle
this type of slowing down from the effects due to symmetry
alone, we vary the parameter η while keeping the spectral
gap fixed. By spectral gap we mean the distance between the
spectrum of eigenvalues of the stability matrix Mij [Eq. (2)]
and the imaginary axis [see Fig. 2(a)]. From the elliptic law,
the eigenvalue of the stability matrix with the largest real part
is z = −1 + g(1 + η) and we can keep the spectral gap at δ by
setting the gain to g = (1 − δ)/(1 + η).

The system described by (4) is linear and can be solved by
diagonalizing the connectivity matrix. The matrix J admits a
set of right eigenvectors {R1, . . . ,RN } that obey JRi = λiRi

for i = 1, . . . ,N . These eigenvectors are in general complex
valued and, except for the symmetric case η = 1, not orthogo-
nal to one another, which implies that J cannot be diagonalized
through a unitary transformation. Matrices of this kind are
called non-normal and do not commute with their transpose
conjugate: JJ† �= J†J [32]. Even if non-normal matrices cannot
be diagonalized by an orthogonal set of eigenvectors, it is
always possible to form a biorthogonal basis by extending the
set of right eigenvectors with the set of left eigenvectors, which
obey L†

i J = λiL
†
i . This extended basis is biorthogonal in the

sense that L†
i Rj = δij . We can summarize all these properties

in a compact way by defining the square matrices R and L that
result from adjoining in columns the set of, respectively, right
and left eigenvectors and by introducing the diagonal matrix �

that contains the eigenvalues λi of J in its diagonal entries. In
this notation the biorthogonality condition is L†R = 1 and the
eigenvalue equations for the right and left eigenvectors read
JR = R� and L†J = �L†.

We can now write the formal solution of (4),

x(t) = σ

∫ t

−∞
e(−1+gJ)(t−s)ξ (s)ds

= σR
∫ t

−∞
e(−1+g�)(t−s)R−1ξ (s)ds,

where in the last equality we used the basis of right eigen-
vectors to write J = R�R−1 and we implicitly expanded
the exponential in its power series to obtain the final result.
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From this expression we can derive the population-average
autocorrelation for a particular realization of the connectivity:

CJ (τ ) = 1

N
〈x†(t)x(t + τ )〉

= 1

N
Tr〈x(t + τ )x†(t)〉

= σ 2

N

∫ ∞

0
e−2u−τ Tr{R†Reg�(u+τ )L†Leg�†u}du. (5)

In the second equality we used the cyclicity of the trace
and in the last line we changed the integration variable to
u = t − s and we used the biorthogonality condition to write
R−1 = L†. The average over noise amounts to applying the
identity 〈ξ (t)ξ †(t ′)〉 = σ 21δ(t − t ′). Note that the σ 2 appears
as an overall factor, so we can set σ = 1 without loss of
generality.

We can simplify (5) by introducing the so-called overlap
matrix, with components

Oij = (L†L)ij (R†R)ji , (6)

which characterizes the correlations between left and right
eigenvectors [16]. Equation (5) then becomes

CJ (τ ) = 1

N

∫ ∞

0
e−2u−τ

N∑
i=1

N∑
j=1

egλi (u+τ )Oije
gλ̄j udu. (7)

If the connectivity matrix were normal, the overlap would be
the identity matrix and the autocorrelation (7) would just be a
sum of independent contributions, one per eigenvalue. These
contributions are coupled for non-normal matrices.

We can make further analytical progress by studying the
autocorrelation (7) in the limit N → ∞, in which the differ-
ences of CJ (τ ) across realizations of the connectivity matrix
disappear and the autocorrelations of all units become close
to the population average [Fig. 2(g)]. In that limit sums over
indices are replaced with integrals over eigenvalues, while the
overlap matrix is replaced with the local average of the overlap,
defined as

D(z1,z2) = lim
N→∞

4

N

⎡
⎣ N∑

i=1

N∑
j=1

Oij δ
2(z1 − λi)δ

2(z2 − λj )

⎤
⎦

J

.

(8)

Here z = x + iy are complex numbers and we defined the
complex Dirac delta as δ2(z) ≡ (1/2)δ(x)δ(y) so that it satisfies
the normalization condition

∫
δ2(z)d2z ≡ ∫ δ2(z)dz dz̄ = 1.

After taking the limit N → ∞, Eq. (7) becomes

C(τ ) =
∫ ∞

0
e−2u−τA(u,τ )du, (9)

where we defined

A(u,τ ) = 1

4

∫∫
eg(z1+z̄2)u+gz1τD(z1,z2)d2z1d

2z2. (10)

Each of the integrals in Eq. (10) is over complex values
and involves the expression of D(z1,z2) for the ensemble of
Gaussian random matrices with partial symmetry, which was
derived using diagrammatic techniques in Ref. [16] and whose
functional form can be found in Appendix A. We used the

result of [16] to evaluate the double complex integral A(u,τ ) in
Eq. (10). The details of the evaluation are given in Appendix A
and the result is

A(u,τ ) = A1(u,τ ) + A2(u,τ ), (11)

with

A1(u,τ ) = (1 + η2)I0(gψ(u,τ ; η))

− 2η

(
1 + 2(1 − η)2τ 2

ψ(u,τ ; η)2

)
I2(gψ(u,τ ; η)), (12)

A2(u,τ ) = −1

g2u(u + τ )

∞∑
k=1

ηkk2Ik(2g
√

ηu)

× Ik(2g
√

η(u + τ )), (13)

where Ik(·) is the modified Bessel function of order k and where
in Eq. (12) we defined

ψ(u,τ ; η) = 2
√

(1 + η)2u(u + τ ) + ητ 2.

The autocorrelation is finally computed from Eq. (9), integrat-
ing numerically over u.

Expressions (11)–(13) are valid for the full range −1 �
η � 1. For negative η we replace

√
η with i

√|η| and apply the
identity Iν(iz) = iνJν(z), which is valid for integer ν.

The analytical prediction given by Eqs. (9) and (11)–(13)
matches with the autocorrelation estimated from numerical
simulations [Fig. 2(b)], although for long-time lags the nu-
merical estimate becomes noisy due to finite-size effects. To
check the validity of our prediction also at long-time lags,
we compared our analytical prediction with three alternative
derivations [Fig. 2(c)]. One such derivation consists of com-
puting the autocorrelation for large but finite N , by computing
numerically the eigenvalues and eigenvectors of randomly
generated matrices, evaluating the time integral of Eq. (7),
which gives

CJ (τ ) = − 1

N

N∑
i=1

N∑
j=1

Oije
−(1−gλi )τ

2 + g(λi + λ̄j )
, (14)

and then by averaging CJ (τ ) over multiple realizations of the
connectivity matrix. Another derivation is based on dynamical
mean-field theory [15,31,33], which gives rise to a set of
integro-differential equations involvingC(τ ) that can be solved
numerically (Appendix D). Finally, we numerically computed
the inverse Fourier transform of the power spectrum derived in
[34] for this same system. Bravi et al. [34] used a perturbative
method to derive the system of integro-differential equations
(D25) and (D26), which they solved for the correlation and
response functions by using a Laplace transform. All deriva-
tions yield the same result, except for the deviations we
observe when applying Eq. (14) at long τ which are caused
by finite-size effects.

Our results show that an increase in symmetry tends to
spread autocorrelations toward longer-time lags and that this
effect gets larger the closer the system gets to the onset of chaos
[Fig. 2(e)]. An intuitive explanation for this slowing down is
that the deformation of the eigenspectrum caused by symmetry
increases the density of eigenvalues with small imaginary parts,
thereby enlarging the contribution of low-frequency modes.
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FIG. 3. (a) Phase diagram showing the different activity regimes as a function of the gain g and the degree of symmetry η (center). At both
sides of the diagram, we show the autocorrelation functions at a few representative points in the (g,η) plane, indicated by the black dots in the
main diagram. Each autocorrelation plot contains the exact prediction of C(τ ) given by Eqs. (9)–(13) (thick colored curve) and the asymptotic
approximation, summarized in Eqs. (15)–(20) (thin black curve). At the top of each such plot are the parameters g and η used. (b) Asymptotic
timescale of the autocorrelation as a function of the degree of symmetry, for different spectral gaps δ. These curves were generated with the
inverses of GI,II(η,δ), Eqs. (15) and (18). The red dot on each curve indicates the value of η where the transition between subregimes occurs.

B. Behavior at long-time lags

While Eqs. (9)–(13) are exact, they provide little analytical
insight into how the autocorrelation depends on parameters. A
more explicit dependence can be obtained by evaluating C(τ )
in the limit of long τ . We relegate the details of the calculation
to Appendix B and summarize the main results here. The
analysis shows that, in the fixed-point regime, there exist
two subregimes of activity that differ in how the asymptotic
decay rate of the autocorrelation depends on the symmetry
parameter η and the spectral gap δ. For small values of η and
δ, the autocorrelation decays as a pure exponential at long τ

(regime I),

C(τ ) = FI(η,δ)e−τGI(η,δ), (15)

with

FI(η,δ) = δ−1/2(1 − η)2

2
√

2(1 − δ)
, (16)

GI(η,δ) = 1 − η

1 + η

√
2δ − δ2. (17)

Conversely, for sufficiently large values of η and δ autocorre-
lation for long τ can be approximated by a power multiplied
by an exponential decay (regime II)

C(τ ) = τ−3/2FII(η,δ)e−τGII(η,δ), (18)

with

FII(η,δ) = 1

4
√

π

(
1 + η

1 − δ

)3/2[ 2η−1/4(1 + η2)

δ(1 + η) − [1 − √
η]2

− η5/6(1 + η)

(1 − √
η)2 + 2

√
ηδ

]
, (19)

GII(η,δ) = (1 − √
η)2 + 2δ

√
η

1 + η
. (20)

A comparison between the asymptotic expression in Eq. (18)
and the full expression for the autocorrelation function reveals,
however, that the power law is not observed in practice
because the range below the cutoff falls below the values of τ

where the asymptotic approximation starts matching the exact
expression.

Figure 3(a) shows the exact parameter region of each
asymptotic regime, after transforming the spectral gaps into
gains. In both regimes the autocorrelation’s asymptotic decay
rate matches the exact result for time lags longer than a few
time units [see Fig. 3(a), lateral panels]. It seems therefore
reasonable to associate the timescale of the autocorrelation
with the inverse of GI,II(η,δ) [see Eqs. (15) and (18)], where
the subindex I,II is chosen according to the subregime found
at the parameter values (η,δ). The asymptotic timescale of
the autocorrelation increases monotonically with symmetry
regardless of the subregime the network operates in [Fig. 3(b)],
although this dependence is convex in the exponential sub-
regime and concave in the power-law-with-cutoff regime [in
Fig. 3(b) see the curves split by the red dots, which mark the
boundary between subregimes]. Note also that as the spectral
gap δ shrinks to 0 the system enters the exponential regime and
timescales diverge as δ−1/2, according to Eq. (17).

C. Effect of overlaps

As shown in Eq. (7), the autocorrelation function in general
depends on two factors, the full eigenspectrum of the con-
nectivity matrix and the overlaps between eigenvectors, both
of which are modified when η is changed. To disentangle the
effects of the changes in the eigenspectrum and the changes in
eigenvector overlaps, here we compare the autocorrelation we
derived in Sec. IV A with the autocorrelation we would obtain
if we assumed that the eigenvectors of J were orthogonal. If
that were the case, the autocorrelation would be computed
as a sum of decoupled contributions associated with the
different eigenvalues and, in particular, the distribution of
eigenvectors would play no role in the result (see Sec. IV C
for details). Figure 4(a) shows the predicted autocorrelations
both including and excluding the contribution from the overlap
(6). As expected, both predictions coincide for η = 1 and they
increasingly depart from each other for decreasing values of η.
To better characterize this difference we show the variance
C(0) as a function of the symmetry parameter for several
values of the spectral gap [Fig. 4(b)]. Remarkably, the variance
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FIG. 4. Effect of overlaps on autocorrelations and timescales.
(a) Analytical predictions and numerical estimations of the average
autocorrelation of network activity for δ = 0.1. We include two
analytical predictions: the correct one, which takes properly into
account the correlations among eigenvectors [“theory,” based on
Eq. (7) and its large-N disorder-average limit (9)], and an incorrect
prediction that assumes orthogonality among eigenvectors (“theory,
no overlap”). (b) Theoretical prediction of the variance of network
activity, given by C(0), as a function of the symmetry parameter. As
in (a), we also include the prediction we would obtain if eigenvectors
were orthogonal (“without overlap”). (c) Estimate of the overall
timescale τ̂ (see the text for details), with and without taking into
account the effect of overlaps. Red dots indicate the transition between
asymptotic regimes, as in Fig. 3(b).

decreases with symmetry, but the opposite occurs when we
remove the contribution from eigenvector overlaps [see the
“with” and “without” overlap curves in Fig. 4(b)]. In both
cases the variance increases as spectral gaps get smaller, which
is consistent with the fact that the restoring drive towards the
fixed point gets weaker as the spectral gap gets smaller. This
effect is however much subtler when overlaps are not taken
into account [35].

The overlap also contributes to the overall timescale of
the autocorrelation, which we define by the quantity τ̂ =∫∞

0 tC(t)dt/
∫∞

0 C(t)dt . This definition guarantees that for an
exponential autocorrelation C(τ ) ∝ exp(−|τ |/τ0) the overall
timescale is exactly τ0 and provides a rough estimate of
a natural timescale for autocorrelations with more complex
dependences. The numerical evaluation of T shows that the
overall timescale is systematically smaller if the contribution of
the eigenvalues is removed [Fig. 4(c)]. Unsurprisingly, either
with or without the overlap contribution the timescale gets
longer as the spectral gap gets smaller. Note also that the over-
all timescale T varies nonmonotonically with the symmetry
parameter [Fig. 4(c)], unlike the asymptotic dependence shown
in Fig. 3(b).

V. DYNAMICS IN THE CHAOTIC REGIME

In the chaotic regime, the network generates its own
fluctuating activity without the need for external noise. Recall

that chaotic activity emerges as soon as the largest of the real
parts of the eigenspectrum, given by −δ and usually called a
spectral abscissa, becomes positive. We follow the strategy of
the preceding section and we keep the spectral abscissa fixed
while we vary the symmetry parameter η.

The evolution of firing activities shown in Fig. 5(a) suggests
that in the chaotic regime the self-generated fluctuations get
slower as η increases. This slowing is accompanied by an
increasing tendency of firing rates to linger around the extreme
values of their dynamical range, as reflected by an increasingly
bimodal distribution of currents x and rates φ(x) when η

increases [Fig. 5(b)]. We quantified the slowing down of the
fluctuations with the population-average autocorrelation. For
η = 0 the autocorrelation can be derived self-consistently in
the limit of infinitely large networks, using the dynamical
mean-field approach [1,19] (see also Appendix D for a general
derivation). Unfortunately, this method does not lead to a
closed-form solution for the autocorrelation as soon as η > 0
(see Appendix D) and we have to resort to numerical estimates,
summarized in Fig. 5(c) for several values of η. For complete-
ness we also include the autocorrelation functions for fixed
gain, rather than fixed spectral abscissa [Fig. 5(d)].

The numerical estimates show that the timescale associated
with the autocorrelation increases strongly as a function of
η and is considerably longer than in the fixed-point regime
[Fig. 5(e)]. Such a slowing is rather insensitive to whether
we fix the spectral abscissa or the gain, despite the fact that
the variance C(0) varies far more strongly when gain is fixed
[Fig. 5(d)].

Quite strikingly, for η = 1 fluctuations become slower as
time goes by and our initial assumption that the activity is
stationary does not hold. The population-averaged autocorrela-
tion C(t,t + τ ) = [x(t)x(t + τ )]J,N at different points in time
shows that the characteristic timescale of the autocorrelation
grows with t [Fig. 5(d)], a signature of aging dynamics [36]. For
lower values of η, the dependence on the autocorrelation on the
two timescales is less clear. Due to strong finite-size effects, it
is difficult to determine from simulations alone whether aging
appears also when the connectivity is not fully symmetric.

VI. DISCUSSION

In this work we examined the effect of partially symmetric
connectivity on the dynamics of randomly connected networks
composed of rate units. We have derived an analytical expres-
sion for the autocorrelation function in the regime of linear
fluctuations around the fixed point and shown that increasing
the symmetry of the connectivity leads to a systematic slowing
down of the dynamics. Numerical simulations confirm that a
similar phenomenon takes place in the chaotic regime of the
network.

The impact of the degree of symmetry of the connectiv-
ity matrix on the dynamics of neural networks has been a
long-standing question in theoretical neuroscience. Theorists
initially focused on fully symmetric networks of binary spin-
like neurons [37] for which tools from equilibrium statistical
mechanics could be readily applied [38]. After these initial
studies, the realization that brain networks are not symmetric
led physicists to investigate the dynamics of networks whose
connectivity matrix has a random antisymmetric component.
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FIG. 5. Effects of symmetry in the chaotic regime. (a) Firing rates of five arbitrary units in a network of size N = 104, for three different
values of η (value indicated next to each inset). The spectral gap is δ = −0.4 (i.e., the spectral abscissa is 0.4). (b) Histograms of the currents
x and firing activities φ(x), for different values of η. Samples were taken every 40 time units from the simulated activity of a network of
104 units for ten different realizations of the connectivity matrix and δ = −0.4. (c) Population-average autocorrelation, for different values of
the symmetry parameter η and δ = −0.4. The autocorrelation was estimated from the simulated activity of a network of 104 units, using 200
different draws of the connectivity matrix. The estimated standard error of the mean is shown in semitransparent shade. (d) Same as in (c), but
keeping the gain fixed at g = 1.5 instead of fixing δ. For this panel we estimated the autocorrelation using ten independent realizations of the
connectivity matrix. Notice the different axis ranges with respect to (c). (e) Timescale of the network fluctuations, estimated from the width of
the autocorrelation function at half of its maximum value, using the simulation results from (c) and (d). The error bars indicate the standard
error of the mean. (f) Nonstationarity of the network activity for η = 1. The autocorrelation function depends on two timescales, the time lag τ

and the time t , since the simulation started with an arbitrary initial condition. The autocorrelation is estimated from simulated neuronal activity
of size N = 104 for T = 3030 time units, using five different trials with different realizations of the connectivity matrix. In this figure the gain
was fixed at g = 1.4.

It was found that departures from full symmetry destroys
spin-glass states, while retrieval states in associative memory
models were found to be robust to the presence of weak
asymmetry [15,39,40].

Theorists also studied fully asymmetric networks, using rate
models [1], networks of binary neurons [41], and networks
of spiking neurons [3]. In all these models, chaotic states
were shown to be present for sufficiently strong coupling.
In networks of spiking neurons, chaotic states are character-
ized by strongly irregular activity of the constituent neurons,
with self-generated fluctuations that evolve on fast-timescales.
Motivated by experimental findings, recent studies have con-
sidered synaptic connectivity matrices where bidirectionally
connected pairs are overrepresented with respect to a random
network. In contrast with our model, in which no structure
exists beyond the level of pairs of neurons, these studies
have considered structured connectivity matrices in which
partial symmetry is a consequence of a larger-scale structure.
References [42,43] considered a connectivity clustered into
groups of highly connected neurons and demonstrated that
clustered connectivity could lead to slow firing-rate dynamics
generated by successive transitions between up and down
states within individual clusters. An overrepresentation of
bidirectional connections can also arise in networks with broad
in- and out-degree distributions, which affect the dynamics
and the stability of asynchronous states in such networks [44].
Other works have considered connectivities with nontrivial
second-order connectivity statistics and studied the resulting
network dynamics. Reference [45] analyzed how the presence

of connectivity patterns involving two connections (not only
bidirectionally connected pairs) affected the tendency for
a neuronal network to synchronize, while [46] focused on
the oscillatory activity generated by partially antisymmetric
delayed interactions. Taking a completely different approach,
[47] showed that maximizing the number of patterns stored
in a network entails an overrepresentation of bidirectionally
connected pairs of neurons, which suggests that partially sym-
metric connectivity may be a signature of optimal information
storage.

An important ingredient in our analysis is the fact that
partially symmetric interaction matrices are non-normal, i.e.,
they are not diagonalizable by a set of mutually orthogonal
eigenvectors. The influence of non-normal connectivity on
network dynamics has recently received considerable atten-
tion in the neuroscience community [35,48–52]. Particularly
relevant to our study is the work by Hennequin et al. [35],
who quantified the effects of non-normality on the amplitude
of the autocorrelation function in random networks. Here
we extend their results by studying the full temporal shape of
the autocorrelation function and by characterizing how this
shape is affected by the partial symmetry of connections.

The present work is also related to models of disordered
systems and spin glasses [53]. Most studies in that field were
inspired by physical phenomena and considered fully symmet-
ric interaction matrices. In that context, a major result has been
the discovery of aging, the phenomenon by which dynamics
become slower the longer the system evolves [36,54,55]. This
phenomenon has been observed in a broad class of complex
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systems characterized by configuration spaces with extremely
rugged energy landscapes, composed of many local minima
surrounded by high barriers. In these systems a random initial
condition is very likely to set the system far from a stationary
state and initiate a very slow relaxation towards a fixed point.
The relaxation takes infinitely long for N → ∞ because,
loosely speaking, the longer the system evolves, the deeper it
wanders in the valleys of the energy landscape and the harder
it becomes for it to find configurations of lower energy [36].

Whether fully symmetric interactions are necessary to
observe aging does not seem to be entirely understood, as
only a few works seem to have considered partially sym-
metric coupling [15,56,57]. Fully asymmetric networks have
received more attention, but they do not exhibit any aging
phenomena. Here we interpolated between fully asymmetric
and fully symmetric networks and have been able to obtain
mathematical results only in linear networks, in the nonchaotic
regime. Interestingly, we found that the partially symmetric
case is mathematically more complex than the symmetric or
asymmetric limits. This can be seen in the form of the auto-
correlation function (11), which simplifies considerably when
η = 0 or η = 1, but also in the dynamical mean-field theory
(Appendix D), where a coupling between the autocorrelation
and the response function appears for η > 0. This additional
complexity results from the fact that the influence of a single
neuron’s activity on all the other neurons is fed back through
couplings that are correlated with the neuron’s activity, due to
the partial symmetry of the connections. More specifically, the
inputs received by neuron i are given by terms

∑
j Jijφ(xj ),

which are themselves influenced by the activity of neuron i. As
a result, neuron i influences its own activity by an amount pro-
portional to the sum

∑
j Jij Jjiφ(xi), a random number of mean

ηφ(xi). The effect of this feedback loop is that the individual
input terms exhibit correlated fluctuations. When η = 0, the
inputs received by neurons are uncorrelated and their sum can
be approximated by a Gaussian random variable whose mean
and variance can be determined self-consistently [1,19]. At the
other extreme, when η = 1, the inputs received by neurons are
correlated, but the dynamics of the network can be described as
a relaxation of an energy function and the standard machinery
of statistical mechanics can be used. For other values of η, none
of these analytical strategies can be applied and the analysis
becomes more complex. Demonstrating analytically whether
aging dynamics is present in partially symmetric, nonlinear
networks seems an outstanding open problem.

Our results on the autocorrelation function in the linear
network are closely related to recent results published by Bravi
et al. [34], who used a different set of methods to compute
the power spectrum of the network activity, i.e., the Fourier
transform of the autocorrelation function of the same model
we investigated. Unlike Bravi et al. [34], we obtained the
autocorrelation directly in real time, although our results are
fully consistent with theirs in that we obtain the same two
regimes with the same asymptotic timescales, depending on
the symmetry and the gain [or leak, in their case; compare
Fig. 1 of [34] with Fig. 3(a)].

Our work provides a potential bridge between two seem-
ingly unrelated observations in neuroscience. The first is
the observation of strong correlations between the synaptic
strengths in pairs of cortical pyramidal cells, the main exci-

tatory neuronal type in cerebral cortex, by multiple groups
using in vitro electrophysiological recordings [9–12]. These
correlations are a consequence of two features of the connectiv-
ity. First, there exists an overrepresentation of bidirectionally
connected pairs, compared to a Erdős-Rényi network with the
same connection probability. For instance, Song et al. [10]
found a connection probability of c = 0.116 in pairs of neurons
whose somas are less than 100 μm apart, while the probability
that a pair of such neurons are connected bidirectionally
is approximately 4c2. This degree of overrepresentation has
been found in multiple cortical areas, except in the barrel
cortex where no such overrepresentation exists [58]. Second,
synaptic connections in bidirectionally connected pairs are
on average stronger than those in unidirectionally connected
pairs and are significantly correlated [10]. These observations
lead to estimates of η ∼ 0.5, a value that, according to our
model, would lead to a significant increase in autocorrelation
timescales compared to a random asymmetric connectivity.

The second observation is of long-timescales in the autocor-
relations of neuronal activity from in vivo electrophysiological
recordings (see, e.g., [18,59]). Interestingly, the timescales of
these autocorrelations increase from sensory to higher level
areas such as the prefrontal cortex. Several mechanisms have
been proposed to account for this phenomenon: differences in
the level of expression of slow N -methyl-D-aspartate (NMDA)
receptors [60] or an increase in the strength of recurrent
connectivity [61] which could in particular lead to the presence
of multiple fixed points that can slow down the dynamics
[42,43]. Our results suggest that this increase in timescale
could also be due to an increase in the degree of symmetry of
cortical connectivity. This would be consistent with the study
of Wang et al. [14], who showed that the overrepresentation
of bidirectionally connected pairs of neurons is significantly
stronger in the prefrontal cortex than in the visual cortex.

From a neuroscience point of view, the model considered
here is an extremely simplified model of cortical networks
because it lacks the fundamental constraint that neurons are
either excitatory or inhibitory and because it does not constrain
firing rates to be positive. These simplifications were made for
the sake of mathematical tractability. A few recent studies have
investigated how these two constraints influence the dynamics
of such networks [20–22,62–64]. Extending those works to
connectivity with segregated excitation and inhibition and
partial symmetry is an important direction for future work that
might be facilitated by recent developments in random matrix
theory [65,66].
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APPENDIX A: DERIVATION OF THE DOUBLE
COMPLEX INTEGRAL

We summarize here the derivation of the double complex
integral of Eq. (9). Before doing so, we sketch the derivation
of the local density of the overlap done in Ref. [16], as this
will let us introduce some notation and pave the way for our
calculation.

For a complex variable z = x + iy, with x and y real
and with conjugate z̄ = x − iy, we define the Wirtinger
derivatives ∂/∂z = (∂/∂x − i∂/∂y)/2 and ∂/∂z̄ = (∂/∂x +
i∂/∂y)/2, which obey ∂z/∂z = ∂z̄/∂z̄ = 1 as well as ∂z̄/∂z =
∂z/∂z̄ = 0. The complex differential is defined to be d2z ≡
dzdz̄ = 2dxdy, where the factor 2 comes from the Jacobian.
We also define the complex Dirac delta so that it obeys the
relation

∫
δ2(z)d2z ≡ 1, which implies δ2(z) = (1/2)δ(x)δ(y)

given our convention for the complex differential. Two useful
identities for the δ function in the complex plane are

δ2(z) = 1

2π

∂

∂z̄

1

z
= 1

2π

∂

∂z

1

z̄
, (A1)

which can be checked by integrating over d2z and applying the
complex version of Green’s theorem∫ (

∂v

∂z
+ ∂v̄

∂z̄

)
d2z = i

∮
(v dz̄ − v̄ dz), (A2)

where v and v̄ are to be considered independent functions.
The resolvent, defined for any matrix J as (z1 − J)−1, is

a key quantity in the analysis of random matrices because it
can be ensemble averaged using standard methods and can be
related to quantities of interest. So, for example, the empirical
density of eigenvalues of a given J,

ρJ (z) = 1

N

N∑
i=1

δ(x − Reλi)δ(y − Im λi) = 2

N

N∑
i=1

δ2(z − λi),

can be expressed due to the identities (A1) as

ρJ (z) = 1

π

∂

∂z̄

1

N

N∑
i=1

1

z − λi

= 1

π

∂

∂z̄

1

N
Tr(z1 − J)−1.

This quantity is hard to compute for any particular realization at
finite N , but it becomes easier to handle in the limit of large N ,
where all empirical densities converge to the average density

ρ(z) = [ρJ (z)]J = 1

π

∂

∂z̄

[
1

N
Tr(z1 − J)−1

]
J

.

Deriving the average density, therefore, amounts to computing
the function G(z) = [Tr(z1 − J)−1/N]J in the large-N limit.

The local density of the overlap can be derived in a
similar manner using the spectral decomposition (z1 − J)−1 =∑N

i=1 Ri(z − λi)−1L†
i , where Ri and Li are the right and left

eigenvectors of J, respectively. If we substitute the definition
of the overlap matrix into Eq. (8) and use the identities (A1)
we obtain

D(z1,z2)

= 4

N

⎡
⎣ N∑

i,j=1

(L†L)ij (R†R)jiδ
2(z1 − λi)δ

2(z2 − λj )

⎤
⎦

J

= 1

Nπ2

∂

∂z̄1

∂

∂z2

⎡
⎣ N∑

i,j=1

Tr Ri

1

z1 − λi

L†
i Lj

1

z̄2 − λ̄j

R†
j

⎤
⎦

J

= 1

π2

∂

∂z̄1

∂

∂z2

[
1

N
Tr

1

z11 − J
1

z̄21 − J†

]
J

(A3)

and the problem reduces to computing the quantity

G(z1,z2) =
[

1

N
Tr

1

z11 − J
1

z̄21 − J†

]
J

.

The expression of G(z1,z2) for the ensemble of Gaussian
random matrices with partial symmetry was derived by Mehlig
and Chalker [17]. The basic idea behind their calculation is to
expand resolvents in power series, average over the disorder
term by term, and organize the sums so that a recursive relation
can be established and ultimately solved (for a thorough
description of the method, see also [52]). The result is a
complex function that takes the value

G(z1,z2)

= 1

1 − η2

(
(1 − η2)2 + η

(
z2

1 + z̄2
2

)− (1 + η2)z1z̄2

|z1 − z2|2 − 1

)
,

(A4)

when both z1 and z2 lie inside the ellipse centered at the
origin and which has major and minor radii 1 + η and 1 − η,
respectively. We will call this ellipse Eη for later convenience.
When z1 and z2 lie outside Eη we have instead

G(z1,z2) = h1h̄2

1 − h1h̄2
,

where

h1 =
z1 −

√
z2

1 − 4η

2η
, h̄2 =

z̄2 −
√

z̄2
2 − 4η

2η
.

Right on the ellipse Eη, |hi | = 1. When both z1 and z̄2 lie
outside the ellipse, the function G(z1,z2) is analytic on z1 and
z̄2. This analyticity implies, from (A3), that the local density
of the overlap vanishes outside the ellipse.

We now proceed to compute A(u,τ ) [Eq. (10)]. Inserting
the identity (A3) into (10) leads to

A(u,τ ) = 1

4π2

∫∫
eg(z1+z̄2)u+gz1τ

∂

∂z̄1

∂

∂z2
G(z1,z2)d2z1d

2z2.

Because the exponential prefactor is analytic in z1 and z̄2, it
commutes with the two partial derivatives. We can therefore
apply Green’s theorem twice to obtain

A(u,τ ) = 1

4π2

∮
E

∮
E

eg(z1+z̄2)u+gz1τG(z1,z2)dz1dz̄2, (A5)

where both contour integrals are around the ellipse E, at
whose boundary G(z1,z2) stops being analytic. To compute
A(u,τ ) we follow the approach of [17] and use the linear
transformation w = (z − ηz̄)/(1 − η2) (or, equivalently, z =
w + ηw̄) to reshape the contour of integration from the ellipse
Eη into the unit circle. Applying this transformation to both
z1 and z2, the surface integrals in Eq. (A5) become contour
integrals on the unit circle |w|2 = ww̄ = 1. On this contour we
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1 1 1/η

u = α±(w)

1η

v = α−1
± (w)

v = 1/u

FIG. 6. Mapping of the unit disk D = {w ∈ C | |w| � 1} by the
functions α±(w) and α−1

± (w).

can replace every w̄ in the integrand by w−1 and we can use the
standard tools of complex analysis to carry out the integrals.
We describe in more detail our derivation in the following.

We start by performing the integral over z̄2, expressing
Eq. (A4) in terms of w1, w̄1, and w2, and replacing all w̄2

by w−1
2 . After some simplifications, we obtain

G(z1(w1),z2(w2))

= −1 + 1

η(α+ − α−)

(
1 − ηw1α+
w2 − α+

− 1 − ηw1α−
w2 − α−

)
,

(A6)

where we defined the poles

α±(w1) = w̄1 + ηw1 ±
√

(w̄1 + ηw1)2 − 4η

2η
. (A7)

These poles depend on w1 and can be shown to map the unit
disk onto an annulus of inner radius 1 and outer radius 1/|η|
(see Fig. 6). This information will be relevant when we use
residue calculus.

The double integral (A5) has to be regularized because the
integrand diverges at z1 = z2. Our regularization consists of
first integrating w2 on the unit circle while constraining w1 to
be on a concentric circle of smaller radius |w1| = 1 − ε, with
ε > 0 small. Once the integral over w2 is done, we take the
limit ε → 0 and perform the second integral over w1.

Under this regularization, we decompose the double integral
(A5) as

A(u,τ ) = lim
ε→0

1

4π2

∮
|w1|=1−ε

eg(w1+ηw̄1)(u+τ )A(w1,u)

× (dw1 + ηdw̄1), (A8)

where we used z1 = w1 + ηw̄1 and defined

A(w1,u) =
∮

|w2|=1
eg(w−1

2 +ηw2)uG(z1(w1),z2(w2))

×
(

− 1

w2
2

+ η

)
dw2. (A9)

Note that here we used w̄2 = w−1
2 to express the integrand

and the differential dz̄2 = dw̄2 + ηdw2 in terms of w2 only.
The integrand of Eq. (A9) contains one singularity inside the
contour of integration, at w2 = 0. This singularity is associated
with the essential singularity from the exponential e1/w2 as
well as with the pole of second order 1/w2

2. Because we are

assuming that |w1| < 1, the poles of G(z1(w1),z2(w2)) at w2 =
α± lie outside the contour and therefore do not contribute to
the integral. We are thus left with the task of computing the
residue at the origin. We do that by expanding the integrand in
Laurent series around w2 = 0, using the relations

e(z−1+ηz)t =
∞∑

k=−∞
(z

√
η)kIk(2

√
ηt) for z �= 0,

(z − z0)−1 = − 1

z0

∞∑
k=0

(
z

z0

)k

for |z| < |z0|,

with Ik(z) being the modified Bessel function of order k. We
use the last power series to expand the terms (w2 − α±)−1

in G(z1(w1),z2(w2)) [Eq. (A6)]. This power series converges
because |w2| < |α±| when |w1| < 1, as we assume in our
regularization scheme. After expanding, applying Cauchy’s
residue theorem, and taking the limit ε → 0, we obtain

A(w1,u) = −2πi

gu

∞∑
k=0

w−k
1 η−k/2kIk(2g

√
ηu).

The final step is to compute the integral in Eq. (A8) with
the same strategy we used for A(w1,u,τ ). In this case we
express the integrand in terms of w1 only and we expand the
exponential factor in Eq. (A8) with the identity

e(z+ηz−1)t =
∞∑

k=−∞

(
z√
η

)k

Ik(2
√

ηt).

We then pick the residue from the expansion and apply
Cauchy’s theorem. The result is

A(u,τ ) = A1(u,τ ) + A2(u,τ ),

with

A1(u,τ ) =
∞∑

k=−∞
ηk/2Ik(2g

√
ητ )[(1 + η2)Ik(2g(1 + η)u)

− η(Ik−2(2g(1 + η)u) + Ik+2(2g(1 + η)u))]

(A10)

and A2(u,τ ) given by Eq. (13).
The expression (A10) for A1(u,τ ) can be further simplified

with the identity [67]
∞∑

k=−∞
eikαJk(w)Jk+ν(z)

=
(

z − we−iα

z − weiα

)ν/2

Jν(
√

w2 + z2 − 2wz cos α), (A11)

which we can transform into a more convenient expression
for our problem, using Jν(iz) = iνIν(z) and taking α = π −
(i/2) ln η so that eiα = −√

η. The identity (A11) then becomes

∞∑
k=−∞

ηk/2Ik(w)Ik+ν(z)

=
(

z + wη−1/2

z + wη1/2

)ν/2

Iν(
√

w2 + z2 + wz(η1/2 + η−1/2)),

(A12)
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which allows us to rewrite Eq. (A10) as the final expression
(12).

The series A2(u,τ ) does not seem to have a closed expres-
sion for general η. For η = 1, however, we can exploit the
identity

∞∑
k=−∞

Ik(w)In−k(z) = In(w + z)

to conclude that

A2(u,τ ) = −I0(2g(2u + τ )) + I2(2g(2u + τ )) for η = 1.

APPENDIX B: EVALUATION OF THE TIME
INTEGRAL FOR LONG τ

The exact average autocorrelation is given in Eq. (9) as a
time integral that can be decomposed as

C(τ ) =
∫ ∞

0
e−2u−τ [A1(u,τ ) + A2(u,τ )]du,

where A1(u,τ ) and A2(u,τ ) are defined in Eqs. (12) and
(13). To gain more analytical insight we will evaluate C(τ )
when τ is sufficiently large, a limit that allows us to invoke
Laplace’s method and approximate the integral with a closed-
form expression [68]. Before applying the limit it is convenient
to express this integral in terms of a new variable ξ ≡ u/τ ,
which is well defined for τ > 0. With this definition

C(τ ) =
∫ ∞

0
e−τ (2ξ+1)[A1(u(ξ ),τ ) + A2(u(ξ ),τ )]τ dξ

≡ C1(τ ) + C2(τ ), (B1)

which we split into the two terms composing the integrand.
We start with the asymptotic dependence of C1(τ ), ignoring
for the moment C2(τ ). The integrand of C1(τ ) contains I0(·)
and I2(·), whose argument is large in the long-τ limit. We can
therefore use the asymptotic expansion of the modified Bessel
functions of order ν,

Iν(x) = ex

√
2πx

[
1 − 4ν2 − 1

8x
+ O(x−2)

]
for x  1.

(B2)

At this order, defining

ψ(ξ ; η) ≡ ψ(u(ξ ),τ ; η)/τ = 2
√

(1 + η)2ξ (ξ + 1) + η,

we obtain

C1(τ ) =
√

τ

2π

∫ ∞

0

exp{−τ [(2ξ + 1) − gψ(ξ ; η)]}√
gψ(ξ ; η)

×
[

(1 + η2)

(
1 + 1

8τgψ(ξ ; η)

)

− 2η

(
1 + 2(1 − η)2

ψ(ξ ; η)2

)(
1 − 15

8τgψ(ξ ; η)

)]
dξ,

(B3)

with g = (1 − δ)/(1 + η). This integral is of the form

A(τ ) =
∫ ∞

0
f (ξ )eτb(ξ )dξ. (B4)

0 1
0

1

η

δ ξ∗ < 0

ξ∗ > 0

FIG. 7. Sign of ξ ∗, at which the exponent in Eq. (B3) is largest,
as a function of the spectral gap and the degree of symmetry. This
diagram is equivalent to that shown in Fig. 3(a), after transforming δ

into its associated gain g = (1 − δ)/(1 + η).

In the limit of large τ , only the infinitesimal interval around
the maximum of b(ξ ) contributes to the integral because
the contribution of the remaining intervals is exponentially
suppressed. In our particular case the maximum of b(ξ ) is at

ξ ∗ = 1

2

(
−1 + 1 − η

(1 + η)
√

2δ − δ2

)
. (B5)

We distinguish two cases. For large enough values of η and
δ, ξ ∗ is negative (Fig. 7), which means that in the integration
range [0,∞) of Eq. (B3) the maximum value of b(ξ ) is at ξ = 0.
Conversely, for low values of η and δ, the maximum of b(ξ )
occurs within (0,∞). These two cases will lead to different time
dependences and will be studied separately in the following.

For values of η and δ such that ξ ∗ < 0, the limit τ → ∞ of
Eq. (B4) can be approximated by (see [68], pp. 266–268)

A(τ ) ∼ lim
ε→0

∫ ε

0
f (0)eτ [b(0)+b′(0)s]ds

∼
∫ ∞

0
f (0)eτ [b(0)+b′(0)s]ds ∼ −f (0)eτb(0)

τb′(0)
, (B6)

where b′(0) denotes the derivative of b(ξ ) evaluated at ξ ∗ = 0.
Applying this approximation to (B3), we obtain

C1(τ ) = τ−3/2η−1/4

2
√

π

1 + η2

δ(1 + η) − [1 − √
η]2

(
1 + η

1 − δ

)3/2

× exp

{
−τ

(1 − √
η)2 + 2δ

√
η

1 + η

}
. (B7)

Conversely, if η and δ are such that ξ ∗ > 0, the maximum ξ ∗
falls within the integration region and we can approximate the
large-τ limit of the integral (B4) by (see [68], p. 267)

A(τ ) ∼ lim
ε→0

∫ ξ∗+ε

ξ∗−ε

f (ξ ∗)eτ [b(ξ∗)+(s−ξ∗)2b′′(ξ∗)/2]ds

∼
∫ ∞

−∞
f (ξ ∗)eτ [b(ξ∗)+(s−ξ∗)2b′′(ξ∗)/2]ds

∼
√

2πf (ξ ∗)eτb(ξ∗)

√−τb′′(ξ ∗)
,
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with b′′(ξ ∗) denoting the second derivative of b(ξ ) evaluated
at ξ ∗. In this case Eq. (B3) is approximately given by

C1(τ ) = δ−1/2(1 − η)2

2
√

2(1 − δ)
exp

{
−τ

1 − η

1 + η

√
2δ − δ2

}
.

We now turn to the asymptotic dependence of C2(τ ). The
original form for C2(τ ) is

C2(τ ) =
∫ ∞

0

{
e−τ (2ξ+1)

∞∑
k=0

ηk+2(k + 1)2

× Ik+1(2gτ
√

ηξ )Ik+1(2gτ
√

η(ξ + 1))

ητg2ξ (ξ + 1)

}
dξ.

(B8)

The integrand contains a product of Bessel functions that grows
exponentially with τ [see Eq. (B2)], but this growth is kept in
check by the exponential prefactor. To see this, we introduce
the scaled modified Bessel function

I ∗
ν (x) ≡ e−xIν(x)

in terms of which (B8) becomes

C2(τ ) =
∫ ∞

0
exp

[
−τ

(1 − √
η)2 + 2δ

√
η

1 + η

] ∞∑
k=0

ηk+1(k + 1)2

× I ∗
k+1(2gτ

√
ηξ )I ∗

k+1(2gτ
√

η(ξ + 1))

τg2ξ (ξ + 1)
dξ. (B9)

The integral converges because the exponential decays to
zero for large τ and trumps the power-law decay of I ∗

k (·).
Equation (B9) also has the same form as (B4) and con-
tains exactly the same exponent as in Eq. (B7); because the
exponential attains its maximum at ξ = 0, we can use the
approximation (B6). To evaluate at ξ = 0 we use the power

expansion I ∗
k+1(2gτ

√
ηξ )

ξ∼0= (gτ
√

ηξ )k+1 and identify f (ξ )
in Eq. (B6) with

f (ξ ) ≡
∞∑

k=0

η3(k+1)/2

ξ + 1
(k + 1)2gk−1ξkτ kI ∗

k+1(2gτ
√

η(ξ + 1)).

All the terms of f (ξ ) with k > 0 vanish at ξ = 0 and Eq. (B6)
reads in this case

C2(τ ) ∼ τ−3/2η5/6

4
√

π

(1 + η)5/2

(1 − δ)3/2

1

(1 − √
η)2 + 2

√
ηδ

× exp

{
−τ

(1 − √
η)2 + 2δ

√
η

1 + η

}
.

Summing this contribution to that in Eq. (B7) leads to the result
reported in Eqs. (18)–(20).

APPENDIX C: AUTOCORRELATION
WITHOUT OVERLAPS

Here we compute the autocorrelation ignoring the effect
of the overlaps between eigenvectors. In this case, we need
to compute the individual contribution of a single eigenvalue
to the autocorrelation and then sum over the contributions of

all eigenvalues. We start with the one-dimensional version of
Eq. (4),

dx

dt
= αx + σξ (t), (C1)

where the parameter α would be the (single) eigenvalue of the
system, assumed to have a negative real part to prevent x(t)
to grow unbounded, and where ξ (t) is a source of standard
Gaussian white noise. The solution of (C1) is

x(t) = σ

∫ t

−∞
eα(t−s)ξ (s)ds,

from which we can derive the autocorrelation

〈x(t)x(t + τ )〉 = σ 2
∫ t

−∞

∫ t+τ

−∞
eα(2t+τ−s−u)〈ξ (s)ξ (u)〉ds du

= −σ 2 eατ

2α
≡ σ 2Cα(τ ). (C2)

The eigenvalue α determines both the timescale and the
amplitude of the autocorrelation. We set the overall factor σ 2

to 1, without loss of generality.
The average autocorrelation for the high-dimensional sys-

tem in the absence of overlaps is the sum of (C2) over all the
eigenvalues. In the large-N limit we would have

C(τ ) = 1

N

N∑
i=1

Cαi
(τ )

N→∞−−−→
∫

Cα(τ )ρ(α)dα dᾱ, (C3)

where ρ(α) is the probability density of eigenvalues and the
integral is on the complex plane. For the system (4) and
for the connectivity matrices we consider, the density of
the eigenvalues α is uniform and has support on an ellipse
centered at z = −1 with major radius g(1 + η) and minor
radius g(1 − η). The integral (C3) can be computed in that
case and reads

C(τ ) = −1

πg2(1 − η2)

∫
E

eατ

2α
dα dᾱ, (C4)

where we used Eq. (C2) and the prefactor is the constant value
thatρ(α) takes on the elliptic supportE. To evaluate the integral
we use the parametrization

α = −1 + r(1 + η) cos θ + ir(1 − η) sin θ

and integrate over r ∈ [0,g] and θ ∈ [0,2π ]. Noting that

∫
E

dα dᾱ = (1 − η2)
∫ 2π

0

∫ g

0
r dr dθ,

Eq. (C4) becomes

C(τ ) = 1

πg2

∫ 2π

0

∫ g

0

exp{−τ [1 − rψ(θ )]}
2[1 − rψ(θ )]

r dr dθ, (C5)

where for convenience we defined

ψ(θ ) ≡ (1 + η) cos θ + i(1 − η) sin θ.
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The integral (C5) is hard to compute, but we can make progress
by taking the derivative of C(τ ) with respect to τ ,

C ′(τ ) = − e−τ

2πg2

∫ 2π

0

∫ g

0
eτψ(θ)r r dr dθ, (C6)

which is easier to evaluate. Equation (C6) can be integrated
over r by parts, yielding an integral over θ only that, excluding
prefactors, reads

B(g,τ ) ≡
∫ 2π

0

{
geτψ(θ)g

τψ(θ )
− eτψ(θ)g − 1

τ 2ψ2(θ )

}
dθ.

Again, this integral is hard to compute but we can use the same
trick we used before, noting that the partial derivative of A(g,τ )
with respect to g simplifies considerably,

∂B(g,τ )

∂g
= g

∫ 2π

0
eτψ(θ)gdθ = 2πgI0(2gτ

√
η),

where in the last equation we used Eq. (3.937.2) in Ref. [69].
We recover the expression for A(g,τ ) by integrating along g,
with the initial condition A(0,τ ) = 0:

B(g,τ ) = 2π

∫ g

0
xI0(2xτ

√
η)dx = 2π

4τ 2η

∫ 2gτ
√

η

0
yI0(y)dy.

The last integral can be computed with the help of the
recurrence relation zI0(z) = zI ′

1(z) + I1(z). An integration by
parts of the term zI ′

1(z) leads to the final identity
∫

xI0(x)dx =
xI1(x) and therefore to

B(g,τ ) = πg

τ
√

η
I1(2τg

√
η).

Equation (C6) then reads

C ′(τ ) = − e−τ

2τg
√

η
I1(2τg

√
η), (C7)

which we have to integrate to recover C(τ ). Such an integration
is subject to the initial condition C(0),

C(0) = 1

2πg2

∫ 2π

0

∫ g

0

r

1 − rψ(θ )
dr dθ

= − 1

2πg2

∫ 2π

0

{
g

ψ(θ )
+ 1

ψ2(θ )
ln[1 − gψ(θ )]

}
dθ,

which can be evaluated numerically.

APPENDIX D: SUMMARY OF THE DYNAMIC
MEAN-FIELD DERIVATION

The starting point of the calculation is the moment generat-
ing functional for the state variables xi(t) obeying Eq. (1). We
consider the more general case where the activation variable
is driven by recurrent inputs as well as independent external
white noise

ẋi(t) = −xi(t) + g

N∑
j=1

Jij rj (t) + σξi(t), i = 1, . . . ,N,

(D1)

where we defined rj (t) ≡ φ(xj (t)) to simplify the notation. The
white-noise sources ξi(t) have zero mean and unit variance.

The moment generating functional for such a system can be
shown to be [70,71] (see also [72,73] for a more pedagogical
description)

Z[l,l̃; J] =
∫

Dx(t)Dx̃(t) exp

(
−S[x,x̃; J]

+
N∑

i=1

∫
l̃i(t)xi(t)dt +

N∑
i=1

∫
li(t)x̃i(t)dt

)
,

where Dx(t)Dx̃(t) =∏N
i=1 Dxi(t)Dx̃i(t) is the functional

measure for all possible paths for all variables and we intro-
duced the action

S[x,x̃; J]

=
N∑

i=1

∫
x̃i(t)

⎧⎨
⎩ẋi(t)+xi(t)−g

N∑
j=1

Jij rj (t)−σ 2

2
x̃i(t)

⎫⎬
⎭dt.

(D2)

In this definition we assume that the auxiliary fields x̃(t) are
purely imaginary, so we do not have to write explicit imaginary
units all along. By construction the generating functional
satisfies the normalization condition Z[0,0; J] = 1. The fact
that Z[0,0; J] does not depend on J allows us to compute the
quenched average directly on Z [74],

Z[l,l̃] ≡
∫

Z[l,l̃; J]

Z[0,0; J]
dP (J) =

∫
Z[l,l̃; J]dP (J), (D3)

which simplifies considerably the average, now reduced to
computing [exp(−S[x,x̃,J])]J . To do so, we use the decom-
position of partially symmetric connectivity matrices

Jij = J s
ij + kJ a

ij , (D4)

where J s
ij = J s

ji , J
a
ij = −J a

ji , and both J s
ij and J a

ij are Gaussian
random variates with zero mean and variance[(

J s
ij

)2]
J

= [(J a
ij

)2]
J

= 1

N

1

1 + k2

so that [J 2
ij ]J = J 2/N . With these matrix decompositions, the

correlation between bidirectional weights is [15]

[JijJji]J = 1

N

1 − k2

1 + k2
,

which must equal η/N by our definition of η. This leads to the
relation k2 = (1 − η)/(1 + η). To integrate over the disorder
we use the Gaussian measures

dP (Js) =
∏
i�j

dP
(
J s

ij

) ∝ exp

⎧⎨
⎩− N

1 + η

∑
i�j

(
J s

ij

)2⎫⎬⎭dJs ,

dP (Ja) =
∏
i<j

dP
(
J a

ij

) ∝ exp

⎧⎨
⎩− N

1 + η

∑
i<j

(
J a

ij

)2⎫⎬⎭dJs ,

with dJs =∏i�j dJ s
ij and dJs =∏i<j dJ a

ij . We will ignore
the contribution of diagonal elements of the synaptic matrix
because it is negligible in the limit of large N . We can now
integrate out the terms linear in Jij that appear in Eq. (D2),
by separating symmetric and antisymmetric components. Ex-
cluding prefactors and time integrals, these terms are of
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the form

L(J,t) ≡
∑
i,j

i �= j

x̃i(t)Jij rj (t)

=
∑
i,j

i �= j

x̃i(t)
[
J s

ij + kJ a
ij

]
rj (t)

=
∑
i<j

{
J s

ij [x̃i(t)rj (t) + x̃j (t)ri(t)] + kJ a
ij [x̃i(t)rj (t) − x̃j (t)ri(t)]

}
so that

∫
exp

{
g

∫
L(J,t)dt

}
dP (Js)dP (Ja) = exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g2

2N

∑
i,j

i �= j

∫∫
{[x̃i(t)rj (t)x̃i(t

′)rj (t ′)] + η[x̃i(t)rj (t)x̃j (t ′)ri(t
′)]}dt dt ′

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

where we used the property that, for a Gaussian variable z of zero mean and variance σ 2, the expected value of exp(λz) is
〈exp(λz)〉z = exp(λ2σ 2/2), which can be checked by completing the square in the exponential.

Putting back together all the pieces, the average generating functional (D3) is therefore

Z[l,l̃] =
∫

Dx(t)Dx̃(t) exp

⎛
⎜⎜⎜⎝− S0[x(t),x̃(t)] + σ 2

2
x̃ · x̃ + l̃ · xi + l · x̃

+ g2

2N

∑
i,j

i �= j

∫∫
{[x̃i(t)rj (t)x̃i(t

′)rj (t ′)] + η[x̃i(t)rj (t)x̃j (t ′)ri(t
′)]}dt dt ′

⎞
⎟⎟⎟⎠, (D5)

where we defined the free action

S0[x,x̃] ≡
N∑

i=1

∫
x̃i(t)[ẋi(t) + xi(t)]dt (D6)

and we introduced the notation

f · g ≡
N∑

i=1

∫
fi(t)gi(t)dt.

As a result of averaging out the disorder, we obtained a coupling involving four fields with different indices and at different
times. To proceed, it is convenient to introduce auxiliary fields that involve terms local in space (i.e., with the same index) but
not in time,

q1(t,t ′) = g2

N

N∑
i=1

x̃i(t)x̃i(t
′), q2(t,t ′) = g2

N

N∑
i=1

ri(t)ri(t
′),

q3(t,t ′) = g2

N

N∑
i=1

x̃i(t)ri(t
′), q4(t,t ′) = g2

N

N∑
i=1

ri(t)x̃i(t
′),

so Eq. (D5) now reads

Z[l,l̃] =
∫

Dx(t)Dx̃(t)

(
4∏

α=1

N

g2
Dqα

)
δ

(
N

g2
q1 −

N∑
i=1

x̃i(t)x̃i(t
′)

)
δ

(
N

g2
q2 −

N∑
i=1

ri(t)ri(t
′)

)
δ

×
(

N

g2
q3 −

N∑
i=1

x̃i(t)ri(t
′)

)
δ

(
N

g2
q4 −

N∑
i=1

ri(t)x̃i(t
′)

)

× exp

(
−S0[x,x̃] + σ 2

2
x̃ · x̃ + l̃ · xi + l · x̃ + N

2g2

∫∫
{q1(t,t ′)q2(t,t ′) + ηq3(t,t ′)q4(t,t ′)}dt dt ′

)
. (D7)
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We now express the Dirac functionals in their integral representation. The first Dirac functional appearing in Eq. (D7) can be
written as

δ

(
N

g2
q1 −

N∑
i=1

x̃i(t)x̃i(t
′)

)
= 1

2π

∫
Dq̂1(t,t ′) exp

{∫∫
q̂1(t,t ′)

[
N

g2
q1(t,t ′)−

N∑
i=1

x̃i(t)x̃i(t
′)

]
dt dt ′

}
,

where the integral over q̂ is understood to be along the imaginary axis. The other Dirac functionals in Eq. (D7) are rewritten
analogously. Equation (D7) then becomes

Z[l,l̃] =
∫

DXDQ exp

(
−S0[x,x̃]+σ 2

2
x̃ · x̃ + l̃ · x + l · x̃ + N

g2

∫∫ { 4∑
α=1

q̂α(t,t ′)qα(t,t ′) + 1

2
[q1(t,t ′)q2(t,t ′)

+ ηq3(t,t ′)q4(t,t ′)] − g2

N

N∑
i=1

[q̂1(t,t ′)x̃i(t)x̃i(t
′) + q̂2(t,t ′)ri(t)ri(t

′) + q̂3(t,t ′)x̃i(t)ri(t
′) + q̂4(t,t ′)ri(t)x̃i(t

′)]

}
dt dt ′

)
,

(D8)

where we introduced the shorthand notation

DQ ≡
4∏

α=1

1

2π

N

g2
DqαDq̂α,

DX ≡ Dx(t)Dx̃(t) =
N∏

i=1

Dxi(t)Dx̃i(t).

Equation (D8) can now be expressed as [5,33]

Z[l,l̃] =
∫

DQeNf (q,q̂,x,x̃), (D9)

where

f (q,q̂,x,x̃) ≡ G(q,q̂) + 1

N
log
∫

DX exp[L(q,q̂,x,x̃)],

G(q,q̂) ≡ 1

g2

∫∫ { 4∑
α=1

qαq̂α + 1

2
[q1q2 + ηq3q4]

}
dt dt ′,

L(q,q̂,x,x̃) ≡ −S0[x,x̃]+σ 2

2
x̃ · x̃+l̃ · x + l · x̃ −

N∑
i=1

∫∫
[q̂1(t,t ′)x̃i(t)x̃i(t

′)+q̂2(t,t ′)ri(t)ri(t
′)

+ q̂3(t,t ′)x̃i(t)ri(t
′)+q̂4(t,t ′)ri(t)x̃i(t

′)]dt dt ′.

In the limit of large N we can apply the saddle-point method to Eq. (D9), which amounts to making the approximation

Z[l,l̃] =
∫

DQeNf (q,q̂,x,x̃) ≈ eNf (q0,q̂0,x,x̃), (D10)

where q0 and q̂0 are the values that extremize f . Requiring δf/δq̂α = 0 leads to

q0
1 (t,t ′) = g2

N

N∑
i=1

〈x̃i(t)x̃i(t
′)〉L, (D11)

q0
2 (t,t ′) = g2

N

N∑
i=1

〈ri(t)ri(t
′)〉L, (D12)

q0
3 (t,t ′) = g2

N

N∑
i=1

〈x̃i(t)ri(t
′)〉L, (D13)

q0
4 (t,t ′) = g2

N

N∑
i=1

〈ri(t)x̃i(t
′)〉L, (D14)

with the average 〈·〉L defined as

〈O〉L ≡
∫
O(X) exp[L(X)]dX∫

exp[L(X)]dX
.
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Similarly, from the saddle-point conditions for qα we obtain

q̂0
1 (t,t ′) = −1

2
q0

2 (t,t ′), q̂0
2 (t,t ′) = −1

2
q0

1 (t,t ′),

q̂0
3 (t,t ′) = −η

2
q0

4 (t,t ′), q̂0
4 (t,t ′) = −η

2
q0

3 (t,t ′).

Now the right-hand side of Eq. (D10) reads

Z[l,l̃] =
∫

DX exp(−S0[x,x̃] − Sint[x,x̃] + l̃ · x + l · x̃) (D15)

with

Sint[x,x̃] ≡ 1

2

∫∫ {
N

g2

[
q0

1 (t,t ′)q0
2 (t,t ′)ηq0

3 (t,t ′)q0
4 (t,t ′)

]−
N∑

i=1

{[
q0

2 (t,t ′) + σ 2δ(t − t ′)
]
x̃i(t)x̃i(t

′)

+q0
1 (t,t ′)ri(t)ri(t

′)ηq0
4 (t,t ′)x̃i(t)ri(t

′)ηq0
3 (t,t ′)ri(t)x̃i(t

′)
}}

dt dt ′. (D16)

The auxiliary fields defined in Eqs. (D11)–(D14) are related to physically observable quantities. First, q0
2 (t,t ′) is related to the

population-averaged autocorrelation function

C(t,t ′) ≡ 1

N

N∑
i=1

〈ri(t)ri(t
′)〉

by q0
2 (t,t ′) = g2C(t,t ′). Second, the auxiliary fields q0

3 (t,t ′) and q0
4 (t,t ′) are related to the so-called response function, which

characterizes the response of the system when it is perturbed by a weak field. More specifically, in our context the response
function at site i would be

G(t,t ′) ≡ δ〈ri(t)〉
δhi(t ′)

∣∣∣∣
h=0

, (D17)

where hi(t ′) is a time-dependent external field and angular brackets denote the average over the effective action S[x,x̃] =
S0[x,x̃] + Sint[x,x̃] that appears in Eq. (D15). Note that from the definition of response function G(t,t ′) has to be 0 whenever
t < t ′, due to causality. To see the link between G(t,t ′) and q3(t,t ′) and q4(t,t ′), we add an external field hi(t) for each neuron in
Eq. (D1) and evaluate (D17). With the new field the action becomes Sh[x,x̃] = S[x,x̃] −∑ x̃i(t)hi(t) and

δ〈ri(t)〉
δhi(t ′)

∣∣∣∣
h=0

= δ

δh(t ′)

∫
DXri(t) exp(−Sh[x,x̃])

∣∣∣∣
h=0

= −
〈
r(t)

δSh

δhi(t ′)

∣∣∣∣
h=0

〉
= 〈ri(t)x̃i(t

′)〉.

Defining the population-averaged response function as

G(t,t ′) ≡ 1

N

N∑
i=1

〈ri(t)x̃i(t
′)〉,

we obtain q0
4 (t,t ′) = q0

3 (t ′,t) = g2G(t,t ′).
As for q0

1 (t,t ′), it can be shown that the presence of vertices like ri(t)ri(t ′) in the action necessarily leads to violation of
causality [33]. We thus need to impose q0

1 (t,t ′) = 0 to obtain a physical solution.
We can finally write the interacting action in Eq. (D16) in terms of the physical quantities

Sint[x,x̃] = −
N∑

i=1

∫∫ {
1

2
�(t,t ′)x̃i(t)x̃i(t

′) + ηg2G(t,t ′)x̃i(t)ri(t
′)
}
dt dt ′, (D18)

where we ignored the term containing G(t,t ′)G(t,t ′), which vanishes due to causality, and where we defined

�(t,t ′) ≡ g2C(t,t ′) + σ 2δ(t − t ′).

Note that the final action involves only interactions that are local in space, which implies that all units are equivalent. This
equivalence comes as no surprise because all units are equivalent once we average over all realizations of the connectivity matrix.
We can thus drop the irrelevant indices i and focus on the single relevant dynamical variable x(t).
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Equation of motion for the average activity

The local action S[x,x̃] = S0[x,x̃] + Sint[x,x̃], with S0 and
Sint given by Eqs. (D6) and (D18), has the form

S[x,x̃] =
∫∫ {

x̃(t)G−1
F (t − t ′)x(t ′) − ηg2x̃(t)G(t,t ′)r(t ′)

− 1
2�(t,t ′)x̃(t)x̃(t ′)

}
dt dt ′ (D19)

where for later convenience we have introduced the inverse of
the free propagator G−1

F (t − t ′). The free propagator GF (t −
t ′) is just the Green’s function associated with the operator
d/dt + 1, (

d

dt
+ 1

)
GF (t − t ′) = δ(t − t ′),

and is related to its inverse through
∫

G−1
F (t − s)GF (s −

t ′)ds = δ(t − t ′), which is automatically satisfied if

G−1
F (t − t ′) = δ(t − t ′)

(
d

dt ′
+ 1

)
.

From the original stochastic system (D1) and its associated
Martin–Siggia–Rose–Janssen–de Dominicis action (D2), we
infer that the equation of motion associated with the action
(D19) is

ẋ(t) = −x(t) + ηg2
∫ t

−∞
G(t,s)r(s)ds + ϕ(t), (D20)

where ϕ(t) is a source of noise with autocorrelation

〈ϕ(t)ϕ(t ′)〉 = �(t,t ′) = g2C(t,t ′) + σ 2δ(t − t ′).

This relation has to be consistent with the dynamics generated
by Eq. (D20), that is, the noise ϕ(t) has to be such that the
firing activity r(t) has autocorrelation C(t,t ′).

We can go further and write a self-consistent relation in-
volving the two-point functions C(t,t ′) and G(t,t ′). A starting

point to derive them are the identities

δx(t)

δx(t ′)
= δx̃(t)

δx̃(t ′)
= δ(t − t ′),

δx̃(t)

δx(t ′)
= δx(t)

δx̃(t ′)
= 0,

from which we can obtain relations such as〈
δx(t)

δx(t ′)

〉
≡
∫

DX
δx(t)

δx(t ′)
exp{−S[x(t),x̃(t)]}

=
〈
x(t)

δS

δx(t ′)

〉
= δ(t − t ′).

Other relations follow analogously:〈
x(t)

δS

δx(t ′)

〉
= δ(t − t ′), (D21a)

〈
x(t)

δS

δx̃(t ′)

〉
= 0, (D21b)

〈
x̃(t)

δS

δx̃(t ′)

〉
= δ(t − t ′), (D22a)

〈
x̃(t)

δS

δx(t ′)

〉
= 0, (D22b)

We now apply the identities (D21) and (D22) for the action
(D19). In particular, we use the identities involving

δS

δx̃(t ′)
= ẋ(t) + x(t) − ηg2

∫ t

−∞
G(t,s)r(s)ds

−
∫

�(t,s)x̃(s)ds

and we define the autocorrelation and response function of the
activation field x(t)

�(t,t ′) ≡ 〈x(t)x(t ′)〉, R(t,t ′) ≡ 〈x(t)x̃(t ′)〉.
Equations (D21b) and (D22a) then become, respectively,

∂

∂t
�(t,t ′) = −�(t,t ′) + σ 2R(t ′,t)ηg2

∫ t

0
G(t,s)〈r(s)x(t ′)〉ds + g2

∫ t ′

0
R(t ′,s)C(t,s)ds, (D23)

∂

∂t
R(t,t ′) = −R(t,t ′) + δ(t − t ′) + ηg2

∫ t

t ′
G(t,s)G(s,t ′)ds, (D24)

where in Eq. (D24) we have used 〈x̃(t)x̃(t ′)〉 = 0. It can be shown that the remaining identities in Eqs. (D21) and (D22), which
involve δS/δx, do not provide additional information [73]. Note that �(t,t ′) has a cusp at t = t ′ due to the term σ 2R(t ′,t), which
from (D22) we know it must be of the form R(t,t ′) ∝ �(t − t ′), with �(t) being the step function. More specifically,

[
∂

∂t
�(t,t ′)

]t ′=t−

t ′=t+
= σ 2[R(t ′,t)]t

′=t−
t ′=t+ = −σ 2.

Moreover, the symmetry of �(t,t ′) around t = t ′ implies limt ′→t− ∂t�(t,t ′) = − limt ′→t+ ∂t�(t,t ′), which leads to the relation
limt ′→t− ∂t�(t,t ′) = −σ 2/2. The amplitude of external noise thus determines the slope of the autocorrelation of x(t) at zero-time
lag. This is the only dependence on σ 2 of the solutions of (D23) and (D24).

Equations (D23) and (D24) cannot be solved in a closed form except for η = 0 [1], but perturbative solutions can be found
by expanding the nonlinearity r(t) = φ(x) in power series of x(t) and then solving the resulting hierarchy of equations, which
involve correlations and response functions of increasingly larger order. The problem becomes unwieldy except for the linear
case where r(t) = x(t). In that case, C(t,t ′) = �(t,t ′), G(t,t ′) = R(t,t ′), and Eqs. (D23) and (D24) form a closed system of
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integro-differential equations

∂

∂t
�(t,t ′) = −�(t,t ′)+σ 2R(t ′,t)+ηJ 2

∫ t

0
R(t,s)�(s,t ′)ds + g2

∫ t ′

0
R(t ′,s)�(t,s)ds, (D25)

∂

∂t
R(t,t ′) = −R(t,t ′) + δ(t − t ′) + ηg2

∫ t

t ′
R(t,s)R(s,t ′)ds. (D26)
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