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Characterization of random features of chaotic eigenfunctions in unperturbed basis
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In this paper we study random features manifested in components of energy eigenfunctions of quantum chaotic
systems, given in the basis of unperturbed, integrable systems. Based on semiclassical analysis, particularly on
Berry’s conjecture, it is shown that the components in classically allowed regions can be regarded as Gaussian
random numbers in a certain sense, when appropriately rescaled with respect to the average shape of the
eigenfunctions. This suggests that when a perturbed system changes from integrable to chaotic, deviation of the
distribution of rescaled components in classically allowed regions from the Gaussian distribution may be employed
as a measure for the “distance” to quantum chaos. Numerical simulations performed in the Lipkin-Meshkov-Glick
model and the Dicke model show that this deviation coincides with the deviation of the nearest-level-spacing
distribution from the prediction of random-matrix theory. Similar numerical results are also obtained in two
models without classical counterpart.
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I. INTRODUCTION

A commonly held view in the field of quantum chaos is
that energy eigenfunctions (EFs) of chaotic systems should
show certain random feature [1–4], though their Hamiltonian
matrices are deterministic and some of them even may show a
sparse structure. This property has vast applications in various
fields [5–15]. In particular, it is of relevance to thermalization
[16–24], a topic which has attracted renewed interest in recent
years.

According to Berry’s conjecture, for EFs of chaotic systems
expressed in the configuration space, their components in
classically allowed regions can be regarded as being given
from certain Gaussian random numbers [1]. Based on this
conjecture, it is natural to expect that, when expanded in the
bases of unperturbed integrable systems, the EFs should show
certain random features as well within appropriate regions.
Indeed, numerical simulations reveal such a feature for the
main bodies of EFs (see, e.g., Ref. [25]). However, a more
detailed study showed that the distribution of components
of EFs usually exhibits notable deviation from the Gaussian
distribution, which is predicted the random-matrix theory
(RMT) (see, e.g., Ref. [5]).

More recently, numerical simulations show that, if EFs
are rescaled with respect to their average shape, the above-
discussed deviation can be considerably reduced [26,27]. This
gives a clue to a solution to a long-standing problem in
the field of quantum chaos, that is, in which way statistical
properties of EFs may be employed to give a quantitative
measure for the “distance” to chaos. The above-mentioned
numerical simulations suggest that deviation of the distribution
of rescaled components of EFs from the Gaussian distribution
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should be a candidate for such a measure of “distance.”
However, at present, the situation is not completely clear,
because in some cases this measure shows notable deviations
from results obtained from statistical properties of spectra, e.g.,
from deviation of the nearest-level-spacing distribution from
the prediction of the RMT [26,27].

In this paper, based on semiclassical analysis, particu-
larly on the Berry’s conjecture, we study random features
manifested in components of EFs of chaotic systems in
integrable bases. Our analysis shows that the distribution of
the components in classically allowed regions indeed should
have a Gaussian form, under a rescaling procedure which
is more appropriate than that adopted in Refs. [26,27]. Our
numerical simulations performed for the Lipkin-Meshkov-
Glick (LMG) model and the Dicke model show that, adopting
this new rescaling procedure, deviation of the distribution of
components from the Gaussian distribution coincides quite
well with that obtained from the statistics of spectra. We also
study some models without any classical counterpart and find
similar results.

The paper is organized as follows. In Sec. II a detailed
semiclassical analysis is carried out for random features man-
ifested in components of EFs of chaotic systems in integrable
bases. Numerical simulations in two models with classical
counterparts are discussed in Sec. III. Then in Sec. IV we dis-
cuss numerical simulations performed in two models without
classical counterpart. Finally, conclusions and a discussion are
given in Sec. V.

II. RANDOM FEATURES OF CHAOTIC EFS

In Sec. II A based on semiclassical analysis we discuss
random features of chaotic EFs. Then, making use of results
obtained, we discuss a quantitative characterization of the
random feature in Sec. II B.
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A. Semiclassical analysis of chaotic EFs

Consider a quantum system, which has an f -dimensional
classical counterpart, with a Hamiltonian

H = H0 + λV, (1)

where H0 indicates the Hamiltonian of an integrable system
and V is a perturbation. Within a certain regime of the param-
eter λ, the classical counterpart of the system H undergoes a
chaotic motion. In this section, we consider a chaotic system
H . In terms of action-angle variables, H0 is written as

H0 = d · I + c0, (2)

where I = (I1,I2, . . . ,If ) is the action variable, d is a parame-
ter vector, d = (d1,d2, . . . ,df ), and c0 is a constant parameter.

In the quantum case, we use |n〉 to denote the eigenbasis of
I , with I |n〉 = I n|n〉, where n = (n1,n2, . . . ,nf ) is an integer
vector and I n = nh̄. The Hamiltonian H0 has a diagonal form
in this basis with eigenvalues denoted by E0

n,

H0|n〉 = E0
n|n〉. (3)

We use |Eα〉 to denote eigenstates of H with eigenvalues Eα

in energy order,

H |Eα〉 = Eα|Eα〉. (4)

The expansion of |Eα〉 in the basis |n〉 is written as

|Eα〉 =
∑

n

Cαn|n〉, (5)

with Cαn = 〈n|Eα〉. Below we discuss random features mani-
fested in the components Cαn and their statistical properties in
chaotic systems.

In terms of the wave functions of |Eα〉 and |n〉 in the
momentum space, denoted by ψα( p) and ψ0

n( p), respectively,
the components Cαn are written as

Cαn =
∫ [

ψ0
n( p)

]∗
ψα( p) d p. (6)

Generically, a wave function ψα( p) can be written in the
following form:

ψα( p) = Aα( p)
√

�α( p), (7)

where �α( p) indicates local average of |ψα( p)|2. Then Cαn is
written as

Cαn =
∫

Aα( p)
[
ψ0

n( p)
]∗√

�α( p) d p. (8)

According to the Berry’s conjecture [1], in a chaotic system
the quantity Aα( p) should have random phases. This implies
that the components Cαn can be effectively regarded as some
random numbers.

In realistic physical models, the average shape of |Cαn|2
is usually not uniform with respect to the perturbed and
unperturbed energies. Due to this nonuniformity, the statistical
distribution of the components Cαn cannot have a Gaussian
shape [5]. But, if they are rescaled such that the effect of average
shape of EFs is appropriately taken into account, it should be
possible for their distribution to have a Gaussian form. Below
we derive a semiclassical expression for the average shape of
|Cαn|2 that is suitable for this purpose.

The Wigner function supplies a useful tool in semiclassical
analysis of eigenstates. We use ψα(r) and ψ0

n(r) to indicate
the wave functions of |Eα〉 and |n〉 in the coordinate space,
respectively. The Wigner function corresponding to ψα(r),
denoted by Wα( p,q), is written as

Wα( p,q) = 1

(2πh̄)f

∫ ∞

−∞
ψ∗

α

(
q + r

2

)
ψα

(
q − r

2

)
ei p·r/h̄ d r,

(9)

and similarly for the Wigner function corresponding to ψ0
n(r),

denoted by W 0
n ( p,q). As is known, in a chaotic system the

averaged Wigner function, with the average taken within
certain small regions of the phase space, has the following
expression [1,2,28,29]:

Wα( p,q) = δ[H ( p,q) − Eα]

S(Eα)
, (10)

where S(E) represents the area of an energy surface with
H ( p,q) = E,

S(E) =
∫

d p dqδ[E − H ( p,q)]. (11)

Equation (10) gives that

�α( p) = 1

S(Eα)

∫
δ[Eα − H ( p,q)] dq. (12)

Equation (10) implies that most eigenstates within a narrow
energy window in a chaotic system should have shapes close
to each other. Therefore, when computing the average shape
of |Cαn|2 for the purpose discussed above, one may perform
an average within such a narrow energy window. For the con-
venience in discussion, we write a coarse-grained δ function
as δε(E),

δε(E) =
{ 1

ε
E ∈ [− ε

2 , ε
2 ],

0 otherwise,
(13)

where ε is a small parameter. The choice of energy window
ε should satisfy the following requirements: It is small in the
classical case such that the energy surface almost does not
change within the window, while it is sufficiently large in the
quantum case such that many energy levels are included within
the window.

Then the average shape of EFs, denoted by 〈|Cαn|2〉, is
computed by

〈|Cαn|2〉 = 1

NEα

∑
α′

|Cα′n|2δε(Eα′ − Eα), (14)

where

NEα
=

∑
α′

δε(Eα′ − Eα). (15)

In order to derive an explicit expression for 〈|Cαn|2〉, we make
use of the following well-known expression of |Cαn|2:

|Cαn|2 = (2πh̄)f
∫

d p dqWα( p,q)W 0
n ( p,q). (16)

Let us divide the phase space into small cells, denoted by cσ

with a label σ , each having a volume δ
, and meanwhile keep
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the ratio δ
/h̄f large such that there are many quantum states
“lying” within each small cell. Then |Cαn|2 is written as

|Cαn|2 = (2πh̄)f
∑

σ

∫
cσ

d p dqWα( p,q)W 0
n ( p,q). (17)

Substituting Eq. (17) into Eq. (14) and performing the summa-
tion over the perturbed states |Eα′ 〉, one gets that

〈|Cαn|2〉 = (2πh̄)f
∑

σ

∫
cσ

d p dq〈Wα( p,q)〉W 0
n ( p,q), (18)

where 〈Wα( p,q)〉 indicates the average of Wα( p,q) over
perturbed states within a small energy window ε. As many
energy levels are included within the window ε, 〈Wα( p,q)〉
should vary slowly within each small cell cσ , such that

〈Wα( p,q)〉 � 〈Wα( pσ ,qσ )〉 for ( p,q) ∈ cσ , (19)

where (qσ , pσ ) indicates the center of cσ . Then Eq. (18)
gives that

〈|Cαn|2〉 � (2πh̄)f
∑

σ

〈Wα( pσ ,qσ )〉W 0
n( pσ ,qσ )δ
, (20)

where W
0
n( pσ ,qσ ) represents the average of the Wigner func-

tion of the integrable system within the cell cσ ,

W
0
n( pσ ,qσ ) = 1

δ


∫
cσ

W 0
n ( p,q) d p dq. (21)

Due to the classical smallness and quantum mechanical
largeness of the energy windows ε discussed previously,
〈Wα( p,q)〉 in Eq. (18) obeys Eq. (10) in an approximate way,
with

〈Wα( p,q)〉 � Wα( p,q), (22)

and its dependence on ε can be neglected. It is known that [1]

W
0
n( p,q) = δ[I( p,q) − I n]

(2π )f
. (23)

Substituting Eqs. (22) and (23) into Eq. (20) and noting that the
smallness of the cells cσ enables one to change the summation
over σ back to the integration over phase space, and one gets
the following semiclassical expression:

〈|Cαn|2〉 � h̄f �(Eα,I n), (24)

where

�(E,I) = S(E,I)

S(E)
, (25)

S(E,I) =
∫

d p dqδ[E − H ( p,q)]δ[I − I( p,q)]. (26)

Here S(E,I) indicates the overlap of the energy surface of
H ( p,q) = E and the torus of I( p,q) = I . Since Eq. (10)
works for classically allowed regions only, so does Eq. (24).
Sometimes, quantities like �(E,I) are called classical analog
of averaged EFs [26,30,31].

Finally, we consider rescaled components denoted by Rαn,
defined by

Rαn = Cαn√
〈|Cαn|2〉

. (27)

Discussions given above show that the quantities Rαn have a
random feature with a Gaussian distribution with mean zero.
Note that 〈|Rαn|2〉 = 1 according to Eq. (27).

B. A measure for “distance” to quantum chaos

Let us use f (R) to denote the distribution of Rαn. According
to results given above, for a chaotic system, f (R) should have
a Gaussian form,

f (R) = fG(R), (28)

where fG(R) is the Gaussian distribution,

fG(R) = 1√
2π

exp(−R2/2). (29)

In the RMT, the Gaussian distribution is predicted directly
for components of EFs [4]. But, for Hamiltonians in realistic
models with chaotic classical counterparts, as discussed above,
it is the distribution of the rescaled components Rαn that should
have a Gaussian form. On the other hand, in a nearly integrable
system, the quantity Aα( p) on the right-hand side of Eq. (8)
does not have random phases and EFs with close energies
may have quite different shapes. As a result, the distribution
f (R) in nearly integrable systems should usually show notable
deviation from fG(R).

The above discussions suggest that deviation of f (R) from
fG(R) may be employed as an measure for the “distance”
to quantum chaos. In order to quantitatively characterize the
deviation, one may consider a quantity �EF defined by

�EF =
∫

|If (R) − IfG
(R)| dR, (30)

where If (R) and IfG
(R) indicate the cumulative distributions

of f (R) and fG(R), respectively, e.g., If (R) = ∫ R

−∞ drf (r).
As is well known, cumulative distributions usually exhibit
fewer fluctuations compared with the origin distributions.

In the field of quantum chaos, the most-often used criterion
for quantum chaos is given by statistical properties of spectra,
e.g., by closeness of the nearest-level-spacing distribution P (s)
to the prediction of RMT [4]. It is known that the distribution
PW (s), which is obtained from Wigner’s surmise,

PW (s) = π

2
s exp

(
−π

4
s2

)
, (31)

gives a good approximation to the nearest-level-spacing dis-
tribution of the Gaussian orthogonal ensemble in the large
size limit. Quantitatively, the above-discussed closeness can
be characterized by the quantity �E ,

�E =
∫

|IP (s) − IPW
(s)| ds, (32)

where IP (s) and IPW
(s) are cumulative distributions of P (s)

and PW (s), respectively.
In previous numerical simulations, deviation of the distri-

bution of another rescaled components, denoted by R′
αn, from

the Gaussian distribution was studied as a measure for the
“distance” to chaos, where R′

αn = Cαn/
√

〈|Cαn|2〉′ [26,27,32].
Here, in the computation of 〈|Cαn|2〉′, in addition to an average
over perturbed states with energies close to Eα , a further
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average is taken over unperturbed states |n′〉 with unperturbed
energies close to E0

n by a small quantity ε0. Specifically,

〈|Cαn|2〉′ =
∑
α′,n′

|Cα′n′ |2
NEα

NEn

δε(Eα′ − Eα)δε0 (En′ − En), (33)

where NEα
is defined in Eq. (15) and

NEn =
∑

n′
δε0 (En′ − En). (34)

It was found that in some cases (not rare) in which the classical
counterparts undergo chaotic motion and the distributions P (s)
are quite close to PW (s), the distributions of R′

αn, denoted by
g(R′), deviate notably from the Gaussian distribution.

In view of the semiclassical analysis given in the previous
section, it is understandable that deviation of g(R′) from
fG(R′) may be larger than that of f (R) from fG(R). In
fact, unperturbed basis states |n〉 with close energies E0

n may
correspond to quite different values of I n, while meanwhile,
according to Eq. (24), the values of 〈|Cαn|2〉 of those n, for
which I n are far from each other, are usually quite different. As
a result, taking the average over unperturbed basis states with
close E0

n may drive the distribution of rescaled components
away from the Gaussian distribution.

Therefore, in order to obtain rescaled components that
have a Gaussian distribution, no average should be taken over
the unperturbed energies E0

n. We would remark that, when the
torus of I = I n does not change rapidly with n, an average
over a neighborhood of n is allowed. We did not mention
this averaging procedure in the above discussion because it
is unnecessary in the derivation of Eq. (24).

III. NUMERICAL SIMULATIONS IN TWO MODELS
WITH CLASSICAL COUNTERPARTS

In order to test the above analytical results, numerical
simulations have been performed in two models possessing
classical counterparts: the LMG model and the Dicke model.
In this section, we first briefly discuss the two models, and then
present numerical results about the distribution f (R) and about
the suggested “distance” to chaos, namely, �EF , in comparison
with other “distances.”

A. Models

The first model we employ is a three-orbital LMG model
[33]. This model is composed of 
 particles, occupying three
energy levels labeled by r = 0,1,2, each with 
 degeneracy.
Here we are interested in the collective motion of this model,
for which the dimension of the Hilbert space is 1

2 (
 + 1)(
 +
2). We use εr to denote the energy of the rth level, and, for
brevity, we set ε0 = 0. The Hamiltonian of the model, in the
form in Eq. (1), has [7]

H0 = ε1K11 + ε2K22, (35)

V =
4∑

t=1

μtV
(t), (36)

where

V (1) = K10K10 + K01K01, V (2) = K20K20 + K02K02,

V (3) = K21K20 + K02K12, V (4) = K12K10 + K01K21. (37)

Here the operators Krs are defined by

Krs =

∑

γ=1

a†
rγ asγ , r,s = 0,1,2, (38)

where a
†
rγ and arγ are fermionic creation and annihilation

operators obeying the usual anticommutation relations.
For symmetric states, the operators Krs can be written in

terms of bosonic creation and annihilation operators b
†
r and

br [34],

Krs = b†rbs, Kr0 = K
†
0r = b†r

√

 − b

†
1b1 − b

†
2b2 (39)

for r,s = 1,2. Under the transformation,

b†r =
√




2
(qr − ipr ), br =

√



2
(qr + ipr ) (40)

for r = 1,2, it is easy to verify that qr and ps obey the following
commutation relation:

[qr,ps] = i



δrs . (41)

Hence, 1/
 plays the role of an effective Planck constant:

h̄eff = 1



. (42)

It is straightforward to find that the classical counterpart of
model has the following Hamiltonian [5,7]:

H ( p,q) = H0( p,q) + λV ( p,q), (43)

where

H0( p,q) = ε′
1

2

(
p2

1 + q2
1

) + ε′
2

2

(
p2

2 + q2
2

)
,

V ( p,q) = μ′
1

(
q2

1 − p2
1

)
(1 − G/2) + μ′

2

(
q2

2 − p2
2

)
(1 − G/2)

+ μ′
3√
2

[(
q2

2 − p2
2

)
q1 − 2q2p1p2

]√
1 − G/2

+ μ′
4√
2

[(
q2

1 − p2
1

)
q2 − 2q1p1p2

]√
1 − G/2, (44)

with G= q2
1 +p2

1 + q2
2 + p2

2 � 2. Here ε′
1 = ε1
,ε′

2 = ε2
,

μ′
1 = μ1


2,μ′
2 = μ2


2,μ′
3 = μ3


2, and μ′
4 = μ4


2. In
our numerical simulations, we set ε′

1 = 44.1,ε′
2 = 64.5,

μ′
1 = 62.1,μ′

2 = 70.2,μ′
3 = 76.5, and μ′

4 = 65.7. Under this
choice of the parameters, for a fixed value of λ, different values
of 
 correspond to a same classical counterpart.

The second model is a single-mode Dicke model [35,36],
which describes the interaction between a single bosonic mode
and a collection of N two-level atoms. The system can be
described in terms of the collective operator J for the N

atoms, with

Jz =
N∑

i=1

s(i)
z , J± =

N∑
i=1

s
(i)
± , (45)
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where s
(i)
± = s(i)

x ± is(i)
y and s

(i)
x(y,z) are Pauli matrices divided

by 2 for the ith atom. The Dicke Hamiltonian is written as [36]

H = ω0Jz + ωa†a + λ√
N

μ(a† + a)(J+ + J−), (46)

which can also be written in the form of H = H0 + λV . The
operator Jz and J± obey the usual commutation rules for the
angular momentum,

[Jz,J±] = ±J±, [J+,J−] = 2Jz. (47)

The Hilbert space of this model is spanned by vectors |j,m〉
with m = −j, − j + 1, . . . ,j − 1,j , known as Dicke states.
They are eigenstates of J2 and Jz, with Jz|j,m〉 = m|j,m〉
and J2|j,m〉 = j (j + 1)|j,m〉. Below we take j as its maximal
value, j = N/2; it is a constant of motion, since [ J2,H ] = 0.
Another conserved observable in the Dicke model is the parity
�, given by � = exp(iπN̂ ), where N̂ = a†a + Jz + j is an
operator for the “excitation number,” counting the total number
of excitation quanta in the system. In our numerical study, we
consider the subspace with � = +1.

Making use of the Holstein-Primakoff representation of the
angular momentum operators,

J+ = b†
√

2j − b†b, J− =
√

2j − b†b b,

Jz = (b†b − j ), (48)

where b and b† are bosonic operators satisfying [b,b†] = 1, the
Hamiltonian can be further written in the following form:

H = ω0(b†b − j ) + ωa†a

+ λμ(a† + a)

⎛
⎝b†

√
1 − b†b

2j
+

√
1 − b†b

2j
b

⎞
⎠. (49)

We write Fock states related to a† and b† as |na〉 and |nb〉,
respectively, for which

a†a|na〉 = na|na〉, b†b|nb〉 = nb|nb〉. (50)

According to Eq. (48), nb should be truncated at (nb)max =
N . In numerical simulations, we set (na)max = N . Other
parameters are ω0 = ω = 1/N and μ = 1/N . Under the
transformation⎧⎨

⎩
b† =

√
N
2 (q1 − ip1), b =

√
N
2 (q1 + ip1),

a† =
√

N
2 (q2 − ip2), a =

√
N
2 (q2 + ip2),

(51)

one finds that

[qr,ps] = i

N
δrs (52)

for r = 1,2 and, hence, gets an effective Planck constant

h̄eff = 1

N
. (53)

The Hamiltonian of the classical counterpart of the model is
written as

H ( p,q) = H0( p,q) + λV ( p,q), (54)

FIG. 1. (a) The average shape of EFs, 〈|Cαn|2〉, in the chaotic
regime of the LMG model with 
 = 500 and λ = 1. The average
is taken over 500 EFs of |Eα〉 with ε = 0.4175. (b) �N (Eα,I n),
which is the normalized �(Eα,I n), as a classical analog of 〈|Cαn|2〉
[see Eq. (24)].

where

H0( p,q) = 1

2

(
q2

1 + p2
1 + q2

2 + p2
2 − 1

)
,

V ( p,q) = 2q1q2

√
1 − q2

1 + p2
1

2
. (55)

B. Numerical results

In this section, we discuss results of numerical simulations
performed in the LMG model and the Dicke model. We first test
validity of the semiclassical result given in Eq. (24). As seen
in Figs. 1 and 2, the average shape 〈|Cαn|2〉 and its classical
analog �(Eα,I n) indeed show similar features in these two
models. We have computed the difference between the two
shapes, given by

dc =
∑

n

|〈|Cαn|2〉 − �N (Eα,I n)|, (56)

FIG. 2. Similar to Fig. 1, but for the Dicke model with N = 500,
λ = 1, and ε = 0.007.

062219-5



JIAOZI WANG AND WEN-GE WANG PHYSICAL REVIEW E 97, 062219 (2018)

FIG. 3. The distribution f (R) (open circles) and g(R′) (solid
blocks with dashed lines) for λ = 1 in the LMG model with
(a) 
 = 80 and (b) 
 = 1000. The solid curves indicate the Gaussian
distribution fG(R).

where �N (Eα,I n) is the normalized �(Eα,I n). We found that
dc = 0.065 in the LMG model and dc = 0.08 in the Dicke
model.

Then, we discuss properties of the distribution f (R)
for components Rαn in classically allowed regions with
�(Eα,I n) 
= 0. We found that this distribution is indeed quite
close to the Gaussian form fG(R), when the underlying
classical dynamics is chaotic, as illustrated in Figs. 3 and 4
with λ = 1. In the computation of f (R), 100 EFs in the

middle energy region were used. The energy windows ε are as
follows: In the LMG mode, ε ≈ 3 for 
 = 80 and ε ≈ 0.02 for

 = 1000, in contrast to the total energy domain �E = 64.5
in the unperturbed system; in the Dicke mode, ε ≈ 0.2 for
N = 80 and ε ≈ 0.002 for N = 1000, in contrast to the total
energy domain �E = 2.

For comparison, we have also computed the distribution
g(R′) given by another rescaling procedure, in which an aver-
age over unperturbed states is also performed (see discussion
in Sec. II B). In this rescaling procedure, as discussed in
Refs. [26,31], the average shape of EFs is expected to have
the following semiclassical approximation:

〈|Cαn|2〉′ � S(E,E0)

(2πh̄)f ρ(E)ρ0(E0)
, (57)

where ρ0(E0) and ρ(E) are the density of states of the two
systems H0 and H , respectively, and S(E,E0) indicates the
overlap of the perturbed energy surface of H = E and the

FIG. 4. Similar to Fig. 3, but for the Dicke model with λ = 1,
(a) N = 80, (b) N = 1000.

unperturbed energy surface of H0 = E0,

S(E,E0) =
∫

dq d pδ[E − H ( p,q)]δ[E0 − H0( p,q)]. (58)

FIG. 5. “Distance” to chaos in the LMG model and the Dicke
model. The measures �EF (solid squares) in Eq. (30) and �′

EF (open
circles) in Eq. (59) are computed from statistical properties of EFs
and the measure �E (open triangles) in Eq. (32) is computed from
the statistics of spectra. (a) The LMG model with 
 = 80, (b) the
LMG model with 
 = 1000, (c) the Dicke model with N = 80, and
(d) the Dicke model with N = 1000. The effective Planck constants
are given by 1/
 and 1/N , respectively, in the two modes. The two
measures �EF and �E give almost the same results for the “distance”
to chaos, when the systems are not far from chaos.
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FIG. 6. “Distances” to classical and quantum chaos in the LMG
model and the Dicke model. The measure �EF (solid squares) is the
same as that in Fig. 5. The measure �cl (open diamonds) is defined
in Eq. (60) and was computed from properties of the corresponding
classical phase spaces. (a) The LMG model with 
 = 80, (b) the
LMG model with 
 = 1000, (c) the Dicke model with N = 80, and
(d) the Dicke model with N = 1000.

The difference between 〈|Cαn|2〉′ in Eq. (57) and 〈|Cαn|2〉 in
Eq. (24) is quite clear.

In the computation of g(R′), only those rescaled compo-
nents R′

αn in the region with nonzero S(Eα,En) were used. We
found that, unlike the case of f (R) discussed above, the dis-
tribution g(R′) usually shows obvious deviation from fG(R′)
when the classical system is in the chaotic regime (Figs. 3
and 4). Here, in the additional average for the unperturbed
system, 100 EFs in the middle energy region were used, with
ε0 ≈ 0.645 in the LMG model and ε0 ≈ 0.02 in the Dicke
model.

Variation of the measure �EF in Eq. (30) with the control-
ling parameter λ is given in Fig. 5, together with the often-used
measure given by �E of the statistics of spectra. In order

FIG. 7. Poincaré surfaces of section in the LMG model for
E = 12 + √

2 and q1 = 0. (a) λ = 0.1; (b) λ = 0.3; (c) λ = 0.4;
(d) λ = 1.0.

FIG. 8. Poincaré surfaces of section in the Dicke model for E =√
3−1
2 and q1 = 0. (a) λ = 0.2; (b) λ = 0.4; (c) λ = 0.6; (d) λ = 1.0.

to improve the statistics, for each value of λ, we used data
obtained from several values of λ′ in a neighborhood of λ,
λ′ ∈ [λ − 0.05,λ + 0.05].

The agreement of the two measures �EF and �E is already
good in the case of not quite large 
 in the LMG model
[Fig. 5(a) with 
 = 80]. The agreement becomes better, when
the value of 
 is increased such that the system becomes closer
to its classical limit [Fig. 5(b)]. Similar results were also found
in the Dicke model [Figs. 5(c) and 5(d)]. Therefore, in these
two models, the difference �EF can be regarded as a good
measure for the “distance” to chaos.

For comparison, we have also computed the difference �′
EF

given by the other rescaling procedure,

�′
EF =

∫
|Ig(R′) − IfG

(R′)| dR′, (59)

where Ig(R′) denotes the cumulative distribution for g(R′).
Due to the obvious difference between the distribution g(R′)
and the Gaussian distribution shown in Figs. 3 and 4, one
expects a notable difference between �′

EF and �E . Indeed,
as shown in Fig. 5, unlike the case with �EF discussed above,
the agreement between �′

EF and �E is not good.
We have also computed a “distance” to chaos in the classical

counterparts, denoted by �cl , which measures the proportion
of regular region in energy surface. The measure is defined by

�cl = lim
NT →∞

NR

NT

, (60)

where NT is a total number of points taken randomly in an
energy surface of interest and NR is the number of the points
for which λL < λm. Here λm is some small quantity and λL

is the Lyapunov exponent, defined as follows in the long time
limit:

λL = lim
t→∞ lim

d0→0

1

t
ln

|dt |
|d0| , (61)

where d0 denotes the initial phase-space distance and dt

denotes the distance at a time t . In our numerical simulation,
we took t = 1000, NT = 5000, λm = 0.02 in the LMG model
and t = 50 000, NT = 5000, λm = 0.001 in the Dicke model.
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In Fig. 6 it is seen that the agreement between the distances
to quantum and classical chaos, characterized by �EF and
�cl , respectively, is quite good. Some examples of Poincaré
surfaces of sections in the two models are shown in Figs. 7
and 8.

IV. NUMERICAL SIMULATIONS IN MODELS WITHOUT
CLASSICAL COUNTERPARTS

In this section, we study the distribution of rescaled com-
ponents of EFs in models without any classical counterpart. It
seems reasonable to expect that the final result of Sec. II A, that
is, that the distribution of appropriately rescaled components
should have a Gaussian form, may be valid to some extent in
this type of models as well.

Here a major problem met is the determination of the
region of components that should be taken into account. As
discussed previously, in a system with a classical counterpart,
this region corresponds to the classically energetically allowed
region. For a system without any classical counterpart, this is
a highly nontrivial problem. In this paper, we do not intend to
solve this problem but to circumvent it by restricting ourselves
to models whose EFs occupy almost the whole unperturbed
energy region. In this type of models, one can simply use all
components of the EFs when computing f (R). Specifically, we
study a defect XXZ model and a defect Ising model, adopting
a periodic boundary condition in numerical simulations.

The defect XXZ model [37] is a modified XXZ model, in
which an external magnetic field is applied on two sites of the
N spins. The unperturbed Hamiltonian and the perturbation
have the following forms:

H0 =
N∑

i=1

si
xs

i+1
x + si

ys
i+1
y + μz

N∑
i=1

si
zs

i+1
z (62)

V = μ1s
1
z + μ4s

4
z , (63)

where the periodic boundary condition implies that sN+1
a = s1

a

for a = x,y,z. The system is a quantum chaotic system for
λ within an appropriate regime, while it exhibits the so-
called many-body localization for λ sufficiently large. The
Hamiltonian H is commutable with Sz, the z component of
the total spin, and we consider a subspace with a definite value
of Sz in our numerical study. Other parameters used in this
model are μ1 = 1.11, μ4 = 1.61, and μz = 1.

The defect Ising model is a transverse Ising model, in which
an additional magnetic field is applied on two sites of the N

spins, with

H0 =
N∑
i

si
zs

i+1
z + μx

N∑
i=1

si
x, (64)

V = μ1s
1
z + μ4s

4
z . (65)

Similarly, it is a quantum chaotic system for λ in an appropriate
regime and exhibits many-body localization for λ sufficiently
large. The parameters used are μ1 = 1.11, μ4 = 1.61, and
μx = 0.6.

Our numerical simulations reveal that, in these two models,
the distributions f (R) are also quite close to the Gaussian
form fG(R), when the statistics of the spectra is close to

FIG. 9. The distribution f (R) (open circles) and g(R′) (solid
blocks with dashed lines) for λ = 0.5 in the defect Ising model and the
defect XXZ model. The solid curve indicates the Gaussian distribution
fG(R). (a) The defect Ising model with N = 10; (b) the defect Ising
model with N = 15; (c) the defect XXZ model with N = 12 and
Sz = −1; (d) the defect XXZ model with N = 19 and Sz = −3.5.

the prediction of RMT as illustrated in Fig. 9 with λ = 0.5.
Unlike the two models discussed in the previous section, the
distributions g(R′) are also close to the Gaussian form at
λ = 0.5.

In the computation of f (R), 50 EFs in the middle energy
region were used. The energy windows ε are as follows: In
the defect Ising model, ε ≈ 0.2 and ε0 = 0.02 for N = 10 in
contrast to the total energy domain �E = 7.11, and ε ≈ 0.07

FIG. 10. Similar to Fig. 5, but for the defect Ising model with
(a) N = 10 and (b) N = 15.
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FIG. 11. Similar to Fig. 5, but for the defect XXZ model with
(a) N = 12, Sz = −1, and (b) N = 19, Sz = −3.5.

FIG. 12. (a) The distributions of f (R) (open circles) and g(R′)
(solid blocks with dashed lines) in the defect Ising model with N =
15 and λ = 0.06. (b) The corresponding cumulative distribution of
the nearest-level-spacing distribution (open circles). The solid curve
indicates the cumulative distribution given by the Wigner surmise.

FIG. 13. Similar to Fig. 12, but for the defect XXZ model with
N = 19, Sz = −7, and λ = 0.12.

for N = 15 in contrast to �E = 10.64; in the defect XXZ
model, ε ≈ 0.3 and ε0 = 0.02 for N = 12, Sz = −1 in con-
trast to �E = 8.03, and ε ≈ 0.01 for N = 19, Sz = −3.5 in
contrast to the total energy domain �E = 10.66.

The two measures �EF and �E exhibit similar behaviors,
like the cases discussed in the previous section for the LMG
and Dicke models (Figs. 10 and 11). Thus, at least in these two
models, the difference �EF can be regarded as a good measure
for the “distance” to chaos.

Consistent with the behaviors of the distribution g(R′)
illustrated in Fig. 9, the two quantities �′

EF and �EF are
close in most regions where the systems are chaotic systems
according to their spectra statistics. That is, in most cases,
an average over the unperturbed energy does not bring much
difference in the defect Ising and defect XXZ models. This
may be partially related to the fact that EFs in these two models
occupy almost the whole energy region for λ not small.

There are still some regions of λ in Figs. 10(b) and 11(b)
with relatively large Hilbert spaces, in which �′

EF shows some
notable deviation from �EF and �E . Some examples of the
distributions f (R) and g(R′) in this case are shown in Figs. 12
and 13, together with the corresponding distributions of IP (s)
and IPW

(s).

V. CONCLUSIONS

In this paper, based on semiclassical analysis, it has been
shown that those components of EFs of quantum chaotic
systems which lie in classically allowed regions of integrable
bases can be regarded as random numbers in a sense similar
to that stated in the Berry’s conjecture. For the distribution

062219-9



JIAOZI WANG AND WEN-GE WANG PHYSICAL REVIEW E 97, 062219 (2018)

f (R) of these components to have a Gaussian form, which
is predicted by the RMT, an appropriated rescaling procedure
with respect to the average shape of EFs is needed, where the
average should be taken over perturbed states with neighboring
energies. It is found that an additional average over unperturbed
basis states with neighboring unperturbed energies may cause
deviation of the distribution of rescaled components of EFs
from the Gaussian form.

The above results suggest that deviation of the distribution
f (R) from the Gaussian distribution may be used as a measure
for the “distance” to quantum chaos. In two models possessing
classical counterparts, when the perturbed system goes from
integrable to chaotic with the increase of perturbation strength,
our numerical simulations show that this deviation coincides
with the deviation of the nearest-level-spacing distribution
from the prediction of RMT.

It is known that specific dynamics of the underlying classical
systems may induce certain modifications to the Berry’s
conjecture [38–45]. Since the main result of this paper is based
on this conjecture, specific underlying classical dynamics

may have some influence in results of this paper as well. In
particular, it may induce some deviation of the distribution
f (R) for some EFs from the Gaussian distribution. However, if
sufficiently many EFs are used in the computation of f (R), it is
reasonable to expect that the induced deviation should be small.

In two models without simple classical counterpart, we
have found similar numerical results about the distribution of
f (R). Analytical explanation of this point is still lacking. It
seems that the following feature of these two models may
be of relevance. That is, in both models the matrices of the
perturbations V in the unperturbed bases do not have a clear
band structure; in other words, the perturbation couples basis
vectors far separated in energy. We hope that these numerical
results may stimulate more investigations.
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