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In financial markets, greater volatility is usually considered to be synonymous with greater risk and instability.
However, large market downturns and upturns are often preceded by long periods where price returns exhibit only
small fluctuations. To investigate this surprising feature, here we propose using the mean first hitting time, i.e.,
the average time a stock return takes to undergo for the first time a large negative (crashes) or positive variation
(rallies), as an indicator of price stability, and relate this to a standard measure of volatility. In an empirical
analysis of daily returns for 1071 stocks traded in the New York Stock Exchange, we find that this measure of
stability displays nonmonotonic behavior, with a maximum, as a function of volatility. Also, we show that the
statistical properties of the empirical data can be reproduced by a nonlinear Heston model. This analysis implies
that, contrary to conventional wisdom, not only high, but also low volatility values can be associated with higher
instability in financial markets. This proposed measure of stability can be extremely useful in risk control.
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I. INTRODUCTION

Volatility is typically considered a monotonic indicator of a
financial market’s risk and instability. Recently, however, such
conventional wisdom has been questioned by the observation
that sizable market downturns or upturns can be anticipated by
periods of low volatility. Notable examples of this phenomenon
include the 2008 financial crisis, preceded by the so-called
“great moderation,” and the Chinese crash in 2015. These
episodes have received a lot of attention in the specialized
press and have popularized the so-called Minsky’s financial
instability hypothesis [1] that periods of calm can project a
false sense of security and lure agents into taking a riskier
investment, preparing for a crisis [2]. Therefore, a better
characterization of the relationship between volatility and
market stability seems particularly important.

Searching for empirical regularities and modeling complex
market dynamics have typically been the objective of financial
times series analysis, econophysics, and complex systems
[3–14]. Specifically, very recently, a new method to find the
critical transition points within a financial market has been
introduced in Ref. [14]. In this literature, the importance
of the statistical properties of volatility for portfolio opti-
mization strategies, risk management, and financial stability
have been underlined in Refs. [15–18]. Along these lines,
investigations have looked at the statistical properties of large
volatilities [19], cross correlations between volume change
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and price change [20], the interplay between past market
correlation structures and future volatility outbursts [21], and
temporal sequences of financial market fluctuations around
abrupt switching points [22]. There, the authors argue that
the end of microscopic or macroscopic trends in financial
markets have a parallel with metastable physical systems.
Moreover, in a very recent paper [23], the authors provide a
comprehensive analysis of a structural model for the dynamics
of the prices of assets, namely, the interacting generalization of
the geometric Brownian motion model, introduced in Ref. [24]
and exhibiting a large number of metastable states. Specifically,
the authors elucidate in detail the relation between switching
dynamics between metastable states and the phenomenon of
volatility clustering. In other words, the market states would
indeed emerge naturally as attractors of collective nonlinear
dynamics of interacting prices. In the presence of noise, many
of these attractors will survive as long-lived states and volatility
clustering is expected to arise naturally through the interplay
of the dynamics within long-lived states and the dynamics of
occasional noise-induced transitions between them [23]. In
this respect, it is worthwhile to note that in Ref. [25] a set
of distinct quasistationary market states in historical data has
been identified and their dynamics and stability discussed.

Indeed, financial market stability is often associated with
moderate levels of perceived uncertainty and measured looking
at the intensity of price return fluctuations [26–28] or stochastic
volatility estimators based on first passage time statistics [29].
However, both approaches cannot be reconciled with the
observed evidence discussed above.

In this direction, a fundamental, and yet overlooked, ques-
tion has to be addressed: What is the typical time scale before a
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large negative or positive stock return variation? To answer this
question, we propose exploiting the notions of “level crossing”
and “hitting time” to monitor the stability of price returns and
observing its relationship with volatility [30–32]. In particular,
the mean first hitting time (MFHT) or mean first passage time
(MFPT), earlier introduced in Refs. [33–37], is the time it
takes, on average, for a variable to cross for the first time a
certain level, and it can provide the above-mentioned timescale
to observe modifications in market scenarios.

Here, we propose this quantity (MFHT) as an indicator to
measure the stability of price returns, defined as the resilience
to large negative price variations: The longer this time, the
more stable the series of price returns. Observing the daily
closing prices of a large number of stocks traded in the New
York Stock Exchange (NYSE), we find that this measure of
stability has a nonmonotonic behavior, with a maximum, as a
function of volatility, both for crashes and rallies. This result
seems in line with the view discussed above that a higher price
return instability, corresponding here to lower hitting times, is
not only associated with high values but also with low values
of volatility. As such, this measure can be considered as an
important indicator of market stability and a potential tool for
risk control.

Further, we are able to reproduce all the main statistical
features of the price return dynamics of the considered stock
market by using a nonlinear generalization of the Heston model
proposed in Ref. [30].

The paper is organized as follows. In the next section, the
definitions of the first hitting time (FHT) and the MFHT are
given, together with their relevance in the scientific literature.
In Sec. III, the MFHT as an indicator of financial stability is
proposed and the main results of the paper, obtained by an
empirical analysis, are shown. Specifically, the nonmonotonic
behaviors of the MFHT for crashes and rallies are presented.
A nonlinear generalization of the Heston model is proposed
in Sec. IV, and some of the well-established statistical char-
acteristics of the financial time series are shown in Sec.V.
Conclusions are drawn in the last section.

II. FIRST HITTING TIME

The first hitting time (FHT), or first passage time (FPT), is
defined as the random time it takes for a stochastic variable to
cross for the first time a certain level. In Fig. 1, we show the
schematic representation of the FHT calculated starting from
the time series of returns. Specifically, the FHT is the time
it takes for a stock price return to cross for the first time a
large negative or positive threshold �f starting from an initial
position �i . By ensemble averaging on all the time series of
the market, we obtain the proposed indicator of price return
stability, that is, the MFHT. The MFHT, or MFPT, was earlier
introduced in scientific literature. Indeed, the study of the first
passage time and exit problem has a long-standing tradition in
physics, mathematics, engineering, and natural sciences [33–
37]. The first pioneering papers in this subject are those by
Smoluchowski, who first considered the problem of a random
walk with reflecting and absorbing barriers [33]; Pontryagin
et al., who first derived the differential equation for the mean
first passage time [34]; Kramers, with his celebrated paper on
“Brownian motion in a field of force and the diffusion model of

FIG. 1. Time series of returns and the corresponding first hitting
time, that is, the time it takes for a stock price return to cross for the
first time a large negative threshold �f starting from an initial position
�i . By ensemble averaging on all the time series of the market, we
obtain the proposed indicator of price return stability.

chemical reactions” [35], who understood well the mechanism
of the escape process as a noise-assisted reaction; Chan-
drasekhar, who considered the importance of the occurrence
of the escape problem in astronomical phenomena [36]; and
Feller, who gave his fundamental contribution in mathematical
literature, with his proposal of two singular diffusion problems,
called Feller processes, and the related boundary problem
appearing in these diffusion processes [37]. Indeed, the fact
that the Feller process never attains negative values has made
it an ideal candidate for modeling many natural and social
science phenomena.

In finance, the concept of FPT appears in several domains:
the valuation of barrier options, credit risk modeling, and opti-
mal exercise time of American options. Even more, the study
of the MFPT for two well-known mean-reverting processes,
that is, the square root process of Feller and the generalized
autoregressive conditional heteroskedasticity (GARCH) diffu-
sion process, was recently given in Refs. [38,39].

III. MFHT AS AN INDICATOR OF FINANCIAL STABILITY

In this paper, in order to perform our empirical analysis
and calculate the MFHT from the time series of returns, we
have relied on a well-tested data set already employed in
previous investigations by Refs. [40–44]. This includes 1071
stocks traded at the NYSE and continuously recorded for 12
years from 1987 to 1998 (3030 trading days). This period of
trading is sufficiently long and inclusive of a large number of
stocks, so that it can be considered representative of overall
market behavior. In order to investigate episodes of instability
associated with large negative or positive return variations,
following the literature on speculative pressure in the exchange
market, we identify price changes as “sizable” if they are
larger than a certain threshold, typically defined starting from
the standard deviation [45,46]. In line with this literature, the
robustness of the identification mechanism is also assessed by
considering different thresholds in the range of 1.5–3 times the
standard deviation.

In detail, we first transform the series of stock prices into
daily returns, r(t) = [p(t) − p(t − 1)]/p(t − 1), and calculate
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the standard deviation σ r
i of each series over the entire period.

By averaging this quantity across all stocks in the sample, we
obtain the overall volatility of the market over the observed
period as σ̄ r = ∑N

i=1 σ r
i /N = 0.022 54, with N = 1071. We

then proceed to compute the MFHT by considering the FHT,
and ensemble averaging over all FHTs measured in the price
return series. This random quantity has been calculated by
fixing the initial and final threshold as �i = θi σ̄

r and �f =
θf σ̄ r , where σ̄ r is the overall volatility of the market over the
observed period and the two thresholds are defined, in line with
Refs. [45,46]. The parameters θi and θf define the “stability”
window and, therefore, how large a variation has to be in order
to determine an escape from a metastable state. To assess the
robustness of the results, shown in Figs. 2 and 3, we consider
a wide range of realistic numerical parameters for θi and θf in
the intervals [+0.9,−1.6] and [−0.5,−3.0], respectively, in
order to identify an episode of instability (see Refs. [45,46]).

This allows us to obtain several subseries, each corre-
sponding to one first hitting time. The standard deviation of
each subseries gives the value of volatility v, corresponding
to each FHT. Averaging all the FHTs corresponding to the
same volatility value yields the nonmonotonic behavior of the
MFHT versus the volatility shown in Fig. 2(a) (blue circles),
where the values of the threshold parameters are θi = −0.1
and θf = −1.5. In particular, we note that the MFHT takes
smaller values for lower levels of volatility, i.e., the series of
returns exhibits negative jumps equal to or less than −1.5σ̄ r ,
after short time intervals. This corresponds to a fast exit of
the stock return from the fixed region [�i,�f ]. As volatility
increases, the time spent within this region also increases,
which is a signal that the market is becoming more stable.
A further increase of volatility, however, shortens the MFHT,
and stability decreases. This implies that in the intermediate
region we observe a stabilizing effect of volatility. Figure 2(a)
is a clear representation of the relation between MFHT, i.e.,
the time returns stay within the fixed region, and the size of
volatility v. Considering the MFHT as a measure of market
stability, it is possible to argue that volatility plays a stabilizing
effect when its values are within the range [0.004,0.01].

In order to cross validate the robustness of this result,
we have also investigated whether this effect persists for
(i) different thresholds with fixed interval size, �f − �i =
−1.4σ̄ r [Fig. 2(b)], and (ii) fixed starting threshold �i but
different final thresholds �f [Fig. 2(c)]. The results indicate
that the nonmonotonic behavior of the MFHT as a function of
volatility is “robust” to sizable variations of the two thresholds.

We perform a similar analysis for stock price upturns
or rallies. We find that the nonmonotonic behavior, with a
maximum, of the MFHT versus volatility occurs both in
real market data and in simulations based on the proposed
nonlinear Heston model [Eqs. (5) and (6)]. This means that
we can extend our proposed measure of price return stability
not only to negative variations of price returns but also to
positive variations. The results are shown in Fig. 3. Again, we
cross validate the results of Fig. 3(a) by considering different
thresholds with a fixed interval size [Fig. 3(b)], and a fixed
starting threshold with different final thresholds [Fig. 3(c)].
We note that, differently from the case of crashes, for a fixed
difference between thresholds the curves of the MFHT versus
volatility coalesce [see Fig. 3(b)]. This could be ascribed to
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FIG. 2. Crashes: (a) MFHT as a function of volatility, with the
thresholds �i = −0.1σ̄ r and �f = −1.5σ̄ r , from empirical time
series (blue circles) and theoretical results (red triangles), obtained
from a nonlinear Heston model [Eqs. (5) and (6)]. (b) MFHT vs
volatility (real data) for a fixed difference between thresholds, �f −
�i = −1.4σ̄ r , with [�i,�f ] ranging from [+0.9 σ̄ r , − 0.5 σ̄ r ] to
[−1.6 σ̄ r , − 3.0 σ̄ r ]. (c) MFHT vs volatility (real data) for a fixed
starting threshold �i = −0.1σ̄ r and a different final threshold �f ,
ranging from −0.5 σ̄ r to −3.0 σ̄ r .

the asymmetry of the returns distribution, characterized by a
negative skewness (see Fig. 5).
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(a)

(b)

(c)

FIG. 3. Rallies: (a) MFHT as a function of volatility, with the
thresholds �i = +0.1σ̄ r and �f = +1.5σ̄ r , from empirical time
series (blue circles) and theoretical results (red triangles), obtained
from a nonlinear Heston model. (b) MFHT vs volatility (real data)
for a fixed difference between thresholds, �f − �i = +1.4σ̄ r , with
[�i,�f ] ranging from [−0.9 σ̄ r , + 0.5 σ̄ r ] to [+1.6 σ̄ r , + 3.0 σ̄ r ].
(c) MFHT vs volatility (real data) for a fixed starting threshold
�i = +0.1σ̄ r and different final thresholds �f , ranging from +0.5 σ̄ r

to +3.0 σ̄ r .

The nonmonotonic behavior observed in Figs. 2 and 3 is
similar to what is known to occur also in all physical systems
with metastable states. Indeed, the behavior of the MFHT as

a function of volatility shows the typical signature of noise-
enhanced stability (NES) observed in a variety of physical
(classical and quantum), biological, chemical, and ecological
systems [47–75]: The stability of a metastable state can be
enhanced by the noise and its average lifetime is a measure
of this stability. This noise-enhanced metastability is a conse-
quence of the interplay between the thermal fluctuations and
nonlinearity of the complex system investigated. This effect
is observed by increasing the temperature as, by analogy, the
stabilization of the price returns occurs for increasing volatility.
The empirical evidence of a NES effect in the behavior of the
MFHT (Figs. 2 and 3) suggests that price return dynamics
could be depicted by considering the value of the return as the
position of a fictitious Brownian particle, subjected to noise
and moving in an effective potential with a metastable state.

IV. MODEL

Models reproducing most of the stylized facts of financial
markets and their dynamics by nonlinear stochastic differential
equations have been presented in the literature [5,23,24,76–
79]. Moreover, financial markets present different dynamical
regimes with days of normal activity and days with large price
variations, characterized by a different behavior of volatil-
ity. In order to consider these different dynamical regimes
and feedback effects on the price fluctuations, a Langevin
approach to the market dynamics was already proposed in
Refs. [5,23,24,78,79], where a nonlinear stochastic dynamical
equation with one or more metastable states was considered.
The evolution inside the metastable state represents the normal
market behavior, while the escape from the metastable state
represents the beginning of large price variations, which is
related to the “clustering” phenomenon of volatility [23,24].

Before introducing our nonlinear model in Sec. IV B, based
on a nonlinear generalization of the Heston model, we briefly
introduce the Heston model in Sec. IV A.

A. Heston model

One of the most widely used stochastic volatility models,
being broadly accepted as a reasonable explanation for many
empirical observations, the so-called stylized facts, is the
Heston model [31,80–82], which is based on two-dimensional
diffusion processes. The model, introduced by Heston in
1993 [80], is a closed-form solution for pricing options that
seeks to overcome the shortcomings in the Black-Scholes
option pricing model related to return skewness and strike-
price bias. This model introduces a dynamics for the under-
lying asset which can take into account the asymmetry and
excess kurtosis that are typically observed in financial assets
returns.

The Heston model [31,39,80,83], which describes the dy-
namics of stock prices p(t) as a geometric Brownian motion
with the volatility given by a mean-reverting process, known
as the Cox, Ingersoll, and Ross (CIR) process [30,39,84,85], is
defined by the following Itô stochastic differential equations,

dp(t) = μpdt + σ (t)pdW1(t), (1)

dv(t) = a (b − v(t))dt + c
√

v(t)dW2(t), (2)
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where σ (t) is the time-dependent volatility, v(t) = σ 2(t),
and Wi(t) are uncorrelated Wiener processes with the usual
statistical properties,

〈dWi〉 = 0, 〈dWi(t)dWj (t ′)〉 = dt δ(t − t ′)δi,j . (3)

The CIR process, known in mathematical statistics as the Feller
process [37], and later introduced in mathematical finance [84],
represents the term structure of interest rates and it successfully
evaluates bond prices [84,85]. Moreover, the Feller process
also appears to describe the default intensity rate [86], and
the growth stock [87]. The process defined as its square root is
connected to the square of a δ-dimensional Bessel process [88].
Stochastic volatility obeying the Feller model jointly with a
log-Brownian stochastic dynamics for the asset price evolution
gives rise to the two-dimensional diffusion market process of
Eqs. (1) and (2) [80,83], which is a useful model for option
pricing [39,80,85]. Recently, a study of the mean first passage
time (or mean first hitting time) for two well-known mean-
reverting processes, that is, the square root process of Feller
and the GARCH diffusion process, was done in Refs. [38,39].
Specifically, in Ref. [38], the asymptotic expansions of the
MFPT around the starting position and the boundary points
of GARCH and Feller processes as well as the sensitivity
analysis of MFPT to changes in the relevant parameters were
investigated. In Ref. [39], the first passage and escape problems
for the Feller process have been fully addressed.

In Eq. (1), μ represents a drift at macroeconomic scales.
In Eq. (2), the volatility σ (t) = √

v(t) reverts towards a
macroeconomic long time term given by the mean squared
value b, with a relaxation time a−1. Here, c is the amplitude of
volatility fluctuations often called the volatility of volatility.

By introducing log returns x(t) = ln[p(t)/p(0)] in a time
window [0,t] and using Itô’s formula [89], we obtain the
stochastic differential equation (SDE) for x(t),

dx(t) = [μ − v(t)/2]dt +
√

v(t)dW1(t). (4)

We note that the Heston model gives a good reproduction of
the price returns probability density function (PDF), but does
not reproduce a long-range volatility correlation [40]. On the
contrary, the GARCH model provides a basic way to model
the volatility correlation, by modeling the high memory of the
volatility [90], but gives a rather poor fitting of the return PDF
(see Refs. [40,41,90]). Moreover, the statistical properties of
the returns and FPTs for models with stochastic volatility, such
as the Heston and the discrete GARCH (1,1) model, have been
investigated in Refs. [40,41], finding that the PDF of both stock
price returns and FPTs obtained with the Heston model exhibit
a better agreement with real market data than those calculated
in the GARCH discrete model [91].

B. Nonlinear Heston model

Here, we employ a generalization of the Heston model [80]
proposed by Ref. [30], where the geometric Brownian motion
is replaced by a random walk in the presence of a cubic nonlin-
earity. This theoretical approach considers the financial market
as an out-of-equilibrium system, whose dynamical evolution
can be described by a nonlinear Heston model defined by the
following Itô stochastic differential equations [89],

FIG. 4. (a) Cubic potential used in the dynamic equation for the
variable x(t). The black circle denotes the starting position (x0 = 0.0)
used to obtain the theoretical results. The potential parameters are
m = 2 and n = 3. (b) PDF of the first hitting times of the returns for
real data (blue circles) and the model (red triangles).

dx(t) = −
(

∂U

∂x
+ v(t)

2

)
dt +

√
v(t) dW1(t), (5)

dv(t) = a[b − v(t)] dt + c
√

v(t) dW2(t), (6)

with the volatility v(t) given by the mean-reverting CIR
process [37,83–85], and U (x) = mx3 + nx2 is the effective
cubic potential with a metastable state [Fig. 4(a)] [79]. As
explained in Ref. [79], the parameters m and n, identified in
line with the consideration of liquid markets, are influenced
by the degree of risk aversion, the market depth, and the
“friction” of prices to changes in demand and supply in the
market. In Eq. (5), x(t) = ln[p(t)/p(0)] is the return in the time
window [0,t], p(t) is the price, and Wi are uncorrelated Wiener
processes with the usual statistical properties 〈dWi(t)〉 = 0,
〈dWi(t) dWj (t ′)〉 = dt δi,j δ(t − t ′).

We note that the particle is governed by a nonstationary
dynamics since it is subject to a noise source dW1(t), whose
intensity is given by the volatility v(t), which is itself a
stochastic process [see Eq. (6)]. In addition, due to the presence
of this noise source, the particle can leave the metastable well
also for low volatility, crossing the potential barrier and moving
to nonequilibrium positions along the potential profile.

For the daily returns we have

xd (t) = ln[p(t)/p(0)] − ln[p(t − 1)/p(0)]
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FIG. 5. PDF of the stock price returns for real data (blue circles)
and the model (red triangles).

= ln[p(t)] − ln[p(t − 1)]

� [p(t) − p(t − 1)]/[p(t − 1)] = r(t), (7)

where we use ln x � x − 1.
We solve Eqs. (5) and (6) numerically, obtaining a number

of time series of returns equal to 1071, with an initial position
x0 = 0.0 and CIR stochastic process v(t) defined by vstart =
8.62 × 10−5, a = 2.00, b = 0.01, and c = 0.83. These values,
used to obtain the data shown in Figs. 2–6, were obtained by
best fitting between theoretical and empirical results for all
the statistical features investigated, by performing both χ2 and
Kolmogorov-Smirnov (KS) goodness-of-fit tests. Since we are
focusing on the daily returns we have x(t) � r(t). We fix again
the two thresholds, �i = ∓0.1σ̄ r and �f = ∓1.5σ̄ r (− for
microcrash, + for rally), where σ̄ r = 0.023 83 is the average
standard deviation calculated over the numerical time series.
This yields, for the MFHT, the nonmonotonic behavior shown
in Figs. 2(a) and 3(a) (red triangles), which exhibits a very
close agreement with the real data (blue circles).

To quantitatively characterize the observed empirical re-
sults, we determine the probability distribution function (PDF)
of the FHTs of the daily returns, calculated by setting
�i = −0.1σ̄ r and �f = −1.5σ̄ r , and compare it with the
corresponding theoretical PDF, obtaining a good qualitative
agreement [Fig. 4(b)]. Performing both χ2 and KS goodness-
of-fit tests, we get χ2 = 0.01668, χ̃2 = 0.00018 (reduced χ2),
and D = 0.149, P = 0.198. D and P are respectively the
maximum difference between the cumulative distributions and
the corresponding probability for the KS test. The results
indicate that the two distributions are not significantly different
[see Fig. 4(b)].

Finally, we note that in Ref. [30] the dynamical regimes
corresponding to different parameter values of a, b, and
c of the CIR process were studied and the parameter re-
gion was found to observe a nonmonotonic behavior of the
MFHT.

V. STATISTICAL CHARACTERISTICS

Some of the well-established statistical properties of the
financial time series are the probability distribution of stock
price returns, the PDF of volatility, the return correlation,
and the absolute return correlation. In Fig. 5 we show the

PDF of the stock price returns for real data (blue circles) and
the model (red triangles). The agreement between theoretical
results and real data of the PDFs of returns is quite good, except
at high values of the returns. This can be ascribed to the failure
of the proposed nonlinear model for returns higher than or
comparable to the height of the metastable state barrier. For
these values of returns, other mechanisms, which we have not
taken into account in the model, come into play [30,79].

To quantitatively characterize the PDF of returns (Fig. 5)
with respect to their average, width, asymmetry, and fatness,
we consider the whole set of NT values of the daily returns
and calculate, both for real data and theoretical results, the
four moments of the PDF, that is, the mean value 〈r〉, the
variance σr , the skewness κ3, and the kurtosis κ4, obtaining
the following values: 〈r〉expt = −1.91 × 10−5, σ

expt
r = 0.025,

κ
expt
3 = −4.30, and κ

expt
4 = 442, and 〈r〉theor = −4.76 × 10−5,

σ theor
r = 0.024, κ theor

3 = −1.96, and κ theor
4 = 105.

The quantitative statistical characterization of the shape of
the PDF of returns (Fig. 5) shows that the model reproduces the
asymmetry and leptokurtic distribution observed for the real
market data [4,5]. In Fig. 6(a) we show the PDF of the volatility
both for real market data and theoretical results, finding a log-
normal behavior in both cases. The agreement is quite good,
as confirmed by the Kolmorogov-Smirnov test: D = 0.2178
and P = 0.014. The values of the volatility shown in Fig. 6(a)
are those corresponding to the hitting time events observed for
�i = −0.1σ̄ r and �f = −1.5σ̄ r (see Fig. 2).

Another important characteristic, emerging from the statis-
tical analysis of price variations in various types of financial
markets [78], is the absence of return autocorrelation. This
property also ensures a no-arbitrage condition. To verify
that our model fulfills this requirement, we calculate the
autocorrelations of the asset returns, and compare them with
those obtained from the real data. The results are shown
in Fig. 6(b). The autocorrelations from the model [red tri-
angles in Fig. 6(b)] are insignificant except for very short
times where microstructure effects possibly come into play.
This result is again in close agreement with the autocorrelations
calculated for the real data [blue circles in Fig. 6(b)]. A similar
behavior, but with a slow decay to zero, is displayed by the
correlation function of the absolute returns [see the inset of
Fig. 6(b)].

Finally, we note that the “clustering” phenomenon of
volatility is important for understanding the instabilities in
price returns. We had clear evidence of this phenomenon
looking at the time series of the returns used in our empirical
analysis. Moreover, the contemporaneous presence, in the time
series of returns, of clustering and spikes of volatility gives
rise to the nonmonotonic behavior observed in Figs. 2 and 3.
Specifically, the simultaneous presence of two neighboring
spikes is correlated with the presence of low MFHTs at low
volatility, while a spike close to a cluster is related to low
MFHTs at high volatility values. Pairs of clusters and/or spikes
spaced from a nearly laminar or “tranquil” regime give rise to
an increase of the MFHT (intermediate region of volatility
values) with the presence of a maximum. This gives rise to the
observed nonmonotonic behavior of the MFHT vs volatility.

We note that this clustering phenomenon is also observed
in the time series analysis of the seismic activity of earth-
quakes [92,93]. Indeed, the clustering in these time series
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FIG. 6. (a) Probability distribution of the volatility for real data
(blue circles) and the model (red triangles). We consider the whole set
of price returns consisting of NT = 3030 × 1071 = 3 245 130 values
and calculate, both for real data and theoretical results, the related
PDFs. (b) Correlation function of the returns for real data and the
model. Inset: Correlation function of the absolute returns for real data
and the model. The values of the parameters are the same as in Fig. 3.

shows that earthquakes represent a dynamical process involv-
ing many spatiotemporal scales. However, the analysis of
the similarity between the behavior of stock returns around
microcrashes and rallies and the dynamics of earthquake
sequences would clearly require a deeper investigation and
could be a potentially interesting extension for future work.

VI. CONCLUSIONS

In summary, we have proposed using the MFHT as an
indicator of price return stability and looking at its relationship
with return volatility. In an empirical analysis carried out
on stocks traded in the New York Stock Exchange, the time
series of daily returns show limited fluctuations, that is, high

stability, when volatility increases. In particular, there is an
intermediate range of volatility values where price returns
show higher stability according to the proposed indicator,
with a maximum in the nonmonotonic behavior of the MFHT
versus the volatility. In addition, the proposed measure of
price return stability is applicable and observed not only
for negative variations of price returns (crashes) but also for
positive variations (rallies).

Moreover, our nonlinear Heston model appears to satisfy
some of the well-established properties of financial markets
and is able to reproduce the statistical properties of the hitting
times of daily returns in real stocks. The model is also able to
describe the dynamics of price returns by considering an anal-
ogy between the metastability in the market and that occurring
in a variety of physical and complex systems [22,30], [47–75].
Our findings show that lower stability (smaller mean first
hitting times) can be the result not only of large volatility, as it
would be expected during periods of market “turbulence” [27],
but also of small volatility, which is usually considered an
indicator of “tranquil” periods. This result could bear important
implications both for practitioners and policymakers responsi-
ble for market stability. Further, the proposed measure can be
considered as an additional useful indicator to monitor market
stability and to support risk control functions.

It is worth mentioning that the clustering phenomenon of
volatility is important for understanding the instabilities in
price returns and the nonmonotonic behavior of the MFHT
versus volatility. In fact, the contemporaneous presence, in
the time series of returns, of pairs of clustering and/or spikes
spaced from a nearly laminar or tranquil regime gives rise to
a nonmonotonic increase of the MFHT, with a presence of a
maximum, in the intermediate region of volatility values.

While this study has considered a sufficiently long time span
and number of stocks to make our results sufficiently general,
for the benefit of practice and policy, future extensions could
consider more recent data or even a comparative analysis across
different markets.

Finally, we note that the applications of our definition of
stability based on the concept of first hitting time can help to
quantitatively characterize the resilience of different complex
systems, both in physics and biology (such as in neuronal activ-
ity and population dynamics), to variations of a given feature.
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