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Phase transitions in a multistate majority-vote model on complex networks
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We generalize the original majority-vote (MV) model from two states to arbitrary p states and study the
order-disorder phase transitions in such a p-state MV model on complex networks. By extensive Monte Carlo
simulations and a mean-field theory, we show that for p � 3 the order of phase transition is essentially different
from a continuous second-order phase transition in the original two-state MV model. Instead, for p � 3 the model
displays a discontinuous first-order phase transition, which is manifested by the appearance of the hysteresis
phenomenon near the phase transition. Within the hysteresis loop, the ordered phase and disordered phase are
coexisting, and rare flips between the two phases can be observed due to the finite-size fluctuation. Moreover,
we investigate the type of phase transition under a slightly modified dynamics [Melo et al., J. Stat. Mech.
(2010) P11032]. We find that the order of phase transition in the three-state MV model depends on the degree
heterogeneity of networks. For p � 4, both dynamics produce the first-order phase transitions.

DOI: 10.1103/PhysRevE.97.062304

I. INTRODUCTION

Spin models such as the Ising model play fundamental
roles in studying phase transitions and critical phenomena in
the field of statistical physics [1]. They have also significant
implications for understanding various social and biological
phenomena where coordination dynamics is observed, e.g., in
consensus formation and adoption of innovations [2–4]. The
spin orientations can represent the choices made by an agent on
the basis of information about its local neighborhood. Along
these lines, so much has been done in recent years in social
systems from human cooperation [5,6] to vaccination [7,8] to
crime [9] and saving human lives [10], as well as biological
systems from collective motion [11] to transport phenomena
[12] to criticality and dynamical scaling [13].

The majority-vote (MV) model is one of the simplest
nonequilibrium generalizations of the Ising model [14]. In
the model, each spin is assigned to a binary variable. At each
time step, each spin tends to align with the local neighborhood
majority but with a noise intensity f giving the probability
of misalignment. The MV model not only plays an important
role in the study of nonequilibrium phase transitions, but it
also help to understand opinion dynamics in social systems
[4]. The two-state MV model has been extensively studied in
various interacting substrates, such as regular lattices [15–19],
random graphs [20,21], small-world networks [22–24], scale-
free networks [25–27], modular networks [28], complete
graphs [29], and spatially embedded networks [30]. With the
exception of an inertial effect that was considered [31–33], all
the previous studies have shown that the two-state MV model
presents a continuous second-order phase transition at a critical
value of f .

The multistate MV model is a natural generalization of the
two-state case. As its equilibrium counterpart, the Potts model
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is a generalization of the Ising model [34]. The three-state
MV model on a regular lattice was considered in [35,36],
where the authors found that the critical exponents for this
nonequilibrium model are in agreement with the ones for the
equilibrium three-state Potts model, supporting the conjecture
of [37]. Melo et al. studied the three-state MV model on random
graphs and showed that the phase transition is continuous
and the critical noise is an increasing function of the mean
connectivity of the graph [38]. Li et al. studied a three-state MV
model with a slightly different dynamics in an annealed random
network, and they showed that the phase transition belongs to
a first-order type [39]. Lima introduced an unoccupied state to
the two-state MV model in square lattices and found that this
model also falls into the Ising universality [40]. Costa et al.
generalized the state variable of the MV model from a discrete
case to a continuous one, and found that a Kosterlitz-Thouless-
like phase appears in low values of noise [41].

In the present work, we generalize the MV model to
arbitrary multiple states, and we focus on the natures of phase
transitions in the multistate MV model on complex networks.
By Monte Carlo (MC) simulation, we show that if the number
of states is greater than or equal to 3, a clear hysteresis
loop is observed as noise is dialed up and down, which is
a typical feature of a first-order phase transition. Moreover,
we propose a mean-field theory to validate the simulation
results. Finally, we investigate the type of phase transition
under a slightly modified dynamics [35,36,38]. We find that
such a small difference in dynamics leads to the essential
difference in the type of phase transition in the three-state MV
model on Erdös-Rényi (ER) random networks or higher degree
heterogeneous networks.

II. MODEL

We generalize the original MV model from two states to ar-
bitrary multiple states. The model is defined on an unweighted
network with size N described by an N × N adjacency matrix,
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whose elements Aij = 1 if a directed edge is emanated from
node j and ended at node i, and Aij = 0 otherwise. Each node
i can be in any of the p states: σi ∈ {1, . . . ,p}. The number
of the neighbors of node i in each state α can be calculated as
nα

i = ∑N
j=1 Ajiδ(σj − α), where δ(x) is the Kronecker symbol

defined as δ = 1 if x = 0 and δ = 0 otherwise.
In the following, we introduce two slightly different types

of dynamical rules. For both dynamics, the node i take the
same value as the majority spin with the probability 1 − f , i.e.,
σi = α|nα

i =max{n1
i ,...,n

q

i }. With the supplementary probability f ,
the node i takes the same value as the minority spin, i.e., σi =
α|nα

i =min{n1
i ,...,n

q

i } for type-I dynamics. For type-II dynamics, the
node i takes the same value as that of nonmajority spins (not
necessarily the minority spin), i.e., σi = α|nα

i �=max{n1
i ,...,n

q

i }. If
more than one candidate state is in the majority spin or in
the minority spin, we randomly choose one of them. Here, the
probability f is called the noise intensity, which plays a similar
role to the temperature in equilibrium systems and measures
the probability of disagreeing with the majority of neighbors.
For convenience, the former and the latter are called the type-I
and type-II p-state MV model, respectively. If p = 2, both
dynamics are mutually equivalent and recover to the original
two-state MV model. We should note that the type-II three-
state MV model shows continuous phase transitions on square
lattices [35,36] and ER random networks [38].

To characterize the critical behavior of the model, we define
the order parameter as the modulus of the magnetization vector,
that is, m = (

∑p

α=1 m2
α)1/2, whose components are given by

mα =
√

p

p − 1

[
1

N

∑
i

δ(α − σi) − 1

p

]
, (1)

where the factor
√

p/(p − 1) is used to normalize the magne-
tization vector.

III. RESULTS

A. Type-I dynamics

We first focus on the type-I three-state MV model. By
performing extensive MC simulations on ER random networks
[42], we show the magnetization m as a function of the noise
intensity f , as shown in Fig. 1. The network size N varies
from Fig. 1(a) to Fig. 1(d): N = 104 (a), N = 5 × 104 (b),
N = 105 (c), and N = 5 × 105 (d). The average degree 〈k〉 =
10 is kept unchanged. The simulation results are obtained by
performing forward and backward simulations, respectively.
The former is done by calculating the stationary value of m

as f increases from 0.32 to 0.36 in steps of 0.001 and using
the final configuration of the last simulation run as the initial
condition of the next run, while the latter is performed by
decreasing f from 0.36 to 0.32 with the same step. One can
see that as f increases, m abruptly jumps from nonzero to
zero at f = fcF , which shows that a sharp transition takes
place for the order-disorder transition. Additionally, the curve
corresponding to the backward simulations also shows a sharp
transition from the disordered phase to the ordered phase at
f = fcB . These two sharp transitions occur at two different
values of f , leading to a hysteresis loop with respect to the
dependence of m on f . The hysteresis loop becomes clearer

FIG. 1. First-order phase transition in the type-I three-state MV
model on ER networks, characterized by a hysteresis loop of m

as noise intensity f is dialed up and down. From (a) to (d), the
network sizes are N = 104, 5 × 104, 105, and 5 × 105, respectively.
The average degree is fixed at 〈k〉 = 10. Squares (�) and crosses (×)
correspond to forward and backward simulations, respectively.

as the network size increases. Such a feature indicates that a
discontinuous first-order phase transition occurs in the type-I
three-state MV model. This is in contrast to the original
two-state MV model in which a continuous second-order phase
transition was observed [20,21,27].

To further verify the first-order nature of phase transition in
the type-I three-state MV model, in Figs. 2(a)–2(c) we show
three long time series of m corresponding to three distinct
f on an ER network with N = 104 and 〈k〉 = 10. Here the
noise intensity f is chosen from the hysteresis region. One
can see that in the hysteresis region the ordered and disordered
phases are coexisting. Due the finite-size fluctuation, phase
flipping between the ordered phase and the disordered phase
can rarely be observed. As f increases, the system spends

FIG. 2. Coexistence of ordered and disordered phases in the
hysteresis region for the type-I three-state MV model. Three typical
time series of the magnetization m on an ER network, corresponding
to three different noise intensities chosen from the hysteresis region:
f = 0.3472 (a), f = 0.3475 (b), and f = 0.3480 (c). Parts (d)–(f)
show the corresponding histograms for the distribution of m at the
three values of f as in (a)–(c), respectively. The networks parameters
are N = 104 and 〈k〉 = 10.
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more time on the disordered phase. In Figs. 2(d)–2(f), we show
the corresponding histograms for the distribution of m at the
three distinct f as in Figs. 2(a)–2(c). All the distributions are
bimodal with a peak around m = 0 and the other one at m > 0.
On the other hand, with the increase of f the peak around
m = 0 becomes higher, indicating that the disordered phase
becomes more stable with f . In general, as N increases, the
fluctuation level becomes less significant and the mean time
of phase switching increases exponentially with N , so that
it is difficult to observe the phase flipping in the allowable
computational time for larger N .

In [27], we developed a heterogeneous mean-field theory
to deal with the two-state MV model on degree uncorrelated
networks, and we derived that the critical noise is determined
by the ratio of the first-order moment to the 3/2-order moment
of degree distribution. Also for the two-state MV model, a
quenched mean-field theory was proposed recently [43], which
showed that the critical noise is determined by the largest
eigenvalue of a deformed network adjacency matrix. In [39],
we proposed a simple mean-field theory for the three-state
MV model on a degree-regular random network in which each
node is randomly connected to exactly k neighbors, and degree
distribution follows the δ-function. In the following, we shall
develop a heterogeneous mean-field theory that is applicable
not only for any number p of the states, but also for any degree
distribution without degree-degree correlation.

To this end, let xα
k denote the probability of nodes of degree

k being in the state α. The dynamical equation for xα
k reads

ẋα
k =

∑
β �=α

x
β

k w
β→α

k − xα
k

∑
β �=α

w
α→β

k , (2)

where w
α→β

k is the transition probability of nodes of degree
k from the state α to the state β. According to the definition
of the MV model, the probability w

α→β

k can be written as the
sum of two parts,

w
α→β

k = (1 − f )P β

k + f P̃
β

k , (3)

where the first part is given by the probability 1 − f of
nodes of degree k taking the majority rule, multiplied by the
probability P

β

k that the state β is the majority state among
the neighbors of nodes of degree k. Likewise, the second
part is the product of the probability f of nodes of degree
k taking the minority rule and the probability P̃

β

k that the state
β is the minority state. Utilizing the normalization conditions,∑

β x
β

k = ∑
β P

β

k = ∑
β P̃

β

k = 1, Eq. (2) can be simplified to

ẋα
k = −xα

k + (1 − f )P α
k + f P̃ α

k . (4)

In the steady state, ẋα
k = 0, we have

xα
k = (1 − f )P α

k + f P̃ α
k . (5)

Let us further define Xα as the probability that for any node
in the network, a randomly chosen nearest-neighbor node is in
the state α. For degree uncorrelated networks, the probability
that a randomly chosen neighboring node has degree k is
kP (k)/〈k〉 [3], where P (k) is degree distribution defined as
the probability that a node chosen at random has degree k,
and 〈k〉 = ∑

k kP (k) is the average degree. Therefore, The

probabilities xα
k and Xα satisfy the relation

Xα =
∑

k

kP (k)

〈k〉 xα
k . (6)

Let nα denote the number of neighbors of a node of degree
k in the state α, and the probability of a given configuration
{nα} can be expressed as a multinomial distribution,

�k
n1,...,np

(
X1, . . . ,Xp

) = k!∏
α

nα!

∏
α

Xnα

α , (7)

where k = ∑
α nα . Therefore, P α

k and P̃ α
k can be written as

P α
k =

∑
{nα}|nα�nβ ,∀ β �=α

1

1 + �α({nα})�
k
n1,...,np

(8)

and

P̃ α
k =

∑
{nα}|nα�nβ ,∀ β �=α

1

1 + �α({nα})�
k
n1,...,np

, (9)

where �α({nα}) = ∑
β �=α δ(nβ − nα) is the number of states

whose number of nodes is the same as nα . If �α = 0, the state
α is the only majority (minority) state, such that the factor
1/(1 + �α) in Eq. (8) [Eq. (9)] is equal to 1. If�α = 1, there are
two candidate majority (minority) states, such that the factor
is equal to 1/2, and so forth.

Substituting Eq. (5) into Eq. (6), we arrive at a set of self-
consistent equations of Xα ,

Xα = (1 − f )
∑

k

kP (k)

〈k〉 P α
k + f

∑
k

kP (k)

〈k〉 P̃ α
k . (10)

Notice that Xα = 1/p is always a set of solutions of Eq. (10)
since P α

k = P̃ α
k = 1/p at Xα = 1/p. Such a trivial solu-

tion corresponds to the disordered phase (m = 0). For con-
venience, the trivial solution is denoted by a vector X =
X∗ ≡ (1/p, . . . ,1/p)�, where the superscript � denotes the
transpose. To evaluate the stability of X∗, we need to write
down the Jacobian matrix J of Eq. (10). Since Xα satisfies
the normalization condition

∑
α Xα = 1, only p − 1 variables

among Xα (α = 1, . . . ,p) are independent of each other. To
the end, we select X1, . . . ,Xp−1 as the independent variables
and therefore J is a (p − 1)-dimensional square. The matrix
elements of J are given by

Jαβ = (1 − f )
∑

k

kP (k)

〈k〉
∂P α

k

∂Xβ

∣∣∣∣
X∗

+ f
∑

k

kP (k)

〈k〉
∂P̃ α

k

∂Xβ

∣∣∣∣
X∗

,

(11)

with α,β = 1, . . . ,p − 1. According to Eqs. (8) and (9), we
have

∂P α
k

∂Xβ

∣∣∣∣
X∗

=
∑

{nα}|nα�nβ ,∀ β �=α

1

1 + �α({nα})
∂�k

n1,...,np

∂Xβ

∣∣∣∣∣
X∗

(12)

and

∂P̃ α
k

∂Xβ

∣∣∣∣
X∗

=
∑

{nα}|nα�nβ ,∀ β �=α

1

1 + �α({nα})
∂�k

n1,...,np

∂Xβ

∣∣∣∣∣
X∗

,

(13)
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FIG. 3. Comparison between mean-field theory and MC simula-
tions for phase transition curve m ∼ f in the type-I three-state MV
model on ER networks. Lines correspond to the theoretical results,
and symbols to simulation ones. The network parameters used in
the simulation are N = 5 × 105 and 〈k〉 = 10. Within the hysteresis
region, m has two stable solutions (black solid line and red dotted
line) and one unstable solution (blue dashed line). The inset shows an
enlargement for the hysteresis region.

where

∂�k
n1,...,np

∂Xβ

∣∣∣∣∣
X∗

= k!∏
α

nα!
(nβ − np)

(
1

p

)k−1

. (14)

For α �= β, on the one hand, the contributions of the state β

and the state p to the summations in Eqs. (12) and (13) are
equivalent with each other. On the other hand, the summations
contain the term nβ − np in Eq. (14), such that the partial
derivations of Eqs. (12) and (13) are equal to zero. From
Eq. (11), we conclude that all the nondiagonal elements of J
are zero, i.e., Jαβ = 0 for α �= β. Furthermore, all the diagonal
elements Jαα of J are the same, Jαα = Jββ for each α and β,
since all the states are symmetric. Therefore, the eigenvalues
of J are (p − 1)-fold degenerate, given by 	(J) = Jαα . The
solution X∗ loses its stability whenever the eigenvalue 	(J) of
J is larger than 1, which yields the critical noise,

fcB =
∑

k
kP (k)
〈k〉

∂P α
k

∂Xβ

∣∣∣
X∗

− 1∑
k

kP (k)
〈k〉

(
∂P α

k

∂Xβ

∣∣∣
X∗

− ∂P̃ α
k

∂Xβ

∣∣∣
X∗

) . (15)

The other solutions X �= X∗ (m > 0) can be obtained
by solving Eq. (10) numerically. Once Xα was found,
one can immediately calculate xα

k by Eq. (5) and mα =√
p/(p − 1)[

∑
k P (k)xα

k − 1/p] by Eq. (1).
In Fig. 3, we show the theoretical results (lines) of the

type-I three-state MV model on ER random networks whose
degree distribution follows the Poisson distribution P (k) =
e−〈k〉〈k〉k/k! with the average degree 〈k〉 = 10. The theoretical
calculation suggests that the type-I three-state MV model
undergoes a first-order order-disorder phase transition as f

varies. For f < fcB , the only ordered phase with m > 0 is
stable. For f > fcF , the only disordered phase with m = 0 is
stable. In the region fcB < f < fcF (see the inset of Fig. 3 for

FIG. 4. Phase diagram in the type-I three-state MV model on ER
networks with different average degree 〈k〉. The phase diagram is
divided into three regions: ordered phase (OP), disordered phase (DP),
and coexisting phase (CP). Symbols denote the simulation results on
ER networks with N = 5 × 105: fcF (cycles) and fcB (triangles).

an enlargement), two metastable phases with m = 0 and m > 0
coexist, separated by an unstable state (dashed line). This leads
to a hysteresis phenomenon that is typical for a first-order
phase transition. For comparison, we also show the simulation
results for N = 5 × 105 in Fig. 3. There is excellent agreement
between our theory and the simulation outside of the hysteresis
region. However, a discrepancy exists between theory and
simulation for the prediction of phase transition points. One of
the main reasons may be that near phase transition points the
lifetime of one of the metastable states becomes short so that
the metastable state cannot be fully sampled in the simulation.
This is clearly realized in Fig. 1: the simulation shows that
fcB shifts to a smaller value and fcF to a larger value as N

increases.
We consider the effect of the average degree 〈k〉 on the phase

transition in the type-I three-state MV model. The results are
summarized in Fig. 4. The phase diagram is divided into three
regions: the ordered phase (OP), the disordered phase (DP), and
the coexisting phase (CP) of OP and DP. With the increase in
〈k〉, the coexisting region is expanded and both transition points
shift to larger values. The simulation results for N = 5 × 105

are also added into Fig. 4, which agrees qualitatively with the
theoretical prediction.

We now demonstrate the nature of phase transitions for p >

3. We perform the theoretical calculation and MC simulation
on ER networks with N = 5 × 105 and 〈k〉 = 10 up to p = 7.
For larger p, our theory is computationally prohibitive since
the high-dimensional summation in Eqs. (8) and (9) is time-
consuming. The results show that for all p � 3 the phase
transitions are of first-order nature. The phase transition points
are shown in Table I, from which one can see that fcB is almost
unaffected by p, and fcF increases monotonically with p and
approaches 0.5 as p → ∞.

To consider the effect of degree heterogeneity on phase
transition in the type-I p-state MV model, we will show
the results on scale-free networks with degree distribution

062304-4
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TABLE I. Phase transitions in the type-I p-state MV model on ER
networks. For p � 3, the phase transitions are first order, essentially
different from the second-order phase transition in the two-state MV
model. The simulation results are obtained on networks with the size
N = 5 × 105 and average degree 〈k〉 = 10.

fcB fcF

p order theo simu theo simu

2 2nd 0.3091 0.296 N/A N/A
3 1st 0.3059 0.327 0.3573 0.350
4 1st 0.3043 0.339 0.4067 0.398
5 1st 0.3038 0.350 0.4429 0.434
6 1st 0.3041 0.359 0.4703 0.461
7 1st 0.3055 0.360 0.4918 0.483

P (k) ∼ k−γ . The networks are generated by the configuration
model [44]. Each node is first assigned a number of stubs k that
are drawn from a given degree distribution. Pairs of unlinked
stubs are then randomly joined. This construction eliminates
the degree correlations between neighboring nodes. Finally, we
adopt an algorithm to reshuffle self-loops and parallel edges
that ensures the degree distribution is unchanged [45]. In Fig. 5,
we show m as a function of f for several distinct γ . The larger
γ is, the more heterogeneous the network is. The network
size and the minimal degree of nodes are fixed, N = 2 × 105

and kmin = 5. One can see that the nature of first-order phase
transition does not change with γ . As γ increases, the jumps
in m at phase transition points, fcF and fcB , are depressed. We
have also considered some other p and found that the main
conclusions are the same.

FIG. 5. Phase transition in the type-I three-state MV model on
scale-free networks with degree distribution P (k) ∼ k−γ . From left
to right, the degree distribution exponent γ = 3.0, 2.6, and 2.3. A
larger γ implies that the network has higher-degree heterogeneity.
The results show that degree heterogeneity suppresses the jump of
magnetization near phase transitions. The network size is N = 2 ×
105 and the minimal degree is kmin = 5. Squares (�) and crosses (×)
correspond to forward and backward simulations, respectively.

FIG. 6. Phase transition in the type-II p-state MV model on ER
networks. From (a) to (d), the numbers of states are p = 3, 4, 5, and
6, respectively. For the type-II dynamics on ER networks, the phase
transition is first order for p = 3 and second order for p � 4. The
network size is fixed at N = 5 × 105. Squares (�) and crosses (×)
correspond to forward and backward simulations, respectively.

B. Type-II dynamics

In this subsection, we consider the phase transitions in the
type-II p-state MV model. As shown in Fig. 6(a) for p = 3, we
find that the forward and backward simulations coincide up to
N = 5 × 105. This is a feature of continuous phase transition,
in agreement with [38], but in contrast with the result of the
type-I three-state MV model shown in Fig. 1. It is interesting
that such a small dynamical difference can lead to the essential
difference in the nature of phase transition in the three-state
MV model. For p = 4, 5, and 6, as shown in Figs. 6(b)–6(d),

FIG. 7. First-order phase transition in the type-II three-state MV
model on degree-regular random networks, as opposed to the second-
order phase transition on ER networks shown in Fig. 6(a). This shows
that the order of phase transition in the three-state MV model for the
type-II dynamics depends on the heterogeneity of degree distribution.
From (a) to (d), the network sizes are N = 5 × 104, 105, 5 × 105, and
106, respectively. The degree of each node is exactly equal to k = 10.
Squares (�) and crosses (×) correspond to forward and backward
simulations, respectively.
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we find that the phase transitions are discontinuous, coinciding
with the type-I dynamics.

Moreover, as shown in Fig. 5, the degree heterogeneity can
suppress the discontinuity of magnetization at phase transition.
A natural question arises: Does a first-order phase transition
happen in more homogeneous networks than ER ones when
type-II dynamics is taken into account? For this purpose,
we show in Fig. 7 the three-state MV model on degree-
regular random networks. Interestingly, the phase transition
now becomes first order. That is, the nature of phase transition
in the type-II three-state MV model depends on the degree
heterogeneity of the underlying networks.

IV. CONCLUSIONS AND DISCUSSION

In conclusion, we have studied numerically and theoret-
ically the order-disorder phase transitions in a p-state MV
model on complex networks. We find that for p � 3 the phase
transition is of a first-order nature, significantly different from
the second-order phase transition in the original two-state MV
model. A main feature of the first-order phase transition is the
occurrence of a hysteresis loop as noise intensity goes forward

and backward. Within the hysteresis region, the ordered phase
and disordered phase are coexisting, and the rare phase flips
can be observed due to the finite-size fluctuation. The effects
of the average degree and the number p of states on the two
transition noises (i.e., the boundaries of the hysteresis loop)
are investigated. Also, we find that degree heterogeneity can
suppress the jump of magnetization at phase transition. More-
over, we compare our model with that introduced in [35,36,38].
In spite of a small difference in the dynamics, the types of
phase transitions in the three-state MV model on ER graphs are
essentially different. Interestingly, the phase transition for the
latter dynamics becomes first-order on degree-regular random
networks. Therefore, the dynamical rule and connectivity
heterogeneity between agents play important roles in the order
of phase transitions in the three-state MV model.
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