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Demographic and environmental heterogeneities are prevalent across many natural systems. Earlier studies on
metapopulation models have mostly considered heterogeneities either in the demographic parameters or in the
interaction strength and topology between the spatially separated patches. In contrast, here we study the dynamics
of a metapopulation model where each of the uncoupled patches has different periods of oscillations (period
mismatch). We show different synchronization dynamics governed by both period mismatch and dispersal in
neighboring patches. Indeed, we find both appearance and disappearance of phase synchronization, quasiperiodic
oscillations, and period doubling of limit cycle. We also quantify the effect of seasonal variation (entrainment) and
dispersal on species synchrony using phase-response curve and a synchrony measure, which thereof identify the
influence of stochasticity on species persistence through trade-off mechanisms. Our results show that trade-offs
among period mismatch, dispersal, and external force can drive entrained oscillations as well as asynchronous
population dynamics that structure ecological communities.
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I. INTRODUCTION

Oscillations are ubiquitous in many natural systems, which
significantly governs the functioning of life through cyclic pro-
cesses [1]. In various biological activities, such as cardiac oscil-
lations [2], circadian rhythms [3], and seasonal succession [4],
the characteristics of oscillations are inherently associated with
their self-organization [5]. At the same time, various intrinsic
and extrinsic factors are known to influence oscillations and
can induce correlated or synchronized behavior in coupled sys-
tems. In spatial ecosystems, occurrence of such synchronous
fluctuations in species abundance are widespread [6–9]. In fact,
metapopulation, which is a population of spatially distributed
populations that often are connected with dispersal [10], shows
correlated fluctuations in species abundance with neighboring
populations [11–13]. For example, Hanski [14,15] reviewed
a long-term investigation on the Glanville fritillary butterfly
(Melitaea cinxia), which shows synchronous behavior in a
spatial network of 4000 dry meadows in Finland.

Most of the theoretical as well as empirical studies on popu-
lation synchrony have indicated two major mechanisms behind
its occurrence: The first one is species dispersal (migration)
describing species spatial movement and the second one is
exogenous factors, such as weather, noise, climatic variation,
etc., known as the Moran effect [6,16]. Generally, species
dispersal as a density-dependent process is considered to be
a building block of spatial ecology [17]. To characterize the
effects of dispersal in spatial ecosystems, various network
topologies have been used and gained much attention in
understanding community structure [18–22]. Subsequently,
the other major factor promoting synchronized state is the
influence of stochasticity in the form of climatic variations as a
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density-independent process [16,23,24]. Through the periodic
climatic variations, often species abundance are entrained to
the external forces (known as entrainment) [25]. Therefore,
the combination of density-dependent process with dispersal
and density-independent processes with external perturbations
encompasses the synchronous states in species abundance. In
majority of the studies on population synchrony, a general
consensus is that synchronous populations always have higher
risk of extinction, in contrast to asynchronous populations,
which in turn promotes species persistence [18,26]. Hence,
considering the current fast rate of species extinction following
habitat fragmentation [27], it is important to understand the
influence of local population dynamics in inducing the global
synchronous dynamics of metapopulations.

Heterogeneous characteristics of local populations are
widespread in most of the spatial ecosystems [17,28–30]. The
variations in environmental conditions over space or time as
environmental (extrinsic) heterogeneity are largely involved
with synchronous processes in spatial ecosystems. In most
of the previous studies, the combination of trophic interac-
tions, dispersal, and external force has been studied in char-
acterizing the metapopulation synchronization [10–12,18].
However, a little is known in terms of scale-dependent
heterogeneity in habitat patches. Although heterogeneity is
considered in diverse aspects, such as variation in intrinsic
dynamics [31], its distribution in spatial pattern [32,33],
frequency variation [13], different dispersal network structure
[18], etc., the emphasis on heterogeneity is inevitably depen-
dent on scale. The scale-dependent heterogeneity can affect
the synchronous state in metapopulations. To address this, we
introduce heterogeneity in terms of timescale differences, i.e.,
each uncoupled patch in a metapopulation model has distinct
period of oscillations (period mismatch) and aim to probe
the following questions: How are period mismatch, disper-
sal, and seasonal fluctuations associated with time-dependent
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habitats in promoting the synchronous state? What are the
mechanisms involved in entraining the ecological system to
the seasonal force? What are the trade-offs between sea-
sonality, stochasticity, and nonlinearity on metapopulation
persistence?

In this paper, using a metapopulation model, we show
that in the presence of period mismatch between uncoupled
patches, the spatial system exhibits interesting dynamics, such
as phase synchronization, period doubling of limit cycle,
and quasiperiodic oscillations. We also find that the right
balance between period mismatch and dispersal rate can induce
perfect synchrony and stability by suppressing the oscilla-
tions into identical steady states, namely amplitude death
(AD) [31]. Further, the suppressed oscillations are revived
again through dispersal, which is known as rhythmogenesis
[34]. Thereafter, by emphasizing the influence of periodic
external force, we quantify the coherent behavior of species
abundance to external force (known as entrainment) using
two distinct mechanisms: the phase-reduction approach [35]
and the correlation of time series [36]. Higher entrainment in
metapopulation occurs for a certain set of model parameters.
Subsequently, considering a regular network topology consist-
ing of 100 patches, with stochasticity and periodic distributions
in external force, the qualitative variation in synchronous
behavior from a regular to an irregular pattern is quantified
using the synchrony measure. The resulting trade-offs between
time-induced heterogeneity, dispersal, and seasonal force can
shape ecological communities by enhancing metapopulation
persistence.

We organize the paper as follows: In Sec. II, we describe a
spatially structured form of the Rosenzweig–MacArthur (RM)
model [37], in which the interacting patches show heterogene-
ity in their oscillation period. In Sec. III, we study various
collective dynamics through the interplay of heterogeneity and
dispersal in the absence as well as the presence of external per-
turbations. Specifically, the environmental variation through
different external forces with distinct characteristics is studied
using phase-reduction method in Sec. III C. Subsequently, the
effect of external force is determined by entrainment and a
synchrony measure for a large network is quantified in terms
of seasonal forcing and random variation in period mismatch.
Finally, the key findings and their ecological relevance are
discussed in Sec. IV.

II. SPATIALLY STRUCTURED
ROSENZWEIG-MACARTHUR MODEL

We analyze a spatially structured form of the RM model
[37] consisting of resource density (Vi) and consumer density
(Hi) in each patch (here i is the patch index). The consumer–
resource interactions within the patch and the movement of
consumers among the patches are taken into account, we
distinguish the characteristics of each patch by introducing
heterogeneity in the form of distinct period of oscillations. If
we exclude the period mismatch, the patches are identical and
their intrinsic dynamics are determined by logistic resource
growth and type-II functional response at consumer level.
Subsequently, the movement of the consumers is considered as
diffusive process among the spatially separated patches, which
is accounted through a simple diffusive coupling. Hence, the

spatial model of the resource (Vi) and the consumer (Hi) are
defined as:

dVi

dt
= 1

pi

[
rVi

(
1 − Vi

K

)
− αVi

Vi + B
Hi

]
, (1a)

dHi

dt
= 1

pi

[
βαVi

Vi + B
− m

]
Hi + ε(Hi+1 − 2Hi + Hi−1), (1b)

where i = 1,2, . . . ,N , with N as the total number of patches.
The local parameters r and K denote the intrinsic growth rate
and the carrying capacity of Vi , respectively. α and B represent
the predation rate of Hi and the half saturation constant,
respectively. β is the efficiency of Hi through predation and m

is its natural mortality rate.
Further, pi denotes a scaling parameter which initially turns

out to be the oscillation period of the uncoupled ith patch
without altering the amplitude of oscillation and assumes dif-
ferent values for distinct patches (i.e., pi �= pj for i �= j ). This
makes each of the patches heterogeneous with mismatched
periods of oscillations. Due to anthropogenic factors, habitats
are fragmented in spatial ecosystems. This fragmentation leads
to change in the quality of each patch for species survival.
Indeed, the considered period of oscillation in our model
determines the quality of each habitat with a change in time
duration of individual life (i.e., species longevity) in each
patch. Earlier it has been shown that habitat quality and species
persistence can be determined by its oscillation period [38]. In
fact, here the introduced heterogeneity in oscillation period
alters important demographic (intrinsic) species parameters,
such as the growth rate, the predation rate, and the mortality rate
[39]. These traits are directly involved in varying the oscillation
period. However, the carrying capacity and the half-saturation
constant have indirect effect on species behavior and they are
interrelated with the collective dynamics of the system. As
already mentioned, when uncoupled as well as without het-
erogeneity, all patches are identical in their intrinsic dynamics
and have period (say τ ) for a specific set of parameter values.
By introducing heterogeneity through the scaling parameter
pi , the period of ith patch becomes τpi . At spatial level, the
dispersal of consumer follows a nearest-neighbor coupling
with a dispersal rate or an interaction strength as ε.

III. RESULTS

The uncoupled RM model [i.e., Eq. (1) with ε = 0] can
exhibit steady states as well as limit cycles. It has three possible
equilibrium points: trivial (V ∗,H ∗) = (0,0), resource only
(V ∗,H ∗) = (K,0), and coexistence of resource and consumer
(V ∗,H ∗) = ( mB

αβ−m
,
Brβ(K(αβ−m)−Bm)

K(αβ−m)2 ). The resource-consumer

equilibrium point is stable if B
K

>
αβ−m

αβ+m
. However, for variation

in K , this equilibrium point loses its stability and gives rise to
oscillatory dynamics through a supercritical Hopf bifurcation.

Here at first, by considering two patches (i.e., N = 2) in
stable oscillatory state, the importance of the period mismatch
on the dispersal characteristics of the coupled system are
identified by calculating few time series. For simplicity, we
rescale the local parameters such that initially each patch
has period τ (= 1) without the parameter pi , whereas with
pi each uncoupled ith patch has mismatched period τpi .
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FIG. 1. Time series of the coupled RM model (1) for different
values of the dispersal rate ε: (a) different periods of oscillation of Hi

in two patches for ε = 0.0, (b) stable period-2 cycles for ε = 0.8, and
(c) stable limit cycles with the same periods of oscillations for ε = 1.
Here the period mismatch in two patches are p1 = 1 and p2 = 2.2.
The rescaled parameters are given by r = 17.88, K = 0.5, α = 35.76,
β = 0.5, B = 0.16, and m = 7.152.

Figure 1(a) shows different periods of oscillations of Hi (with
i = 1,2) in different patches with ε = 0. One can clearly
distinguish between the mismatched periods of oscillations
in each of the patches. However, variations in ε can induce
qualitatively different asymptotic dynamics. For example, in
another dispersal rate ε = 0.8, we show a time series in which
the oscillation has two different peaks. In fact, a period-2
cycles take place as shown in Fig. 1(b). Further variations in ε

show phase-synchronized oscillations for ε = 1 [see Fig. 1(c)],
which indicates that populations are synchronized only in
their relative phases, but not in their amplitude [40]. The
qualitative dynamics of Vi are also similar. Given the presence
of heterogeneity in each of the patches in terms of period
mismatch and its interplay with dispersal rate, interesting
complex dynamics occurs.

A. Quasiperiodicity and phase synchronization
with variations in the period mismatch

For a wide range of heterogeneous periods, the collective
dynamics of the model (1) are analyzed using the ratio between
periods of oscillations in two patches. In particular, the ratio
between the oscillation periods p2 (of patch-2) and p1 (of
patch-1) is defined as

Mismatch ratio: p = p2

p1
.

The dynamics of the model Eq. (1) with variations in p

are analyzed using a one-parameter bifurcation diagram in
Fig. 2 by depicting the maxima of the oscillation cycles of
resource V1 at two different values of dispersal rate (ε). In
Fig. 2(a), we show the maxima of the limit cycle for varying
period mismatch (p) with fixed dispersal rate ε = 0.85. For
increasing mismatch ratio p, the stable oscillations are changed
to quasiperiodic oscillation through a torus bifurcation (TR1)
at pTR1 = 1.194. In fact, for a range of p, the system exhibits
quasiperiodic oscillations, which can also be identified through
the Poincaré section [41]. Subsequently, for higher mismatch
ratio, the torus size is decreased and further period doubling
bifurcation (PD) of limit cycle takes place between p = 2.193
and p = 2.217, which is shown in the inset diagram of
Fig. 2(a). Despite the fact that dynamically the coupled model
has just diffusive coupling, the presence of heterogeneity in the
oscillation periods exhibits period doubling and quasiperiodic
dynamics. For higher mismatch ratio, again we have limit
cycle oscillations. Similar qualitative dynamics holds in the
consumer Hi also.

In another case, in Fig. 2(b), only stable limit cycle exists
for continuous variation of the period mismatch ratio (p)
with fixed ε = 1.2. Here at low mismatch ratio (i.e., at p =
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FIG. 2. Bifurcation diagrams of the metapopulation model (1) with variations in the mismatch ratio p. Local maximum value of V1: (a) for
fixed dispersal rate ε = 0.85, and (b) for fixed dispersal rate ε = 1.2. Here TR and PD denote torus and period-doubling bifurcations of limit
cycles, respectively. Other parameters are given by r = 17.88, K = 0.5, α = 35.76, β = 0.5, B = 0.16, and m = 7.152.
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FIG. 3. Bifurcation diagrams of the metapopulation model (1) with variations in the dispersal rate ε. Local maximum value of V1: (a) for
fixed period mismatch ratio p = 1.2, and (b) for fixed period mismatch ratio p = 2.2. In (b), the yellow (light shaded) line (marked with AD)
denotes stable steady states. Also PD, HB, and AD denote period-doubling bifurcation of limit cycle, Hopf bifurcation, and amplitude death,
respectively. In the inset of (b), time series for three different values of ε are depicted. All the other parameters are the same as described in the
caption of Fig. 2.

1, when both the patches are homogeneous with the same
periods of oscillation) there is a decrease in the maxima of
the limit cycle, whereas for higher mismatch ratio the maxima
reaches a fixed value. Apart from these interesting dynamics,
initially each patch oscillates with distinct phase, however
due to strong enough coupling later they induce same phase
with different amplitudes of oscillations. In fact, species from
both the patch-1 and the patch-2 shows phase-synchronized
oscillations [for exemplary time series, see Figs. 1(b) and
1(c)]. The existence of phase-synchronized behavior as well
as stability of limit cycles can also be identified by Floquet
multipliers (explained in the Appendix) [42]. A well-known
example of phase synchronization in spatial ecological systems
is the Canadian hare–lynx cycle, which follows a compact
rhythm with an approximate oscillation period of 10 years
[43]. From the ecological point view, synchronous oscillations
are known to be detrimental for species persistence as it
can enhance the risk of global extinction during the events
of depression in population density and therefore potentially
harmful for conservation biology [44]. In contrast, quasiperi-
odic and chaotic oscillations have less extinction risk and
further constitutes increased persistence in the connected
habitats [18,43].

B. Amplitude death with variations in the dispersal rate

As the species dispersal rate can vary with changes in
climatic conditions, here the dynamics for changes in the
dispersal rate ε are analyzed. For a continuous variation in
ε with fixed period mismatch ratio p, the maxima of V1 is
shown in Fig. 3(a) using a one parameter bifurcation diagram.
For a fixed p = 1.2, the coupled system exhibits quasiperiodic
oscillation at low dispersal rate. However, for higher dispersal
rate, the coupled system has stable limit cycle. Initially, the
maxima of stable oscillation has increased for higher dispersal
rate and further it saturates.

When p = 2.2, for different ranges of ε the model exhibits
period doubling bifurcation, stable limit cycles, quasiperi-
odic oscillations and homogeneous steady states which are

shown in Fig. 3(b). Here at first, quasiperiodic oscillation are
shown at low dispersal rate. With an increase in the dispersal
rate, quasiperiodicity leads to period doubling bifurcation of
the limit cycle which then reduced to a stable period-one
cycle at εPD ≈ 0.872. Further increase in the ε leads to a
decrease in the maxima of the limit cycle. Importantly, these
phase-synchronized oscillations are transitioned to perfectly
synchronized and homogeneous steady states (i.e., cessation
of oscillations due to AD) through an interaction induced
reverse supercritical Hopf bifurcation at εHB1 ≈ 2.492. Here, in
Fig. 3(b) the yellow (light shaded) curve denotes homogeneous
stable steady states. This supports species persistence as with
stable steady states there is less risk of extinction of the
population density if it is away from an extinction threshold
[11]. With further increase in ε the suppressed oscillations
are regenerated again through a supercritical Hopf bifurca-
tion at εHB2 ≈ 3.71. Note that, the maxima of oscillation is
again increasing after HB2 and shows phase synchronization.
The complete change from phase-synchronized oscillations
to perfectly synchronized steady state which further shifts to
phase-synchronized oscillations are shown in the time series
[see the inset diagram of Fig. 3(b)].

In our model, the introduced heterogeneity through period
mismatch and the dispersal rate induces the synchronized
behavior in combination of both stable oscillation and stable
steady states. For a wide range of period mismatch ratio
(p) and dispersal (ε), the region of stable oscillation and
quasiperiodicity is shown in p–ε plane using two parameter
bifurcation diagrams in Fig. 4(a). Here the parameter region
of both dispersal and period mismatch where quasiperiodicity
occurs is represented in shaded color region and also period
doubling is denoted in another shaded color region. The TR
curve marks the boundary between the limit cycle oscillation
and the quasiperiodic oscillation. However, below the TR
curve, only quasiperiodicity takes place, whereas above TR
curve stable oscillation occurs. Also Figs. 2 and 3 are exhibiting
particular cases of Fig. 4. There also exists a small region
where period doubling bifurcation of limit cycle occurs (shown
in inset diagrams). In the period doubling (PD) curve, the
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FIG. 4. Regions of limit cycle and quasiperiodic oscillations. Two parameter bifurcation diagrams: (a) in p–ε plane and (b) in p1–p2 plane
for fixed dispersal rate ε = 0.8. Here TR and PD denote torus bifurcation and period doubling bifurcation. Each color shaded region denotes
existence of either limit cycle oscillations or quasiperiodic oscillations. (c) Quasiperiodicity through Poincaré section is represented in closed
curve for p = 1.6 and ε = 0.5; however, Poincaré section for a stable limit cycle is represented in dotted line. (d) Poincaré section for p = 2
and ε = 0.5. All the other parameters are the same as described in the caption of Fig. 2.

closed circle represents starting and ending points of the period
doubling bifurcation at a particular parameter value.

Instead of using the variations in mismatch ratio p, the
actual dynamics of the model for changes in both p1 and p2

are shown in Fig. 4(b) for fixed ε. Since the considered spatial
system with two patches has just simple diffusive coupling,
the region where quasiperiodicity and stable oscillation occur
is symmetrical. This is shown in p1–p2 plane. The occurrence
of quasiperiodicity is identified through the Poincaré section
by plotting peak-to-peak plot [41]. In Figs. 4(c) and 4(d), we
have shown the peak-to-peak plot for two different values of
p. From Fig. 4(c), the formation of closed curve determines
that this is quasiperiodic oscillation with the same dynamical
behavior, as shown in Fig. 4(d). The Poincaré section for stable
limit cycles is represented in dotted line in both the Figs. 4(c)
and 4(d).

C. Effect of periodic external force and entrainability
of oscillations

As an extrinsic factor, often seasonal forcing strongly in-
fluences the species abundance of spatially distributed habitats
[45]. In particular, the Moran effect is considered as one of
the major mechanisms responsible for generating population
synchrony under natural and laboratory conditions [46,47].
Moreover, perfect synchrony and phase synchrony also arise in
spatial ecological system under the influence of environment

[48,49]. By considering these characteristics, here we analyze
the model Eq. (1) in the presence of a periodic external force
as an extrinsic disturbance. At first, in the absence of external
force, the coupled system Eq. (1) can be written as

dz
dt

= F (z), (2)

where z = [V1 H1 V2 H2]T andF (z) is a vector derived from the
right hand side of model Eq. (1). Applying the time-dependent
external force G(ωt) with the strength ξ and angular frequency
ω in the resource dynamics Vi , the Eq. (2) becomes

dz
dt

= F (z) + ξEG(ωt), (3)

where E = [1 0 1 0]T determines the assumption that only
resource variables (Vi) are influenced by the external force.
At primary level, the abundance of resource Vi is significantly
affected by this seasonal forcing [50]. However, the consumer
Hi is indirectly influenced by the seasonal force due to the
consumer–resource interactions. To ensure periodic character-
istics of the external force, a sinusoidal function is used as the
seasonal force [50–52]:

G(ωt) = a + b sin(ωt),

where a and b represent mean and amplitude of the sinusoidal
external force.
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1. Phase reduction for a perturbed limit cycle oscillator

The time-varying perturbations in the form of external
force G(ωt) change the autonomous system [Eq. (1)] to a
nonautonomous system [Eq. (3)]. In general, to elucidate
the influence of external perturbations on the properties of
coupled oscillators and their synchronization, often the phase-
response curve (PRC) has been used which measures the
response to perturbations at each phase of a limit cycle [53].
Using phase-reduction approach, the four-dimensional system
Eq. (2), which exhibits a limit cycle oscillation, can be reduced
to a one-dimensional phase equation with a phase variable
φ [13,35]. In the absence of external force, a limit cycle
oscillation can be described by the phase variable φ ∈ [0,2π ]
as

dφ

dt
= 
, (4)

where 
 is the angular frequency of the limit cycle with period
τ (i.e., 
 = 2π/τ ). In the presence of external force G(ωt),
the phase equation reads

dφ

dt
= 
 + ξZ(φ) · G(ωt). (5)

Here dot (·) represents the dot product and Z(φ) denotes the
PRC, which describes the relationship between the perturba-
tions and their response at each phase over a complete cycle

[54], defined as

Z(φ̂) = ∇φ(z)|z=z0(φ̂),

where z0(φ̂) represents a point on the limit cycle at phase
φ̂. By perturbing the system, the time taken to regain its
original stable oscillation is represented in PRC. In other
words, perturbations at each phase could cause the phase shift
either lengthening or shortening the period. Positive phase shift
in PRC indicates the phase advance, whereas negative phase
shift indicates the phase delay induced by perturbation. Here,
the PRC is computed using adjoint method. By considering a
stable limit cycle, the PRC is computed numerically backward
in time using Malkin’s approach with the following adjoint
equation [54–56]:

dZ(t)

dt
= −{DF (z0(t))}�Z(t), (6)

with

Z(t) · F (z0(t)) = 
,

where DF (z0(t)) is the Jacobian matrix of F (z) around a stable
periodic solution z0(t) with period τ .

As the coupled system exhibits stable periodic dynamics
at different dispersal rate and period mismatch, here we
compute iPRC numerically where iPRC stands for infinites-
imal PRC, which measures the effect of infinitesimally small
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perturbations on limit cycle. The time series of stable oscil-
lation (i.e., one complete stable cycle) and its corresponding
PRC over a cycle are shown in Fig. 5 for different values of p

and ε. At low mismatch ratio p, the variation in the amplitude
of the stable limit cycle oscillation is quite large, i.e., more
than that for the higher mismatch ratio p [shown in Fig. 5(a)].
Also, the variations in the PRC with period mismatch (p �= 1)
and without period mismatch (p = 1) are shown in Fig. 5(c)
for ε = 1.5. The phases over a cycle are given along the x axis
and the resulting phase shift after perturbation at each phase is
along the y axis. Here the large region of positive phase shift
indicates the phase advance induced by external perturbations.
In fact, it is evident from Fig. 5 that at low abundance of
species, the perturbation causes phase advance. Similarly, the
time series and corresponding PRC at different dispersal rate
(ε) for the fixed mismatch ratio (p) are shown in Figs. 5(b)
and 5(d), respectively. With an increase in the dispersal rate,
a small change in amplitude takes place, but higher variation
emerges in the corresponding PRC. Hence, the combination
of period mismatch and dispersal rate has strong impact on
species density, particularly when a small perturbation takes
place at low density. The computed PRC will be used in the
next section to find the effect of the external force.

2. Entrainment due to extrinsic disturbances
in the presence of period mismatch

Often ecological systems show synchronous behavior in
response to external periodic signal, also known as entrain-
ment [25,57]. Understanding the effect of seasonal forcing
on heterogeneous ecological models is a key concern for
ecosystem persistence [58]. Due to the interactions between
two oscillating objects, the coherent behavior is enhanced
through phase locking. Since the PRC determines the response
of perturbations in the oscillating system, the computed PRC is
also used to study the entrainment of the coupled system to the
sinusoidal external force G(ωt). By using change of variable
ψ = φ − ωt in Eq. (5), we have

dψ

dt
= �
 + ξ
(ψ), (7)

with �
 = 
 − ω and


(ψ) = 1

2π

∫ 2π

0
Z(ψ + θ ) · G(θ )dθ. (8)

At each phase ψ , this integral [Eq. (8)] is evaluated numerically
by time-averaging over the interval 0 to 2π . Importantly, the
computed PRC and external force determine the range in
which the coherent behavior holds. The coupled system can
be synchronized for the sinusoidal external forces frequency if

ξ
min + 
 < ω < ξ
max + 
, (9)

with


min = min
ψ


(ψ), and 
max = max
ψ


(ψ).

Entrainment of the coupled system requires that the external
force frequency has to match reasonably with system’s fre-
quency. In particular, the range in which the system frequency
can be synchronous with the seasonal force is determined by
Arnold tongue (i.e., synchronization region) using ξ (
max −


min). The entrainability (W ) is defined as

W = 
max − 
min, (10)

which is ξ -independent.
We calculate the entrainment value [Eq. (10)] at each

period mismatch ratio p using the PRC and sinusoidal external
force sin(ωt) with ω = 1. For ε = 1.5, in Fig. 6 we present
the period τ of the coupled system Eq. (2) together with
entrainability W using the dual axis (right y axis for τ and
left y axis for W ). We see that the period τ is influenced
by changes in p. Initially the period is 1 at p = 1 and then
around p ≈ 1.172 it decays but finally stays close to 0.89.
Relatively, the entrainability is enhanced for a certain range
of heterogeneity due to mismatched period. In spite of having
fixed period in external force (i.e., ω = 1), higher entrainability
emerges at various period mismatch ratio. This provides the
strong support of considering habitat heterogeneity so that
populations are entrained to seasonal variations. However,
higher heterogeneity results in decreasing entrainability since
the frequency of external force does not match with system’s
frequency.

D. Measure of synchrony in a metapopulation with 100 patches

In ecological systems, species abundances of spatially
separated habitats are generally influenced by environmental
forces and often exhibit correlated fluctuations [59–61]. It is
also interesting to know how strongly they are correlated. Here,
by considering external periodic forcing G(ωt) in a relatively
large network (N = 100) of heterogeneous patches connected
through simple diffusive coupling, we quantify the amount of
synchronization by using a synchrony measure. First, in the
network of 100 heterogeneous patches, the mismatch param-
eter pi of each ith patch (i = 1, . . . ,N) is chosen randomly
in such a way that the periodicity has mean 1 and standard
deviation σ . Second, the effect of external force G(ωt) on
the network synchronization is measured at different levels
of forcing strength (ξ ) for various standard deviation (σ ).

1 1.5 2 2.5 3

1.5

2.5

3.5

4.5

0.6

0.8

1

1.2

W

p

τ

FIG. 6. Entrainment and period of oscillation for ε = 1.5: At each
period mismatch ratio (p), the entrainability (W ) and the period of
oscillations (τ ) are shown in red (dashed curve) and green (solid
curve), respectively, using dual axes. For the periodic external force,
we use a = 0, b = 1, and ω = 1. All the other parameters are the
same as described in the caption of Fig. 2.
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FIG. 7. Effect of periodic external force: (a) Synchrony measure
(ρ) for varying standard deviation (σ ) for the external force strength
(ξ = 0.005) with fixed dispersal rate (ε = 0.6). (b) Average period (τ )
for varying σ . Here average period is rescaled to 1. Other parameters
are given by a = 1 and b = 1, r = 0.5, K = 0.5, α = 1, β = 0.5,
B = 0.16, and m = 0.2.

Although in several works on spatially extended ecosystems it
has been shown that multiplicative noise can induce interesting
dynamics including stochastic resonance [62,63], here we
choose noise in terms of randomly chosen period of oscillation.
To quantify the effect of changes in σ of the heterogeneous
periods of oscillation on the collective dynamics, we vary σ

and we measure, for a large enough time T , a synchrony order
parameter (denoted by ρ) [64], defined as

ρ =
√√√√1 −

〈∑N
i=1[Vi(t) − V (t)]2∑N

i=1 Vi(t)2

〉

=
√√√√〈

V (t)2

1
N

∑N
i=1 Vi(t)2

〉
, (11)

with V (t) = 1
N

∑N
i=1 Vi(t) and 〈 . . . 〉 denoting the average over

the time T . The value of the order parameter ρ varies between
0 and 1. It is equal to 0 when there is no synchrony and 1 if the
patches are perfectly synchronized. The value is in between 0
and 1 when the patches are partially synchronized.

At each standard deviation σ , the synchrony measure ρ

in Eq. (11) is computed for a specific external force strength
ξ = 0.005 with the sinusoidal forcing G(ωt) = a + b sin(ωt)
as an external force. For increasing σ , the synchrony measure
ρ is shown in Fig. 7(a). We already know that without external
force, they are phase synchronized due to dispersal. As far as
synchrony measure is concerned, phase synchrony is denoted
as a partial synchronization since the synchrony measure (ρ) is
less than one. Importantly, in phase-synchronized oscillation,
the amplitude varies in each patch and densities are not much

correlated. However, due to the external force, species can
oscillate in the same fashion and may show higher corre-
lation. At low value of standard deviation σ , initially the
synchronization measure ρ decreases; however, for increasing
standard deviation, the synchrony measure improves for a
range of σ values and then again declines [shown in Fig. 7(a)].
Furthermore, the average period (τ ) is calculated by time
averaging between the maxima of the dynamic variables. The
average period is shown in Fig. 7(b). Here at low standard
deviation, the average period (τ ) decreases, while for higher
standard deviation, the average period saturates. In spite of
having higher heterogeneity in large-scale, populations are
entrained by matching with external force frequency.

For a wide range of external force strength ξ , dispersal
strength ε and variations in σ , the synchrony measure is shown
using spatial diagrams in Fig. 8. In the top panel of Fig. 8, at
different dispersal rates, the synchronized measure is shown in
the color region for varying external force strength and standard
deviation. Also, in the bottom panel of Fig. 8, at different
standard deviations, this measure is shown for different values
of both external force and dispersal strength. In the absence of
external force G(ωt), the network of 100 patches shows either
quasiperiodic oscillation or in-phase-synchronized oscillation
at low dispersal rate. Once the external force is applied, the
patches can behave coherently, which increases the synchrony
measure. The yellow (light shaded) region in Fig. 8 shows
perfect synchrony in all connected patches, whereas the dark
color shaded region denotes partial synchronization. For small
standard deviation, all the connected patches synchronize and
show higher synchrony measure irrespective of the choice of
ε and ξ . Important to note here that for higher σ and very low
ξ , the network of 100 patches are not strongly correlated. For
low σ and high ξ the synchrony improves [see Figs. 8(a)–8(d)].
Hence, there exists a trade-off between period mismatch and
environmental forces which promotes synchronous as well as
asynchronous dynamics. Moreover, an increase in the interac-
tion strength ε further improves the correlated fluctuations for
many choices of ξ and σ , which is evident from Figs. 8(a) and
8(d). Similarly, higher heterogeneity with dispersal reduces the
synchrony measure at weak external force, which is noticeable
from Figs. 8(e) to 8(h). Indeed, metapopulation entrainability
is strongly interconnected with the combination of suitable
heterogeneity, dispersal, and seasonal variations. As already
mentioned, high synchrony between the patches increases the
risk of global extinction during the period of depression in
species density [44], and in contrast, asynchrony increases the
species persistence by lowering the extinction probability [18].
Highly coherent dynamics may be dangerous for species that
wish to conserve. Therefore, the obtained results can be of
some interest to conservation biologists.

IV. DISCUSSION

Intrinsic heterogeneities between species residing in spa-
tially separated habitat patches are of fundamental impor-
tance in shaping the long-term collective dynamics of spatial
ecological systems [13,28,65]. At the same time, extrinsic
disturbances like seasonal forcing and varying dispersal rate
have strong influence on species characteristics [6,48,65]. The
metapopulation model considered in this paper incorporates
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FIG. 8. Synchrony measure in a network of 100 patches: (a–d) For different dispersal rate (ε), the measure of synchrony is shown in the
color region for continuous variation of the periodic external force strength (ξ ) and standard deviation (σ ) with heterogeneous periods (the
top panel). Here at low σ , the network behaves coherently. However, for higher external force strength and intermediate σ , the network shows
coherent behavior. (e–h) The synchrony measure for different σ is shown in the bottom panel for varying the periodic external force strength
(ξ ) and dispersal strength (ε) . Other parameters are given by a = 0.5 and b = 0.5, r = 0.5, ω = 35.76, K = 0.5, α = 1, β = 0.5, B = 0.16,
and m = 0.2. See text for more details.

both the intrinsic and the extrinsic factors which could influ-
ence ecosystems and our findings highlight their importance.
Explicitly, the complex dynamics of interacting species have
been studied in terms of nonequilibrium state by characterizing
the metapopulation model through the combination of period
mismatch, dispersal, and extrinsic disturbances via seasonal
forcing. We find that in the absence of seasonal forces, disper-
sal as a density-dependent process enables various complex
dynamics, such as phase synchronization, quasiperiodicity,
period-doubling of limit cycle, and even cessation of oscil-
lation via amplitude death. Moreover, period-1 cycles and
period-2 cycles through forward and reverse period-doubling
bifurcations highlight the annual and multiannual cycles in
metapopulation dynamics [66]. These characteristics of limit
cycles from equilibrium points are distinguished by Floquet
multipliers.

The sinusoidal external force resembling the extrinsic
disturbances on ecological system influences all interacting
species with a depression and recovery in their densities.
Particularly, the plankton communities in aquatic ecosystems
are often influenced by season succession which exhibits
cyclic fluctuations [66–69]. Although seasonal forcing here
has direct influence on resource populations, indirectly con-
sumer populations also have been influenced by seasonal
forcing due to consumer–resource interactions. While increas-
ing synchrony among populations reduces the probability of
long-term survival, it is highly necessary to understand the
mechanisms behind synchronization. As the synchronized
oscillations have substantial influence in community orga-

nization and persistence [8], here we have quantified the
entrainment of metapopulation in two different ways using
the phase-reduction approach and the correlation of temporal
fluctuations. The disturbance in species density at each phase
of the oscillation determines the important characteristics of
seasonal forcing as well as dispersal by exhibiting higher syn-
chrony measure in mismatch case. In addition, incorporating
stochasticity in heterogeneous habitats, we have quantified the
species correlated fluctuations in a rather different way using
the synchrony measure. Our findings through the considered
synchrony measure is important in order to understand the
trade-offs between dispersal and seasonal forcing. Despite
the fact that the synchrony measure is low in phase syn-
chronization, the introduced stochasticity in heterogeneous
oscillation period shows correlated fluctuations in species
abundance for different external perturbations and results in
a higher synchrony measure. In contrast, the on and off
situations of seasonal forcing in the coupled metapopulation
model enable the regular and the irregular rhythmic behavior
in heterogeneous patchy environments. Our study highlights
the trade-offs among dispersal, time-induced heterogeneity
through period mismatch and the periodic external forcing in
promoting species persistence.

Previous empirical studies have suggested that more het-
erogeneous landscapes support larger populations and also
provide protection against extinction in a broader range of
environments [70,71]. Habitat quality as an important factor
in metapopulation dynamics strongly contributes to species
persistence. In our study, instead of timescale separation
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between species [13], the patch-wise variation detects the
quality of habitat by enhancing the longevity of species.
Depending on dispersal and heterogeneity level, populations
are synchronized or asynchronized, leading to alter the prob-
ability of extinction and recolonization [72]. Importantly, our
results are in line with previous studies on butterfly populations
that higher habitat heterogeneity can promote stability and
persistence [70]. Due to uniform weather conditions and year-
to-year variation in extreme weather conditions, synchronizing
fluctuations across the metapopulation are wide-spread [71].
However, as global persistence of metapopulation decreases
for increasing correlation, our results emphasize that hetero-
geneity, dispersal and seasonal variation can jointly shape
the metapopulation dynamics and other ecological processes.
Hence, our approach provides a possible theoretical explana-
tion in promoting synchrony as well as some control strategies
in conserving species.

In summary, the combination of intrinsic and extrinsic
factors influences rhythmic processes in the metapopulation
model. The right balance among environmental heterogeneity,
dispersal and seasonal forcing show various synchronous
behavior. Our study focuses on the appropriate environmental
heterogeneity and dispersal in conserving species from habitat
loss. Though stochastic variations have been used indirectly
in habitat heterogeneity, further investigations are needed
with presence of additive and multiplicative noise as well as
higher trophic interactions. Further, instead of simple diffusive
coupling in dispersal, global connection also can enhance
the heterogeneous spatial ecosystem properties. Subsequently,
instead of introducing heterogeneity in timescale of entire
patch, if we use distinct timescale in each species (i.e.,
slow-fast systems), then resulting dynamics could even be
more interesting. Moreover, the seasonal force can also be
incorporated in the model in other ways [8], such as in the
growth rate and/or in the mortality rate.
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APPENDIX: FLOQUET MULTIPLIERS

Qualitative dynamics of the oscillating system can be
analyzed using Floquet theory. In the absence of external
force, the diffusive coupled system shows nonequilibrium
dynamics through oscillatory behavior. Since the stability of
nonequilibrium state is difficult to analyze mathematically,
Floquet theory has been used to test the stability of the limit
cycle [42]. In particular, from the considered system, the
Floquet multipliers are calculated numerically using matrix
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FIG. 9. Floquet multipliers: For continuous variation of the dis-
persal rate (ε) in the system [Eq. (1)], all the Floquet multipliers (ρi)
with it’s real part (solid lines) and imaginary parts (dotted lines) are
shown. All the other parameters are the same as described in the
caption of Fig. 3(b).

differential equations in terms of the m×1 matrix Q(t):

dQ(t)

dt
= DF (z0(t))Q(t). (A1)

Here DF (z0) is a periodic function with period τ in a stable
orbit z0. By integrating Eq. (A1) numerically over a period
τ with an identity matrix as an initial condition, we get the
Floquet solutions, which is denoted by

Q(t) =
m∑

i=1

ciexp(μit)vi(t), (A2)

where μi’s are the Floquet or characteristic exponents, vi’s are
vector-valued functions with period τ , and ci is a coefficient
determined by initial conditions. The relationship between the
Floquet exponents and the period (τ ) is given as the Floquet
multipliers (ρi) by ρi = exp(μiτ ). The Floquet multipliers are
obtained as the eigenvalues of the matrix Q(t = T ) and hence
m-dimensional system has m Floquet multipliers. Based on
Floquet multipliers, the stability of limit cycle can be identified.
In the considered system Eq. (1), one of the multipliers ρi = 1
represents pure phase shift in limit cycle. The torus bifurcation
of limit cycle is identified when ρi pass through the unit
circle |ρ| = 1 on the complex plane. Also period-doubling
bifurcation of the limit cycle can be identified if a single real
Floquet multiplier passes through −1. In Fig. 9, we have shown
the Floquet multipliers of the system [Eq. (1)] for varying
dispersal rate (ε). Indeed, the phase synchronization and the
period doubling of the limit cycles of Fig. 3(b) are identified
by the Floquet multipliers.
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