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General formulation of long-range degree correlations in complex networks

Yuka Fujiki”
Department of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan

Taro Takaguchi'
National Institute of Information and Communications Technology, Tokyo 184-8795, Japan

Kousuke Yakubo!
Department of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan

® (Received 30 November 2017; revised manuscript received 2 April 2018; published 11 June 2018)

We provide a general framework for analyzing degree correlations between nodes separated by more than one
step (i.e., beyond nearest neighbors) in complex networks. One joint and four conditional probability distributions
are introduced to fully describe long-range degree correlations with respect to degrees k and &’ of two nodes and
shortest path length / between them. We present general relations among these probability distributions and
clarify the relevance to nearest-neighbor degree correlations. Unlike nearest-neighbor correlations, some of these
probability distributions are meaningful only in finite-size networks. Furthermore, as a baseline to determine the
existence of intrinsic long-range degree correlations in a network other than inevitable correlations caused by
the finite-size effect, the functional forms of these probability distributions for random networks are analytically
evaluated within a mean-field approximation. The utility of our argument is demonstrated by applying it to

real-world networks.
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I. INTRODUCTION

In many networks describing complex real systems, the
number of edges from a node, namely, degree, widely fluctuates
from node to node, and degree distributions often exhibit
power-law behavior [1]. For such networks, significant interest
now is concentrated on the issue of correlations between
degrees of two nodes. In particular, degree correlations
between adjacent nodes have been extensively studied [2—10].
Nearest-neighbor degree correlations (NNDCs) in complex
networks are related to their fundamental structural properties,
such as clustering [11-14], community structures [15], average
path length [16], and fractality [17-19]. In addition, NNDCs
influence various dynamics on networks, such as epidemic
spreading [20-24], synchronization phenomena [25-30],
strategic games [31-34], and resilience to failures [35-39].

It has been pointed out recently, however, that NNDCs are
not enough to characterize structural properties of complex net-
works. For example, scale-free fractal networks are known to
exhibit negative NNDCs (namely, disassortative mixing) [17].
Thus, hub nodes in such a network are almost never connected
directly by an edge. In actual fractal networks, like the World
Wide Web or synthetic graphs [18,40], however, hub nodes are
not only nonadjacent to but also repulsive over a long-range
distance to each other [41]. As another example, Orsini et al.
[42] found that many local and even global structural features
of real-world complex networks are closely reproduced by
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random graphs with the same degree sequences, clustering, and
NNDC:s as those for the real networks. However, some sort of
global properties, such as the shortest path length distributions,
betweenness distributions, and community structures, cannot
be explained by these local characteristics. This implies that
intrinsic nonlocal degree correlations in these networks cannot
be described by NNDCs as a local characteristic. Furthermore,
it has been demonstrated that the shortest path length be-
tween hub nodes influences functions or dynamical properties
of networks [43—46]. For understanding nonlocal structural
properties, it is important and useful to provide a framework
to describe degree correlations between nodes beyond nearest
neighbors, namely, long-range degree correlations (LRDCs).
There have been several proposals for formulating LRDCs
in complex networks. Rybski et al. [47] describe LRDCs
by fluctuations of the degree along shortest paths between
two nodes. This is an analogy to fluctuation analysis used in
correlated time series. Mayo et al. [48] defined the long-range
assortativity and the average /th neighbor degree to quantify
LRDCs (the long-range assortativity was also presented in
Ref. [49]). The long-range assortativity r; is the Pearson
correlation coefficient between degrees of pairs of nodes
separated by the shortest path length [ from each other. The
average /th neighbor degree k;(k) is the average degree of
nodes separated by / from a node of degree k. They found that
social networks exhibit disassortative degree correlations on
long-range scales, while nonsocial networks do not indicate
such a tendency. The two-walks degree assortativity proposed
by Allen-Perkins et al. [50] is another type of assortativity
measure beyond nearest neighbors. This quantity is defined as
the Pearson correlation coefficient of the sum of the nearest-
neighbor degrees of adjacent nodes, which reflects second
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neighbor degree correlations. These quantities enable us to pick
up some specific aspects of LRDCs. However, if we perform
a global and multilateral analysis of LRDCs, a more general
framework is required to obtain various information of LRDCs.

In this work, we provide a general framework for analyzing
LRDCs in complex networks of either finite or infinite size.
In order to fully describe correlations between degrees k
and k' of two nodes separated by a shortest path length
[, one joint probability distribution and four conditional
probability distributions are introduced as functions of
k, k', and . NNDCs can be described by these probability
distributions as a special case of / = 1. These five distributions
are not independent of each other, and we present general
relations among them. In addition, the functional forms
of these probability distributions for random networks are
analytically evaluated within a mean-field approximation. By
comparing the distributions for a given network with those
for the corresponding random network with the same degree
distribution, one can judge whether the network possesses
intrinsic LRDCs other than inevitable correlations caused by
the finite-size effect and obtain detailed information about
degree correlations. Finally, we demonstrate the usefulness of
our argument by applying it to real-world networks.

The rest of this paper is organized as follows. In Sec. II we
introduce the probability distributions characterizing LRDCs
and present general relations between them. In Sec. I1I the func-
tional forms of the probability distributions for random net-
works are analytically evaluated. In Sec. I'V the utility of our ar-
gument is tested by calculating the distributions for real-world
networks. Section V is devoted to the summary and remarks.

II. JOINT AND CONDITIONAL
PROBABILITY DISTRIBUTIONS

Degree correlations between nearest-neighbor nodes
(namely, NNDCs) are completely described by the joint
probability distribution P,,(k,k") that two end nodes of a
randomly chosen edge have the degrees k and k’. We can define
the conditional probability from Py,(k,k’) by Pu(k'|k) =
Pyn(k,k")/ > "1 Pan(k,k"), which is the probability that a node
adjacent to a randomly chosen node of degree k has the degree
k’. If the degree distribution function P(k) is given, the prob-
ability Py, (k’|k) also identifies NNDCs. We extend this idea
to LRDCs. All information pertaining to correlations between
degrees k and k' of two nodes separated by a shortest path
length / (namely, LRDCs) is included in the joint probability
distribution P(k,k’,l) that two randomly chosen nodes have
the degrees k and k" and the shortest path length between them
is /. From this joint distribution, four conditional probability
distributions can be constructed as follows:

Pk, k" = Lk,’l), (1a)
Z[ P(k,k'1)

Pk = % (1b)

PkK|) = % (1c)

PUK.Ik) = % (1d)

TABLE I. Meanings of one joint and four conditional probability
distributions characterizing LRDCs in networks.

Probability

distribution Meaning

P(k,k',l) Probability that randomly chosen two nodes have the
degrees k and k' and the distance between them is [

P(l|k,k") Probability that randomly chosen two nodes of degrees
k and k' are separated by /, namely, the shortest path
length distribution between nodes of degrees k and &’

P(K'|k,l) Probability that a node separated by / from a
randomly chosen node of degree k has the degree &/,
namely, the degree distribution of a node separated by
[ from a node of degree k

P(k,k'|l) Probability that randomly chosen two nodes separated
by [ from each other have the degrees k and k’

Pk’ ,1k) Probability that a randomly chosen node has the

degree k" and is separated by / from a node of degree k

The meanings of these probability distributions, as
well as the joint distribution, are given in Table I.
These conditional distributions also describe LRDCs.
The probability distributions in Table I are normal-
ized as >, ., Pk )=, PUlkk)=>", P(k'lk]) =
S PK) =Y, P(K.I|k) = 1. Here we note that the
sum over / includes the distance (I) between disconnected
node pair. The following should also be emphasized. We
are interested in sparse networks from the correspondence of
real-world networks. The probability distributions P(k,k’,l),
P(l|k,k"), and P(k’,l|k) are meaningless for such sparse
networks with infinitely large components, because the average
shortest path length (/) diverges and values of these distribution
functions always become zero for finite /. In contrast, P(k’|k,l)
and P(k,k’|l) can be properly defined even for infinite net-
works.

Using the joint distribution P(k,k’,l), the degree distribu-
tion P(k) and the shortest path length distribution R(/) are
presented by

P(k) =" P(k.kI) ©)
k'l
and
R() =Y P(kK.D), 3)
kk'

respectively. It is convenient to introduce the probability
distribution Q(k|l) defined by

Q(kly =) P(.K'ID, @
%
which is the probability that one end node of a randomly
chosen /-chain has the degree k, where /-chain is a shortest path
between two nodes separated by /. This is an extension of the
probability Q,,(k) that one end node of an edge has the degree k
to a long-range node pair in the sense of Qp,(k) = Q(k|l = 1).
With the aid of Q(k|l), we have

> Pk 1) = QKIDR(). )
m
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Equations (2), (3), and (5), as well as the obvious relation

> Pk 1) = P()PK), (6)
l

form sum rules of the joint distribution P(k,k’,l). Consider-
ing these sum rules, Eq. (1) yields several general relations
between the conditional distributions, P(k), and R(/), such as

P llk) = P(KYP(U|k,K), @)
P(k,K'|l) = Q(k|l)P(K'|k,D), 3
P(k)P(k',llk) = Q(K'|)R()P(k|K',1), 9
and
P(k)P(KYP(|k,k') = RU)Pk,K'|]). (10)

Equations (9) and (10) can be considered as direct conse-
quences of the Bayes’ theorem thatrelates P(A|B)and P(B|A)
for events A and B.

The joint distribution Py, (k,k") and the conditional distri-
butions Py,(k'|k) describing NNDCs are included in the above
long-range probability distributions as a special case of [ = 1.
In fact, we have

Pk, k)= Pk,K'|l =1) (11)
and
Pn(K'|k) = P(K'|k,l = 1). (12)

Similarly, the degree distribution Qy,(k) of an end node of a
randomly chosen edge is given by
Om(k) = Qk|l =1) = @, (13)
(k)

where (k) = Y, kP(k) is the average degree. Then Eq. (8)
with [ = 1 is reduced to the well-known relation Py, (k,k') =
kP (k) Pon(K'k)/ (k) [21].

Considering the above correspondence, we can easily ex-
tend indices characterizing NNDCs to those for LRDCs. For
example, the long-range assortativity r; can be defined as

4(kk'y, — (k + K')?
=S n2
2(k* + k%) — (k + k')
kk'y; — (k)?
_ k= @} )
(k) — (k)
where (f(k,k")), = Zk’k, fk,k"YP(k,k'|l). This quantity is
the Pearson correlation coefficient between degrees of nodes
separated by / from each other. For [ = 1, r; is reduced to
the conventional nearest-neighbor assortativity [4]. Another
example is the average degree of /th neighbor nodes, which is
given by [51]

ki(ky = > K P(K'|k.D). (15)
k/

This is an extension of the average degree, kn,(k) =
> i k' Pan(k'|k), of nearest neighbors of a node of degree k to
that for /th neighbors. The quantities 7; and k; (k) are equivalent
to those proposed by Ref. [48]. Besides extensions of existing
indices for NNDC:s, it is also possible to introduce completely

new measures characterizing LRDCs, such as the strength of
long-range repulsive correlations between hubs, by using the
probability distributions listed in Table I.

III. BASELINE FOR COMPARISON

In the previous section, we introduced five fundamental
probability distribution functions describing LRDCs in com-
plex networks. However, even if we know these distributions
for a given network, we cannot judge whether the network
possesses LRDCs or not. This is due to the lack of a baseline
for comparison, i.e., it has not yet been clarified how these
distribution functions behave for a network in which the
degrees of two nodes separated by an arbitrary distance are
not correlated. In this section, we discuss such a baseline for
comparison to analyze what kind of LRDCs a given network
possesses.

A. General remarks

A nearest-neighbor uncorrelated network (NNUN) is a
network in which the degree of one end node of an edge
is independent of the degree of another end node. Thus, the
joint probability Py,(k,k’) in an NNUN is given by the product
Qun(k) Qun(k'). Extending this idea, a long-range uncorrelated
network (LRUN) in which the degrees of any two nodes are
not correlated regardless of their interdistance is considered to
be a network satisfying the relation

P(k.K'[l) = Q(kIDQ'|D), (16)

for all /. This equation implies that the degrees k and k' of two
nodes separated by / are independent of each other.

While P, (k,k’) for an NNUN has the simple functional
form as Py, (k,k") = kk' P(k)P(k’)/ (k)?, it is difficult to obtain
an exact expression of P(k,k’|l) for an LRUN because Q(k|l)
itself depends on LRDCs. Nevertheless, we can generally
conclude that P(k’|k,l) for an LRUN does not depend on k.
This comes immediately from the relation for LRUNs

P(K'|k,1) = Q(K'|D), a7

which is obtained by substituting Eq. (16) into Eq. (8).
Equation (17) with [ =1 leads to the well-known relation
Pon(k'|k) = k' P(k")/{k) for NNUNSs [21].

It is meaningful to consider whether LRUNs satisfying
Eq. (16) actually exist or not. A prime candidate for LRUNs
is random networks with a given degree distribution function,
namely, networks generated by the configuration model [52].
In finite random networks, however, large degree nodes cannot
be far away from each other as would be expected from
Eq. (16) due to the finite-size effect. In fact, as shown in the
Appendix, we have numerically confirmed that the relation
between P(k,k’|l) and Q(k|l) for random networks deviates
from Eq. (16) for I > (/) while Eq. (16) holds for [/ < {/),
where (I) is the average shortest path length. This implies
that even random networks are not rigorously long-range
uncorrelated in the sense of Eq. (16). The fact that Eq. (16)
holds for [ <« (), however, shows that LRDCs in random
networks are caused only by the finite-size effect. Although
the existence or nonexistence of rigorous LRUNs may be
a nontrivial mathematical problem, it is rather important
from a practical viewpoint to investigate LRDCs of a given
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network by comparing the probability distributions with those
for corresponding random networks with the same degree
distribution. Comparison with random networks as the baseline
enables us to evaluate intrinsic LRDCs other than inevitable
degree correlations arising from the finite-size effect.

B. Mean-field approximation

In this subsection, we calculate the probability distribution
functions for random networks with a given degree distribution
as the baseline for comparison. Hereafter, we denote the
probability distributions for random networks by adding the
subscript “0.” Once one of the joint and conditional probability
distributions is obtained, other distributions can be calculated
by using Eq. (1). We then focus on Py(/|k,k’) at first, which is
the shortest path length distribution between nodes of degrees k
and k. Such a length distribution for random networks has been
calculated recently by Melnik and Gleeson [53]. Therefore, we
can utilize their result for calculating Py(I|k,k"). The outline
of their argument is shown below, in which some necessary
modifications are implemented [54].

Let us introduce the probability p(I|k,k") that the distance
between randomly chosen two nodes of degrees k and k’
is equal to or less than /. The probability Py(l|k,k’) is then
presented by

p(Olk,k’) (=0,
Po(lk,k) = { pUIkK) — p( = 1k,K) (1 =21),  (18)
1 — lim p(l|k,k") (I =lx).
=00

The last expression for/ = I, is for disconnected node pairs in
a network composed of multiple components. The normaliza-
tion condition of P(l|k,k’) is thus written as Y~ P(/|k,k") +
P(slk,k’) = 1.

Under the local tree assumption and the mean-field approx-
imation, p(l|k,k") for a random network is given by [53]

p(k,k'y =1—1[1 — p(Olk, k)1 — g — 1k, KNI, (19)

where g(/|k,k’) is the probability that an adjacent node of a
randomly chosen node i of degree k lies within the distance
[ from a node ji of degree k’ under the condition that iy is
separated by more than from ji.. The first factor 1 — p(0lk,k")
of the second term in the right-hand side represents the
probability that the node i; is not the node ji itself. The
second factor [1 — g(I — 1|k,k’)]k means the probability that
all adjacent nodes of i; are separated by more than/ — 1 from
Ji under the condition that i; is separated by more than [ — 1
from ji. Thus, the rough meaning of Eq. (19) is that the
probability that the node i; lies within the distance / from the
node ji is equal to the probability that at least one of k adjacent
nodes of i; lies within the distance / — 1 from jj.. Furthermore,
let us introduce the probability ¢ (/|k,k’) that arandomly chosen
node i; of degree k with at least one neighboring node, e.g., &,
separated by more than / from a node ji- of degree k' lies within
the distance /. Then we have the following relation between
q(|k,k’) and g(I — 1|k,k") similar to Eq. (19),

gk, k"Y=1—=[1—p(Olk,K)[1—g( -1k, k)" (20)

The right-hand side of this equation implies the probability
that at least one node of k — 1 adjacent nodes of i; other than
h lies within the distance [ — 1 from ji.. Using g(/|k,k’), the

probability g(I|k,k’) is expressed by

GUIkK) =" Pk [l)gq(LIK" k')
k!/

1 4 4 " /
- m;k PK)qUK" k). 1)

Since g (I|k,k")is actually independent of k, we denote it simply
by g(l|k’). Multiplying k P(k)/({k) on both sides of Eq. (20),
summing over k, and using Eq. (21), we have the recursion
equation for g(I|k’),

gIky = 1= Gil1 — g — 11k")]

k_ =1 Nk —1
+N(k)[l g = 1O =, (22)

where N is the number of nodes in the network and G (x) is the
generating function defined by G(x) = >, x*" 'k P(k)/ (k).
Here we used the obvious relation,

Sk
NPk
Equation (22) can be solved iteratively with the initial condi-
tion [53]

p(Olk, k') = (23)

Nk’

Using the solution of g(/|k’) and Egs. (18) and (19), we
can calculate Py(l|k,k’). The joint probability distribution
Py(k,k' 1) is computed by P (k)P (k") Py(l|k,k") from Eqs. (1a)
and (6), and other conditional probability distributions listed
in Table I are determined from Py(k,k’,l) by using Eq. (1).

We should remark the accuracy of the mean-field approxi-
mation in the above calculation. The probability p(I|k,k") must
be equal to p(l|k’,k) from the definition. However, p(I|k,k")
calculated from Eq. (19) is actually not symmetric with respect
to k and k’. In fact, p(l|k,k’) for [ = 1 and k # k’, calculated
as

gOIk’) = (24)

K o\F
o(1kk)=1— (1 ~ N(k>>

_ kK1 k(k — Dk’
CON(k) 2 (N(k))?

(25

is asymmetric in the order of N 2. This is due to the difference
in accuracy of the mean-field treatment for nearest neighbors
of the nodes of degrees k and k’. The mean-field approximation
for neighboring nodes of a large degree node is more accurate
than that of a small degree node. Since g(I|k’) is iteratively
calculated for the distance / from the source node of degree &’
according to Eq. (22), p(l|k,k") with k < k’ is more accurate
than p(I|k’,k). Therefore, we first calculate p(I|k,k’) fork < k’
by Eq. (19), then transfer it to p(l|k’,k) in actual computations.
Another remark on the mean-field approximation is related
to the component-size distribution. We assume that p(/|k,k")
does not depend on the size of the component that the source
node of degree k' belongs to. This implies that the distribution
function of the component size is assumed to be relatively
narrow. If a random network with a given degree distribution
P (k) is very close to its percolation transition point, however,

062308-4



GENERAL FORMULATION OF LONG-RANGE DEGREE ...

PHYSICAL REVIEW E 97, 062308 (2018)

e e | o)
0.15- "“"Vﬁ“\ o0
o /,//IIII‘\\\I‘“ e

Po(k.KD)

06— ———
0.5
0.41
0.3
0.24 1

Polllk.k’)

Polllk.K’)

FIG. 1. Probability distributions Py(k’|k,l), Po(k,k’|l), and Py(I|k,k") as functions of k and k' for/ = 4 and N = 1000. Wireframes indicate
the distributions calculated analytically by the method explained in Sec. IIIB, and dots represent those measured for numerically realized
random networks. Upper three panels [(a)—(c)] are the results for Erdés-Rényi random graphs with (k) = 5.0, and lower panels [(d)—(f)] for

scale-free random networks with the degree distribution P (k) o< k=3,

the component-size distribution becomes wide, and then the
mean-field calculations have poor accuracy.

C. Infinite treelike networks

For infinitely large sparse networks, only P(k'|k,l) and
P(k,k'|l) are meaningful among five distributions, as men-
tioned in Sec. II. It is easy to calculate these conditional distri-
butions for infinite random networks with treelike structures.
Let us consider Py(k’|k,l) at first. Since this is the probability
that a node separated by / from a node of degree k has the
degree k’, Py(k'|k,l) must satisfy the relation

Po(K'|k,1) =y Pan(K'|K") Po(K" kL = 1), (26)
k//
where the nearest-neighbor degree distribution function
Pon(k'|k") is given by k' P(k")/ (k) for random networks. Using
the obvious relation Py(k’|k,0) = 8y, we can solve the above
equation as

/ S (1 =0),
Po(k'|k,1) = % a0 27
Thus, we have immediately, from Eq. (17),
Qo(k|l) = KE (¢ =D. (28)

(k)
The probability Py(k,k’|l) for I > 1 is then calculated from
Eq. (8) as
kk' P(k)P (k")

Po(k,k'|) = T

(29)

We should note that Py(k,k’|l) and Py(k’|k,l) for infinite
treelike random networks are equivalent to P,(k,k’) and
P (K'|k), respectively, independently of /.

It is reasonable to consider that the above expressions of
Py(k'|k,1), Qo(k|l), and Py(k,k’|l) for infinitely large networks
hold approximately for/ < (/) even in finite random networks.
While we have shown in Sec. IIT A that Py(k’|k,l), in general,
does not depend on k, our result here indicates that this
probability distribution is independent of / too if I < (I).

D. Numerical confirmation

In order to confirm the validity of our analytical eval-
uation of the probability distribution functions for random
networks, we compare the distributions Py(l|k,k"), Po(k'|k,1),
and Py(k,k’|l) obtained by the method explained in Sec. III B
with those measured for synthetic random networks. Figure 1
shows the dependence of these distributions on k and k' for
| = 4. The wireframe in each panel indicates the analytically
calculated distributions, and dots represent numerical results.
The upper three panels give the results for Erdés-Rényi random
graphs with (k) = 5.0and N = 1000. We have dared to employ
relatively small networks to check the validity of the method for
finite sizes. Numerical results are obtained by averaging over
100 realizations of Erdés-Rényi random graphs. The average
path length of these networks is (/) = 4.5. The lower three
panels present the results for scale-free random networks with
N = 1000 and the degree distribution function of P (k) o k3
for 2 < k <50 and P(k) = 0 otherwise. Numerical results
show the averages over 10000 realizations generated by the
configuration model. The average degree and the average path
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FIG. 2. Probability distribution Q¢(k|!/) for Erdés-Rényi random
graphs with N = 1000 and (k) = 5.0. Solid line indicates Q(k|/)
given by Eq. (28), while symbols represent the numerical results for
[ =1 (circles), 2 (boxes), 3 (triangles), 4 (diamonds), and 5 (stars)
averaged over 100 network realizations.

length are (k) = 3.1 and (/) = 5.4, respectively. These plots
demonstrate that the analytical treatment based on the mean-
field approximation well reproduces numerical results even for
finite networks.

We also verified the argument in Sec. IIIC by calculating
Qo(k|l) for Erdés-Rényi random graphs. Figure 2 compares
this probability distribution calculated by Eq. (28) with Q¢(k|/)
measured numerically. The Erdés-Rényi random graphs are the
same as in Fig. 1. Thus, the average path length is (/) = 4.5
for these random graphs. As shown by the numerical results
for I =1, 2, and 3, Qo(k|l) measured numerically is almost
independent of / and is well described by Eq. (28), if / is
sufficiently smaller than (/). On the other hand, if / becomes
close to or larger than (I), numerically computed Qo(k|/)
deviates from Eq. (28), as shown by the results for [ = 4 and
5. These results prove that Eq. (28) holds for / < (/) even in
finite networks.

IV. REAL-WORLD NETWORKS

Finally, we investigate LRDCs in two real-world complex
networks by using the probability distributions listed in Table L.
One is the Gnutella peer-to-peer network [55], and the other is
the coauthorship network [56]. The Gnutella network has N =
10 876 nodes and E = 39 994 edges. Thus, the average degree
is (k) = 7.4. This network consists of a single connected
component. The average path length (/) and the maximum
shortest path length (diameter) /,,,x are 4.6 and 10, respectively.
The Spearman’s degree-rank correlation coefficient p [10,57]
characterizing the NNDC is measured as p = 0.0, which
implies no NNDC in the Gnutella network. The coauthorship
network possesses N = 23 133 nodes and E = 93439 edges,
which give (k) = 8.1. This network is composed of the largest
connected component with 21 363 nodes and 566 small com-
ponents with 3.1 nodes on average. The average path length and
the network diameter are () = 5.4 and /,,.x = 15, respectively.
The Spearman’s correlation coefficient of the coauthorship
network is p = 0.26, which means a positive NNDC.

For these two real-world networks, we first calculate the
average [th neighbor degree k; (k) given by Eq. (15). The results
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FIG. 3. Average /th neighbor degree k;(k) of a typical node of
degree k for (a) the Gnutella network [55] and (b) the coauthorship
network [56]. Symbols represent k;(k) of the real-world networks
as a function of k at fixed values of /, and curves indicate those of
corresponding random networks with the same degree sequences as
the real networks.

are presented by symbols in Fig. 3. The continuous curves in
this figure indicate k;(k) for random networks with the same
degree sequences as the real networks, which is calculated
from Eq. (15) by replacing P(k’|k,l) with Py(k’|k,l). The
symbols for various / in Fig. 3(a) are approximately fitted by the
corresponding curves. This implies that the Gnutella network
has almost no LRDCs other than those by the finite-size
effect. On the other hand, k;(k) for the coauthorship network
[Fig. 3(b)] considerably deviates from the curves, and the
discrepancy becomes more pronounced at the higher degrees.
This result clearly demonstrates the LRDC in the coauthorship
network in which the average /th neighbor degree is always
larger than that expected for random networks.

We also evaluate, for these two networks, the average
shortest path length (/(k,k)) between nodes of degrees k and
k’, which is defined by

(I(kK)) = " 1P(UIk.K). (30)
1

Figure 4 represents the results for the Gnutella and the
coauthorship networks. The vertical axis indicates the av-
erage shortest path length rescaled by that for random net-
works with the same degree sequence, namely, (/(k,k"))s =
> LP(k.k')) Y, I Py(llk,k"). Although the maximum de-
grees kmax Of these networks are larger than the range of k
in Fig. 4 (kymax = 103 for the Gnutella network and 279 for the
coauthorship network), we depict the results only for k,k" <
30, in which 99.1% and 96.6% of nodes in the Gnutella network
and the coauthorship network are included, respectively. This is
because (I(k,k’)) s for large degrees becomes quite bumpy due
to poor statistics by the smaller number of high-degree nodes.
We see from Fig. 4 that ([(k,k))es for the Gnutella network
is close to 1 independently of k and &’. This means that the
network has almost no intrinsic LRDCs, which is consistent
with the result shown in Fig. 3(a). In contrast, (I(k,k")) s for the
coauthorship network is larger than unity. This clearly indicates
repulsive correlations among nodes. In fact, the average path
length (/) = 5.4 for the coauthorship network is greater than
(I) = 4.3 for random networks with the same degree sequence,
whereas (I) = 4.6 for the Gnutella network does not change so
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Rescaled average path length

FIG. 4. Rescaled average shortest path length (/(k,k”)) s between
nodes of degree k and k. The lower and upper surfaces represent
the results for the Gnutella network and the coauthorship network,
respectively. The bottom flat mesh indicates (I(k,k'))s = 1.

much from (/) = 4.5 for the corresponding random networks.
The fact that, for the coauthorship network, (I(k,k’)).s for
small degrees is larger than that for large degrees demonstrates
the LRDC in which small degree nodes strongly repel each
other in this network.

V. CONCLUSIONS

In this paper, we have provided a general framework to
analyze pairwise correlations between degrees of nodes at an
arbitrary distance from each other in a complex network. In
order to fully describe such long-range degree correlations
(LRDCs) between degrees k and k’ of two nodes separated by
[ in the sense of the shortest path length, we introduced the
joint probability distribution P(k,k’,l) and four conditional
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< 001 < 001
é &0
o g

~0.04 ~.0.05

3 3

3 o. g 004

=z =003

5] g

= = 0.02 ’
< < 001

o a

probability distributions P(I|k,k"), P(k'|k,l), P(k,k'|l), and
P(k’,l|k). These distribution functions are not independent,
and several relations between them have been presented with
the aid of the Bayes’ theorem. It has also been shown that
the above distributions include the probability distributions
Pun(k,k’) and Py, (k'|k) describing nearest-neighbor degree
correlations as a special case. Furthermore, we have analyt-
ically calculated these five distribution functions for random
networks with a given degree distribution under the local tree
assumption and the mean-field approximation. The results for
Erd6s-Rényi random graphs and scale-free random networks
agree well with numerical ones. The probability distributions
for random networks enable us to judge the existence of in-
trinsic LRDCs other than correlations caused by the finite-size
effectin a given network and capture the feature of correlations.
Finally, we analyzed LRDCs in real-world networks within the
present framework and found that the coauthorship network
possesses LRDCs in which small degree nodes strongly repel
each other.

Although we have just prepared tools for analyzing LRDCs,
it is quite interesting to study relations between LRDCs and
many network properties such as the robustness of a network,
fractality, and synchronization, to name a few. Our joint
and conditional probability distribution functions have three
variables and are not easy to handle. Thus, it is also important
to develop intuitive indices characterizing LRDCs, like a
measure of the strength of the repulsive correlation between
hub nodes, > > 4 vy IPKK D/ D20 Dk po iy L Polk KD,
or the average degree of a terminal node of an [-chain,
> 1 kQ(k|l), on the basis of these probability distributions.
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APPENDIX: EQUATION (16) FOR RANDOM NETWORKS

We numerically investigated whether Eq. (16) holds for fi-
nite random networks. To this end, the conditional distributions
P(k,k'|l) and Q(k|l) have been computed individually for 10°
realizations of Erd6s-Rényi random graphs with N = 1000 and
(k) = 5.0. The average shortest path length (/) of the networks
is4.47. Figure 5 compares the k and k” dependence of P (k,k’|l)
with that of the product Q(k|l)Q(k’|l) for several values of

[. The distribution P(k,k’|l) coincides with Q(k|l)Q(k'|l) for
| < (), which demonstrates the validity of Eq. (16) for small
[. On the other hand, P(k,k’|l) deviates from Q(k|l)Q(k'|l) for
I > (I). These results clearly show that even random networks
are not rigorously long-range uncorrelated in the sense of
Eq. (16) if the network size is finite. However, LRDCs in
random networks are caused only by the finite-size effect, and
there are no intrinsic degree correlations other than them.
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