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Autocorrelation of the susceptible-infected-susceptible process on networks
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In this paper, we focus on the autocorrelation of the susceptible-infected-susceptible (SIS) process on networks.
The N -intertwined mean-field approximation (NIMFA) is applied to calculate the autocorrelation properties of
the exact SIS process. We derive the autocorrelation of the infection state of each node and the fraction of infected
nodes both in the steady and transient states as functions of the infection probabilities of nodes. Moreover, we
show that the autocorrelation can be used to estimate the infection and curing rates of the SIS process. The
theoretical results are compared with the simulation of the exact SIS process. Our work fully utilizes the potential
of the mean-field method and shows that NIMFA can indeed capture the autocorrelation properties of the exact
SIS process.
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I. INTRODUCTION

The susceptible-infected-susceptible (SIS) process [1] is a
basic epidemic model which models the spread of viruses,
information, opinions, and computer malware on networks. In
the SIS model, each node in the network can be either infected
or susceptible (healthy). The infection state of node j for j =
1, . . . ,N at time t is denoted by a Bernoulli random variable
Xj (t): infected Xj (t) = 1 or susceptible (healthy) Xj (t) = 0.
The SIS model has simple local rules that nodes can be infected
by their infected neighbors and be cured by themselves.
The infection and curing processes are independent and both
Poisson processes with infection rate β and curing rate δ,
respectively. By tuning the effective infection rate τ � β/δ,
the phase transition of infection persistence emerges at an
epidemic threshold determined by the network [2,3]. If the
effective infection rate τ is below the epidemic threshold, then
the virus dies out quickly and every node becomes healthy.
Above the threshold, the infection can persist in the network
for a very long time [4].

In this paper, we focus on the autocorrelation of the
SIS process. Locally, an individual node in the network can
be infected and cured repeatedly so that the infection state
Xj (t) at two different time points can be autocorrelated. The
autocorrelation of the infection state of a node j between time
s and t is

ρj (s,t) � E[Xj (s)Xj (t)] − E[Xj (s)]E[Xj (t)]√
Var[Xj (s)]Var[Xj (t)]

. (1)

The numerator on the right-hand side in (1) is the covariance
of the infection state Xj (s) and Xj (t), and the denominator
normalizes the covariance. If time t = s, then the infection
state Xj (s) is fully correlated with itself, and the autocor-
relation is ρj (s,s) = 1. If Xj (s) and Xj (t) are independent,
then the autocorrelation is ρj (s,t) = 0. The autocorrelation is
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symmetric: ρj (s,t) = ρj (t,s). Given the initial infection state
of the network [X1(0), . . . ,XN (0)], the infection states Xj (s)
and Xj (t) are positively correlated [5], Corollary 1 such that
E[Xj (s)Xj (t)] � E[Xj (s)]E[Xj (t)] and the autocorrelation
ρj (s,t) � 0. The autocorrelation ρj (s,t) contains one second-
moment term E[Xj (s)Xj (t)], but the rest of the terms can
be calculated given the first-moment infection probabilities
E[Xj (s)] and E[Xj (t)].

The autocorrelation contains information about the change
of the infection state of each node. A large autocorrelation
implies that the change of the infection state is slow, and the
infection state is more likely to be identical between time s and
t . While a smaller autocorrelation indicates that the infection
state between time s and t is more independent. Globally, the
fluctuating fraction of infected nodes I (t) � 1

N

∑N
j=1 Xj (t) is

also autocorrelated, and the autocorrelation and its spectral
analysis of I (t) in real epidemics can be traced back to
Anderson et al. [6]. By analyzing the autocorrelation and
its spectrum of the incidence data of pertussis, mumps, and
measles, Anderson et al. [6] indicate statistically significant
seasonal and the longer-term resurgence of those diseases
and find that vaccination increases the periods of the longer-
term oscillations of the incidence data. However, in the basic
networked SIS model, the autocorrelation of the infection state
is infeasible to be calculated, because the SIS model is a 2N -
state Markov process [3,7] and the computational complexity is
exponentially high regarding of the network sizeN . Previously,
Meier et al. [8], Supplementary Information E analyzed the
correlation of the infection state of the SIS model for small time
intervals, but the calculation involves higher-order moments. In
this paper, we apply the N -intertwined mean-field approxima-
tion (NIMFA) [3] to study the autocorrelation of the infection
state Xj (t) and the fraction of infected nodes I (t) both in the
transient and steady states. Particularly in the steady state,
we derive the explicit formula of the autocorrelation of the
infection state, which is an exponentially decreasing function
of time delay. The accuracy of the NIMFA autocorrelation
is evaluated by simulating the exact SIS process. The result
indicates that NIMFA, as an approximate stochastic process,
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well captures the autocorrelation properties of the exact SIS
process. Moreover, the autocorrelation can also be used to
estimate the infection and curing rates of the SIS process.

II. THE SIS PROCESS ON NETWORKS

The undirected and unweighted network with N nodes is
denoted by its N × N symmetric adjacency matrix A: If node
i and j are connected, then aij = aji = 1; otherwise, aij =
aji = 0. The infection probability of node j at time t is just the
expectation of its infection state E[Xj (t)], and the prevalence
is defined as the expectation of the fraction of infected nodes
y(t) � E[I (t)].

A. The exact SIS process

The SIS process can be described by a Markov process, and
there are 2N states in total, including one all-healthy absorbing
state [3,7]. The state transition of each node in the 2N -state
Markov process can be described as

Xj (t) : 0 → 1 with rate: β

N∑
i=1

ajiXi(t)

Xj (t) : 1 → 0 with rate: δ. (2)

Since the all-healthy state is absorbing and the network is finite,
the SIS process will enter the absorbing state when t → ∞.
However, the SIS process can also stay in the metastable state
for a long time where the infection probability of every node
is almost constant.

The infection probability of node j for j = 1, . . . ,N fol-
lows the governing equation [9],

dE[Xj (t)]

dt
= −δE[Xj (t)] + β

N∑
i=1

ajiE[Xi(t)]

−β

N∑
i=1

ajiE[Xj (t)Xi(t)]. (3)

Equation (3) describes the exact Markovian SIS process, but
higher-order moments of the infection states E[Xj (t)Xi(t)]
are involved in Eq. (3). In total, 2N − 1 equations are needed
to solve the process [9, p. 452] and the complexity increases
exponentially with network size N . Furthermore, the analysis
of the SIS process is not tractable without approximation, not
even for the complete graph [10].

B. The N-intertwined mean-field approximation

NIMFA [11] approximates the exact Markovian SIS
process by assuming independence E[Xi(t)Xj (t)] =
E[Xi(t)]E[Xj (t)], which is equivalent to approximating
the infection rate due to all neighbors β

∑N
i=1 ajiXi(t) in

(2) by its mean β
∑N

i=1 ajiE[Xi(t)]. For Bernoulli random
variables, uncorrelation E[Xi(t)Xj (t)] = E[Xi(t)]E[Xj (t)]
and independence Pr[Xi(t),Xj (t)] = Pr[Xi(t)] Pr[Xj (t)] are
equivalent [12, footnote 5]. Under NIMFA, the governing

equation is

dvj (t)

dt
= −δvj (t) + β(1 − vj (t))

N∑
j=1

ajivi(t), (4)

where vj (t) is the NIMFA infection probability of node j at
time t and vj (t) approximates the exact infection probability
E[Xj (t)]. The NIMFA epidemic threshold is τ (1)

c � 1
λ1

, where
λ1 is the largest eigenvalue of the adjacency matrix A. If the
effective infection rate τ � β

δ
> τ (1)

c , then the infection can
persist on the network and the steady-state infection probability
vj∞ � lim

t→∞ vj (t) > 0 is constant [3,13]. The steady state of

NIMFA corresponds to the metastable state of the exact SIS
process. If τ < τ (1)

c , then the NIMFA SIS process will even-
tually enter the all-healthy state vj∞ = 0. NIMFA has been
successfully applied to analyze the first-order moments of the
SIS process [3]. For example, the NIMFA infection probability
vj (t) and the prevalence y(1)(t) � 1

N

∑N
j=1 vj (t) well approx-

imate the expectations of the infection state Xj (t) and the
fraction of infected nodes I (t) � 1

N

∑N
j=1 Xj (t), respectively.

However, NIMFA has not yet been applied to approximate the
autocorrelation properties. Since NIMFA omits the correlation
between neighbors, the autocorrelation is the only second-
moment property that is possibly captured by NIMFA.

To avoid ambiguity, we denote the NIMFA infection state
of node j at time t by another Bernoulli random variable
Vj (t): infected Vj (t) = 1 and susceptible Vj (t) = 0. Thus, we
actually approximate the statistical properties of the infection
state Xj (t) by those of Vj (t) in NIMFA. In the steady state
t → ∞ and dvj (t)/dt = 0 for j = 1, . . . ,N , we denote the
infection state of node j by Vj∞(t) � lim

t→∞ Vj (t).

Under NIMFA, the transition of the infection state Vj (t) of
node j following Eq. (4) can be denoted by a two-state Markov
process [14], and the transition rate of Vj (t) : 0 → 1 becomes
a determined function of time. The whole system is composed
of N intertwined 2-state Markov processes instead of being a
2N -state Markov process. Corresponding to (2), the transition
of the NIMFA infection state Vj (t) is

Vj (t) : 0 → 1 with rate: β̃j (t) � β

N∑
j=1

ajivi(t)

Vj (t) : 1 → 0 with rate: δ. (5)

The infinitesimal generator of the Markov process (5) is

Qj (t) �
[−β̃j (t) β̃j (t)

δ −δ

]
. (6)

III. AUTOCORRELATION IN THE STEADY STATE

In the steady state, the NIMFA autocorrelation of the
infection state of node j with time lag h is defined by

Rj∞(h) �
E[Vj∞(t)Vj∞(t + h)] − v2

j∞
Var[Vj∞(t)]

, (7)

where Var[Vj∞(t)] = vj∞ − v2
j∞ since Vj∞(t) ∈ {0,1} is a

Bernoulli random variable. By further derivation (see Ap-
pendix A), we obtain the autocorrelation as a function of the
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steady-state infection probability vj∞ and the curing rate δ,

Rj∞(h) = e
− δ

1−vj∞ h
, (8)

where we assume that the time lag h is positive without loss of
generality. Since the autocorrelation is symmetric Rj∞(h) =
Rj∞(−h), Rj∞(h) = e

δ
1−vj∞ h

for h < 0. The NIMFA infection
probability vj∞ in (8) can be obtained by solving the NIMFA
Eq. (4) numerically.

With a fixed δ and time lag h, the autocorrelation Rj∞(h)
in (8) decreases with the infection rate β because the infection
probability vj∞ increases correspondingly. A larger infection
rate β implies a faster state transition from healthy to infected,
and the autocorrelation of the infection state is smaller conse-
quently. A larger δ leads to a faster transition from infected to
healthy, but, simultaneously, the infection probability of each
neighbor becomes smaller. Therefore, the state transition of
each node is slower from the healthy state to the infected state,
and the effect of the curing rate δ is unclear. Only in special
networks can the effect of the curing rate δ be determined. For
example, the infection probabilities of all nodes are equal to
1 − 1

kτ
in a k-regular graph [3], and then the autocorrelation

function becomes

Rj∞;k-regular(h) = e−βkh. (9)

Formula (9) indicates that the autocorrelation of the infection
state does not depend on the curing rate δ in regular graphs,
which enables us to adjust the autocorrelation while keeping
the effective infection rate τ unchanged. In regular graphs, the
effect of the decrease (increase) of vj∞ is exactly compensated
by the increase (decrease) of δ in (8). The autocorrelation under
other mean-field approximations can also be derived with the
same procedure. For example, the heterogeneous mean-field
approximation (HMF) assumes statistical equivalence among
the nodes with the same degree [2], and the autocorrelation un-
der HMF has the same form as the NIMFA autocorrelation (see
Appendix B). In the case of regular graphs, HMF is equivalent
[15] to NIMFA and then their approximate autocorrelations
are identical.

Generally, the NIMFA infection probability of node j with
degree dj for j = 1, . . . ,N is bounded by [3]

1 − 1

1 + τdj − dj

dmin

� vj∞ � 1 − 1

1 + τdj

in a connected network with minimum degree dmin, and the
NIMFA autocorrelation (8) is thus bounded by

e−(1+τdj )δh � Rj∞(h) � e
−
[

1+dj

(
τ− 1

dmin

)]
δh

. (10)

The largest eigenvalue of the adjacency matrix λ1 follows
λ1 � dmin, and then the effective infection rate τ can either be
larger or smaller than 1/dmin when τ is above the threshold
τ (1)
c = 1

λ1
. Equation (8) indicates that the autocorrelation has

another upper bound

Rj∞ < e−δh (11)

when vj∞ > 0 (i.e., above the threshold). If 1
λ1

< τ < 1
dmin

,
then

e−δh < e
−
[

1+dj

(
τ− 1

dmin

)]
δh

and the upper bound (11) is tighter. If τ > 1
dmin

, then the upper
bound in (10) is tighter, and we can rewrite (10) as

e−(1+τdj )δh � Rj∞(h) � e−(1+τdj )δhe

(
dj

dmin

)
δh

. (12)

In (12), the upper bound is just the product of the lower bound
and the term e(dj /dmin)δh > 1. In a network with large degree
deviation dj/dmin, the bound (12) is loose. In the regular graph,
λ1 = dmin, and the upper bound achieves the exact NIMFA
autocorrelation (9) while the lower bound does not.

In a heterogeneous network, e.g., the scale-free network,
the degree dj can diverge in the thermodynamic limit N →
∞. Thus, if τ > 1

dmin
and dj → ∞, then both the upper and

lower bound in (12) converge to zero, and the autocorrelation
Rj∞(h) = 0. If 1

λ1
< τ < 1

dmin
and dj → ∞, then the lower

bound Rj∞(h) > e−(1+τdj )δh converges to zero. Consequently,
the autocorrelation is loosely bounded by 0 � Rj∞(h) �
exp(−δh).

From a global point of view, the fraction of infected nodes
I (t) = 1

N

∑N
j=1 Xj (t) in the steady state can be approximated

by I
(1)
∞ (t) � 1

N

∑N
j=1 Vj∞(t). The autocorrelation of I

(1)
∞ (t) is

just a linear combination of the autocorrelation of each node
(see Appendix A),

RI (1)∞(h) =
∑N

j=1

(
vj∞ − v2

j∞
)
Rj∞(h)∑N

j=1

(
vj∞ − v2

j∞
) . (13)

IV. AUTOCORRELATION IN THE TRANSIENT STATE

In this section, we consider the NIMFA autocorrelation
of the SIS process at two arbitrary time points s and t ,
respectively. Different from that in the steady state in Sec. III,
the infinitesimal generator (6) is a determined function of time
given the initial state. The two-state Markov process (5) of
each node is thus a time-inhomogeneous process. Calculating
the process (5) allows us to analyze the autocorrelation of the
epidemic process in the transient regime before the metastable
state or the regime before the all-healthy steady state when the
effective infection rate τ < τ (1)

c .
We denote the NIMFA autocorrelation of node j between

time s and t as

Rj (s,t) � E[Vj (s)Vj (t)] − vj (s)vj (t)√[
vj (s) − v2

j (s)
][

vj (t) − v2
j (t)

] . (14)

Following a similar derivation as Eq. (13) in the steady state,
the autocorrelation of the fraction of infected nodes RI (1) (s,t) is
also a linear combination of the autocorrelation of each node,

RI (1) (s,t) =
∑N

j=1

√[
vj (s) − v2

j (s)
][

vj (t) − v2
j (t)

]
Rj (s,t)√∑N

j=1

[
vj (s) − v2

j (s)
]∑N

j=1

[
vj (t) − v2

j (t)
] .

(15)

Similarly to the steady-state autocorrelation in Sec. III,
we only use the infection probabilities in the calculation,
and the joint expectation E[Vj (s)Vj (t)] in (14) becomes
a crucial term. The calculation of the joint expectation
E[Vj (s)Vj (t)] = vj (s) Pr[Vj (t) = 1|Vj (s) = 1] involves the
2 × 2 time-dependent transition matrix Pj (s,t) of which the
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element is [Pj (s,t)]kl = Pr[Vj (t) = l − 1|Vj (s) = k − 1].
The computation of the autocorrelation functions (14) and
(15), requires us first to calculate the matrix Pj (s,t).

The matrix Pj (s,t) follows the time-inhomogeneous Kol-
mogorov forward equation

dPj (s,t)

dt
= Pj (s,t)Qj (t), (16)

where Qj (t) is the NIMFA infinitesimal generator (6). We can
apply the Magnus expansion [16,17] to analyze the NIMFA
transition matrix Pj (s,t) in Eq. (16). A brief introduction of
the Magnus expansion can be found in Appendix C. Although
the calculation of the exact NIMFA transition probability
Pj (s,t) is not possible, approximations of Pj (s,t) allowing a
fair comparison between NIMFA and the exact SIS process
can be made with restricted error. First, there exists a 2 × 2
matrix �(s,t ; j ) such that the solution of Eq. (16) is Pj (s,t) =
exp[�(s,t ; j )]. Second, if (see the derivation of (C5) for details
in Appendix C)

0 < t − s < T � π√
β2d2

j + δ2
, (17)

then the exponent matrix �(s,t ; j ) can be expanded into a con-
vergent Magnus series �(s,t ; j ) = ∑∞

k=1 �k(s,t ; j ). Specif-
ically, by only preserving the first term, i.e., �1(s,t ; j ) =∫ s+h

s
Qj (t)dt , in the convergent Magnus series of �(s,t ; j ),

we can achieve a third-order accuracy (see Appendix C) for
the time length h = t − s, i.e.,

Pj (s,s + h) = exp

[∫ s+h

s

Qj (t)dt

]
+ O(h3). (18)

Equation (18) holds because exp[X + O(hk)] = exp(X) +
O(hk) holds for a matrix X as can be verified by evaluating their
power series. Using the Taylor expansion of the infinitesimal
generator Qj (t) = ∑∞

k=0
1
k!

dkQk(u)
duk |

u=s
(t − s)k at time s, the

solution (18) becomes

Pj (s,s + h) = exp

[
Qj (s)h + dQj (t)

dt

∣∣∣∣
t=s

h2

2

]
+ O(h3).

(19)

Only the first two terms of the Taylor expansion of the
infinitesimal generator Qj (t) are preserved in (19) since the
error is O(h3) in (18). The first term on the right-hand side
of (19) can be calculated by matrix diagonalization described
in Appendix A. The derivative of the infinitesimal generator

dQj (t)/dt involves dβ̃j (t)
dt

from Eq. (6), which is

β̃ ′
j (t) � dβ̃j (t)

dt
= β

∑
i∈Nj

dvi(t)

dt

= β
∑
i∈Nj

⎧⎨
⎩−δvi(t)+β[1−vi(t)]

∑
k∈Ni

vk(t)

⎫⎬
⎭,

(20)

where Nj denotes the neighbors of node j . The calculation
in Eq. (20) involves the infection probabilities of two-hop

neighbors of node j . Specifically, the transition probability
that node j remains infected after h time units is

Pr[Vj (s + h) = 1|Vj (s) = 1] = [Pj (s,s + h)]22

= 2δe−(β̃j (s)+δ)h−β̃ ′
j (s)h2/2 + 2β̃j (s) + β̃ ′

j (s)h

2β̃j (s) + 2δ + β̃ ′
j (s)h

+O(h3).

Different from that in the steady state [see Eq. (8)], the infection
probabilities of neighbors of node j always appear in the
calculation of the transition matrix Pj (s,t) in the transient state
as indicated in (20). Higher-order accuracy is also possible by
preserving more terms of the Magnus series, and higher-order
derivative dkβ̃j (t)/dt , which can be calculated by the infection
probabilities of all nodes within k + 1 hops from node j , is
involved. For example, if we preserve the second term in the
Magnus expansion of �(s,s + h; j ), which can be calculated
by the Taylor expansion as

�2(s,s + h; j ) = δ

[
1 −1
1 −1

] ∫ s+h

s

∫ t1

s

[β̃j (t1) − β̃j (t2)]dt2dt1

= δ

[
1 −1
1 −1

][
1

6

dβ̃j (t)

dt

∣∣∣∣
t=s

h3

+ 1

12

d2β̃j (t)

dt2

∣∣∣∣
t=s

h4

]
+ O(h5),

then we can achieve an accuracy of O(h5) because (see
Appendix C)

Pj (s,s + h) = exp

[
2∑

i=1

�i(s,s + h; j )

]
+ O(h5)

and the calculation involves the infection probabilities of
neighbors within three hops. For NIMFA, preserving more
terms is not always reasonable, because the infection probabil-
ity of each node can only be solved numerically. When more
Magnus terms are preserved, the inaccuracy is mainly caused
by the numerical method which solves the nonlinear NIMFA
Eq. (4). For example, using the fourth-order Runge-Kutta
method [17, p. 200], the error of the infection probabilities
is of order O(h4).

For a time interval t − s > T , the Magnus expansion of the
exponent �(s,t ; j ) may not converge. The time interval (s,t)
can be divided into subintervals with length h < T in which
the Magnus series converges. The NIMFA transition matrix
between time s and t can be written as

Pj (s,t) =
(t−s)/h∏

k=1

Pj (s + (k − 1)h,s + kh) (21)

by the Chapman-Kolmogorov equation [see Eq. (C2)]. Equa-
tion (21) is also applicable to a small time interval t − s <

T to obtain a more accurate result. An rth-order accuracy
regarding the time delay h is achieved for the transition matrix
Pj (s,t) using Eq. (21) if the accuracy is O(hr+1) for each
Pj (s + (k − 1)h,s + kh).
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FIG. 1. A randomly selected node is evaluated in an Erdős-Rényi
(ER) network with the link connecting probability 0.4 and N = 50.
The autocorrelation is approximately constant for different value of
δ. The cross correlation between the node with one of its neighbors
is also plotted, which is almost zero.

The analysis in this section allows us to calculate and
compare the NIMFA autocorrelation with the exact SIS process
since the error can be controlled, even though the exact NIMFA
autocorrelation is not feasible in the transient state.

V. NUMERICAL AND SIMULATION RESULTS

In this section, we compare the NIMFA autocorrelation with
the autocorrelation of the exact SIS process from the simula-
tion. The simulation of the exact SIS process is implemented
by the Gillespie algorithm (Monte Carlo method) [18–20] and
the theoretical results are obtained by solving the NIMFA
Eq. (4) numerically (fourth-order Runge-Kutta method [17,
p. 200]). In the steady state, we run the simulation for 40 000
time units with the curing rate δ = 1 and sample the infection
state of each node every 0.001 time unit. In other words, we
obtain the infection state Xj (n/1000) for n = 0,1, . . . ,4 × 107

from simulation. We only use the state sequence sampled after
t = 10 000 to ensure that the SIS process is in the metastable
state. Moreover, the time series of the fraction of infected nodes
can be calculated as I (n/1000) = 1

N

∑N
j=1 Xj (n/1000). In the

transient state, 104 realizations of the infection states Xj (s) and
Xj (t) are obtained to calculate the autocorrelation between two
arbitrary time s and t .

A. Steady state

Figures 1 to 3 show the NIMFA autocorrelation and the
simulated autocorrelation of the infection state of randomly
selected nodes in an Erdős-Rényi (ER) graph, a regular graph
with degree 26, and a star graph, respectively. The NIMFA
autocorrelation Rj∞(h) is a very accurate approximation on
those graphs. Figure 1 shows that the autocorrelation of the
infection state is not sensitive to the value of the curing rate δ,
which is reasonable because the deviation of the degree is small
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 Cross-correlation with β=0.2, δ=1
 Cross-correlation with β=0.1, δ=1

β=0.2, δ=1

β=0.1, δ=1 [red (upper) curve] 
δ=0.5 [green (lower) curve]

FIG. 2. The autocorrelation of the infection state of a 26-regular
graph with N = 50. The results are similar to those of the ER graph.
The autocorrelation is invariant to δ.

and the result is similar to that of the regular graph in Fig. 2. In
Fig. 2, the autocorrelation of the infection state is identical to
formula (9) that the autocorrelation is invariant to the curing
rate δ in regular graphs. Figure 3 shows the autocorrelation
of the infection state in a star graph. The autocorrelation of
the hub node is much smaller than that of the leaf nodes since
the infection probability of the hub node is larger. The cross
correlation of the infection states between neighbors shown in
Fig. 1 to 3 is approximately 0, which leads to the effectiveness
of NIMFA since NIMFA omits the cross correlation between
neighbors.
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hub
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FIG. 3. The autocorrelation of the infection state of the hub and
a leaf node in a star graph with N = 50. The NIMFA autocorrelation
shows a very good approximation and the cross correlation between
hub and leaf nodes is approximately 0.
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FIG. 4. The correlation of the infection state of a node and the
prevalence in a cycle graph with N = 50. Initially all nodes are
infected to prevent the inaccuracy caused by early die-out [24].
The NIMFA autocorrelation is much smaller than the exact one, and
the cross correlations between neighbors and second-hop neighbors
are very large.

Figure 4 shows the autocorrelation of the infection state
of a node in a cycle graph and NIMFA fails to capture
the autocorrelation. Actually, NIMFA also fails to approxi-
mate the prevalence as shown in Fig. 4. In the situation of
the cycle graph, the cross correlation of the infection states
between neighbors is much larger than zero and NIMFA itself
is a bad approximation. The accuracy of mean-field methods
has been studied in Refs. [21–23], which is beyond the scope
of this paper.

We also calculate the autocorrelation of the fraction of
infected nodes RI (1) (h). Figure 5 shows that NIMFA can also
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FIG. 5. The autocorrelation of the fraction of infected nodes I (t)
in the metastable state.
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FIG. 6. The joint expectation of the infection stateE[Xj (0)Xj (h)]
and the corresponding NIMFA approximation E[Vj (0)Vj (h)] of the
SIS process on the star graph.

approximate the autocorrelation of the fraction of infected
nodes in the star graph corresponding to Fig. 3.

B. Transient state

In the transient state, we validate the NIMFA autocorrela-
tion on the star graph where the NIMFA infection probabilities
are accurate while nodes have very different degrees.

Figure 6 shows the joint expectation of the infection states
E[Xj (0)Xj (h)] and the corresponding NIMFA approximation
E[Vj (0)Vj (h)] of the leaf and hub nodes. For the leaf node
and the hub node, the convergent time delay h of the Magnus
series of �(s,s + h) are h < T ≈ 2.221 and h < T ≈ 0.064
from (17), respectively. Figure 6 indicates that the NIMFA joint
expectation E[Vj (0)Vj (h)] (the blue lower curve) is accurate
comparing with the exact joint expectation E[Xj (0)Xj (h)]
for a small time delay h, i.e., h < 0.2 for the leaf node.
For a large time delay, the inaccuracy is due to either the
omission of term O(h3) in (19) or that the NIMFA transition
probability matrix Pj (s,t) itself is a bad approximation, but
we can eliminate the possibility of the latter using Eq. (21). As
the black middle curve in Fig. 6 indicated, the NIMFA joint
expectation E[Vj (0)Vj (h)] is indeed a good approximation
using Eq. (21) with subinterval length 0.01.

From a global point of view of the network, Fig. 7
presents the autocorrelation of the fraction of infected nodes
RI (0.5,0.5 + h) and the corresponding NIMFA approximation
RI (1) (0.5,0.5 + h), which are in the transient state of the SIS
process before the metastable state. The exact autocorrelation
is well fitted by NIMFA. Interestingly, the decay of the
autocorrelation in the transient state is also exponential as
shown in Fig. 7, but we cannot demonstrate exponential decay
as opposed to the steady state.

In this section, we have tested our method on different
networks with size 50, but for larger networks, the results are
similar. In a conclusion, NIMFA captures the autocorrelation
properties of the exact SIS process except in the cases that
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FIG. 7. The autocorrelation of the fraction of infected nodes
RI (0.5,0.5 + h) and the corresponding NIMFA approximation
RI (1) (0.5,0.5 + h) of the SIS process on the star graph.

NIMFA is not applicable even for approximating the first-
moment properties, i.e., the infection probabilities E[Xj (t)]
and the prevalence y(t).

VI. ESTIMATING THE CURING RATE δ AND THE
INFECTION RATE β: AN APPLICATION

In real epidemics, a disease agency may have the infection-
state data by monitoring individuals periodically but no in-
formation about the rates. We consider the reverse problem
of estimating the curing rate δ and the infection rate β, given
the sequence Xj (t + 	),Xj (t + 2	), . . . ,Xj (t + n	) of the
infection state of node j in the metastable state. From Eq. (8),
the curing rate is

δ = −(1 − vj∞)
ln[Rj∞(h)]

h
. (22)

Formula (22) can be used to estimate the curing rate δ of
the SIS process. In formula (22), we can approximate the
infection probability as vj∞ ≈ 1

n

∑n
i=1 E[Xj (t + i	)], while

the autocorrelation Rj∞(h), which approximates the exact
autocorrelation ρj (s,t) in (1), is just the autocorrelation of
the binary infection sequence Xj (t + k	). Furthermore, using
the NIMFA equation in the metastable state −δvj∞ + β(1 −
vj∞)

∑N
i=1 ajivi∞ = 0, we can eliminate δ and (22) becomes

β = − vj∞∑N
i=1 ajivi∞

ln[Rj∞(h)]

h
. (23)

Under NIMFA, the curing rate δ can be estimated by (22)
without knowing the underlying network. However, to esti-
mate the infection rate β, formula (23) involves the network
information. We rewrite (23) as

−vj∞
β

ln[Rj∞(h)]

h
=

N∑
i=1

ajivi∞

1.4
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FIG. 8. The estimation of the infection rate β and the curing rate
δ using (23) and (22) for the star graph corresponding to Fig. 3. The
curves are −(1 − vj∞) ln[Rj∞(h)] and − vj∞ ln[Rj∞(h)]∑N

i=1 aij vi∞
of a leaf node

versus h. Both the estimated β and δ are 1.00, while the real values
of rates are both 1.

and sum over all nodes

−
N∑

j=1

vj∞
β

ln[Rj∞(h)]

h
=

N∑
j=1

N∑
i=1

ajivi∞ =
N∑

i=1

divi∞,

where di is the degree of node i. After rearrangement of the
above equation, we obtain

β = −
∑N

j=1 vj∞∑N
j=1 djvj∞

ln[Rj∞(h)]

h
. (24)

Thus, the estimation of the infection rate β requires either the
degree of every node dj for all j as in (24) or the local topology
information about node j , i.e., aji for all i as in (23).

Using the binary infection-state sequence Xj (t + k	) ob-
tained by simulation, we estimate the curing rate δ and the
infection rate β by (22) and (23), respectively. In Fig. 8, the
value of the estimated rates times the time lag h is plotted
for a leaf node of the star graph corresponding to Fig. 3. The
slopes of the linear fitting functions (red curves in Fig. 8) are
the estimated rates, and both the estimated infection rate β and
the curing rate δ are 1.00 while both the real rates equal to 1.

VII. CONCLUSION

In this paper, we study the autocorrelation, the only second-
moment property captured by NIMFA, of the SIS process.
We obtained the explicit formula of the autocorrelation, i.e.,
Eq. (8), under NIMFA in the steady state, and the steady-state
autocorrelation follows an exponential decay with the time lag.
Interestingly, the steady-state autocorrelation is independent of
the curing rate δ in regular graphs. Moreover, using the Magnus
expansion, we are able to calculate the autocorrelation in the
transient state of the SIS process. Our analysis of the transient
state not only allows the study of the SIS process above or
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below the epidemic threshold but also opens an avenue for the
study of the critical behavior [25].

We also evaluated our results by simulation. Although
NIMFA assumes that there is no correlation between
the infection states of neighbors, i.e., E[Xi(t)Xj (t)] =
E[Xi(t)]E[Xj (t)] for i �= j , we show that the NIMFA auto-
correlation (i = j ) is generally accurate by simulation, and
the accuracy depends on the accuracy of the NIMFA infection
probabilities. If NIMFA can capture the first-order moments,
i.e., the infection probability of each node and the prevalence,

under certain SIS parameters and networks, then NIMFA can
also be applied to approximate the autocorrelation properties.
Finally, we show that our results can be used to estimate the
infection and curing rate of the SIS process.
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APPENDIX A: AUTOCORRELATION OF Vj∞ AND I∞(t)

When the effective infection rate τ > 1/λ1, the steady infection probability vj∞ can be obtained by solving dvj (t)/dt = 0,
i.e.,

−δvj∞ + (1 − vj∞)β̃j∞ = 0, (A1)

where β̃j∞ = lim
t→∞ β̃j (t) is time invariant. Thus,

β̃j∞ = δvj∞
1 − vj∞

(A2)

and the steady infinitesimal generator of node j is

Qj∞ � lim
t→∞ Qj (t) =

[−β̃j∞ β̃j∞
δ −δ

]
.

In the steady state, the transition probability matrix of Vj∞(t) with time lag h is

Pj∞(h) �
[

Pr[Vj∞(t + h) = 0|Vj∞(t) = 0] Pr[Vj∞(t + h) = 1|Vj∞(t) = 0]
Pr[Vj∞(t + h) = 0|Vj∞(t) = 1] Pr[Vj∞(t + h) = 1|Vj∞(t) = 1]

]
.

By solving the Kolmogorov forward equation P ′
j∞(h) = Pj∞(h)Qj∞ given that Pj∞(0) is an identity matrix, we obtain

Pj∞(h) = eQj∞h = Uje

j U−1

j , (A3)

where Uj and 
j are the eigenvector matrix and the diagonal eigenvalue matrix of Qj∞h, respectively. The term Qj∞h can be
diagonalized as

Qj∞h =

⎡
⎢⎣− β̃j∞/δ√

(β̃j∞/δ)2+1

1√
2

1√
(β̃j∞/δ)2+1

1√
2

⎤
⎥⎦

︸ ︷︷ ︸
Uj

[−(β̃j∞ + δ)h 0
0 0

]
︸ ︷︷ ︸


j

⎛
⎝−

√
2

√
(β̃j∞/δ)2 + 1

β̃j∞/δ + 1

⎡
⎣ 1√

2
− 1√

2

− 1√
(β̃j∞/δ)2+1

− β̃j∞/δ√
(β̃j∞/δ)2+1

⎤
⎦
⎞
⎠

︸ ︷︷ ︸
U−1

j

.

By substituting e
j = [e
−(β̃j∞+δ)h 0

0 e0] and Uj into (A3), we obtain the steady-state transition probability matrix

Pj∞(h) =
⎡
⎣ β̃j∞e

−(β̃j∞+δ)h+δ

β̃j∞+δ

−β̃j∞e
−(β̃j∞+δ)h+β̃j∞
β̃j∞+δ

−δe
−(β̃j∞+δ)h+δ

β̃j∞+δ

δe
−(β̃j∞+δ)h+β̃j∞

β̃j∞+δ

⎤
⎦. (A4)

From (A4), the joint expectation for h � 0 is

E[Vj∞(t)Vj∞(t + h)] = Pr[Vj∞(t) = 1,Vj∞(t + h) = 1] = Pr[Vj∞(t + h) = 1|Vj∞(t) = 1] Pr[Vj∞(t) = 1]

= vj∞
δe−(β̃j∞+δ)h + β̃j∞

β̃j∞ + δ
. (A5)

By substituting E[Vj (t)Vj (t + h)] from (A5) and β̃j∞ from (A2) into (7), we obtain (8).
The autocorrelation of the fraction of infected nodes Ij∞(t) is

RI∞(h) = E[I∞(t)I∞(t + h)] − E[I∞(t)]E[I∞(t + h)]

Var[I (t)]
=

∑N
j=1

(
E[Vj∞(t)Vj∞(t + h)] − v2

j∞
)

∑N
j=1

(
vj∞ − v2

j∞
) . (A6)

From (7), the term E[Vj∞(t)Vj∞(t + h)] − v2
j∞ = Rj∞(h)(vj − v2

j ). Thus, we obtain (13).
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APPENDIX B: THE HMF AUTOCORRELATION IN THE
STEADY STATE

HMF assumes the SIS process is running on an annealed
network where nodes with the same degree are statistically
equivalent [1] or a time-varying network with infinite rewiring
rate [35]. On static networks, NIMFA performs better [15].
The HMF equation is

dwd (t)

dt
= −δwd (t) + β(1 − wd (t))d

N−1∑
k=1

f (k,d)wk(t),

(B1)

where wd (t) denotes the infection probability of the nodes with
degree d, and f (k,d) is the probability that an edge of a node
with degree d connects to a node with degree k. The HMF
threshold is τHMF

c = E[D]
E[D2] , whereD is the degree of a randomly

selected node. We assume β̃HMF
d (t) = βd

∑N−1
k=1 f (k,d)wk(t).

In the steady state dwd (t)/dt = 0 when τ > τHMF
c , the HMF

infection probability wd∞ � lim
t→∞ wd (t) follows:

−δwd∞ + (1 − wd∞)β̃HMF
d∞ = 0, (B2)

where β̃HMF
d∞ = lim

t→∞ β̃HMF
d (t). Equation (B2) has a same form

with (A1), and the derivation of the HMF autocorrelations is
also similar. For example, in the steady state, following the
same derivation in Appendix A, the HMF autocorrelation of
nodes with degree d is

Rd∞;HMF = e
− δ

1−wd∞ h
.

The HMF autocorrelation of the fraction of infected nodes is

RI∞;HMF(h) =
∑N

d=1[Pr(D = d)]2Rd∞;HMF
(
wd∞ − w2

d∞
)

∑N
d=1[Pr(D = d)]2

(
wd∞ − w2

d∞
) .

Here we assume that the HMF fraction of infection nodes is∑N
d=1 Pr(d)Wd (t), where Wd (t) is the infection state of nodes

with degree d. The state transition of nodes with the same
degree is considered as coupled Markov processes and the
infection states of nodes with the same degree are same. In
the case of regular graphs, HMF and NIMFA are equivalent
and then the two approximate autocorrelations are equal.

APPENDIX C: THE MAGNUS EXPANSION FOR
TIME-INHOMOGENEOUS MARKOV PROCESSES

In this section, we shortly introduce the Magnus expansion
and then apply the Magnus expansion to NIMFA to derive
the necessary results used in analyzing the NIMFA transition
matrix.

In a time-inhomogeneous Markov process with D states,
the D × D probability transition matrix P (s,t) from time s to
time t follows the Kolmogorov forward equation

dP (s,t)

dt
= P (s,t)Q(t), (C1)

where Q(t) is the D × D time-dependent infinitesimal genera-
tor. Stroock [36, p. 164] analyzes Eq. (C1) by dividing time into
smaller subintervals with length 1/n. In each subinterval, the
infinitesimal generator Q(t) is assumed to be constant and an
approximate transition matrix P [n](s,t) can be obtained. The

transition matrix P [n](s,t) converges to the unique solution
P (s,t) when n → ∞, which follows the time-inhomogeneous
Chapman-Kolmogorov equation,

P (s,t) = P (s,r)P (r,t), (C2)

for s � r � t . However, n is always finite for the practical
calculation of P (s,t), and Stroock’s method do not give a hint
on the accuracy of the calculation.

More generally, the linear Eq. (C1) always [17, p. 166]
has a unique solution in form P (s,t) = exp[�(s,t)], where
�(s,t) is an D × D matrix. If the commutative property
Q(t1)Q(t2) = Q(t2)Q(t1) holds for any t1,t2 ∈ [s,t], then
�(s,t) = ∫ t

s
Q(u)du and Eq. (C1) has a closed form so-

lution P (s,t) = exp(
∫ t

s
Q(u)du). However, the commutative

property does not necessarily hold in most, if not all, time-
inhomogeneous Markov processes.

Equation (C1) can be analyzed using the Magnus expansion
[16] when Q(t) is not commutative. In a small time interval
t ∈ [s,s + T ] such that [17, Theorem 9]∫ s+T

s

‖Q(t)‖dt < π, (C3)

where ‖.‖ is 2-norm defined for a matrix Q as ‖Q‖ �
max
‖x‖=1

‖Qx‖ and for a vector x = [x1, . . . ,xn]T as ‖x‖ =√∑n
i=1 |xi |2, the matrix �(s,t) can be expanded into a con-

vergent Magnus series �(t) = ∑∞
k=1 �k(t). The convergent

condition (C3) is only sufficient but not necessary. The first
term of the Magnus expansion of �(s,t) is just the exponent
of the solution of (C1) by assuming the commutative property
of Q(t), i.e.,

�1(s,t) =
∫ t

s

Q(u)du. (C4)

The second term of the Magnus series is

�2(s,t) = 1

2

∫ t

s

du1

∫ u1

s

du2[Q(u1),Q(u2)],

where [A,B] � AB − BA is the matrix commutator, and the
third term is

�3(s,t) = 1

6

∫ t

s

du1

∫ u1

s

du2

∫ u2

s

du3([Q(u1),

[Q(u2),Q(u3)]] + [Q(u3),[Q(u2),Q(u1)]]).

The calculation of further terms can be found in Ref. [17],
which is not involved in this paper.

The transition matrix P (s,t) is time symmetric in the sense
that P (s,t)P (t,s) = I and then �(s,t) = −�(t,s). In the time
interval [s,t],

�

(
s + t

2
− h,

s + t

2
+ h

)
= −�

(
s + t

2
+ h,

s + t

2
− h

)
for h � (t − s)/2 and thus the odd function
�k( s+t

2 − h, s+t
2 + h) only contains odd powers of h in its Tay-

lor expansion [17, p. 165]. Thus, �2k(s,t) = O[(t − s)2k+1]
and �2k+1(s,t) = O[(t − s)2k+3] in the time interval [s,t].
Correspondingly,

∑2i+1
k=1 �k(s,t) = �(s,t) + O[(t − s)2i+3]

and
∑2i

k=1 �k(s,t) = �(s,t) + O[(t − s)2i+3]. The sums of the
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first 2i and 2i + 1 terms of the Magnus series of �(s,t) achieve
a same order of accuracy with respect to the time length t − s.
Moreover, the power series of the matrix exponential indicates
that exp{�(s,t) + O[(t − s)k]} = exp[�(s,t)] + O[(t − s)k].
Specifically, we have P (s,t) = exp[�1(s,t)] + O[(t − s)3]
by only keeping the first term in the Magnus expansion.
Using the Taylor expansion of �1(s,t), we may find that
Stroock’s method only achieves a second-order accuracy
by only preserving the first term of the Taylor series
of Q(t).

In NIMFA, given the infection probabilities vi(t) for i =
1, . . . ,N , the infinitesimal generator Qj (t) of a node j de-
fined by (6) is a determined function of time. Thus, we can
apply the Magnus expansion to the Markov process (5) and
assume the transition matrix Pj (s,t) = exp[�(s,t ; j )]. First,
we derive the length of the convergent time interval of the

Magnus expansion by condition (C3). We may verify that the

2-norm of the matrix Qj (t) is ‖Qj (t)‖ =
√

β̃2
j (t) + δ2. For

t > 0, β̃j (t) = β
∑N

i=1 ajivi(t) < βdj , where dj is the degree

of node j , and, consequently, ‖Qj (t)‖ <
√

β2d2
j + δ2. Thus,∫ s+T

s

‖Qj (t)‖dt <

√
β2d2

j + δ2T .

Let
√

β2d2
j + δ2T = π , and thus

T = π√
β2d2

j + δ2
. (C5)

The Magnus expansion of �(s,t ; j ) always converges if t −
s � T from Eq. (C3).
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