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Two distinct excitable responses for a laser with a saturable absorber
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Excitable lasers with saturable absorbers are currently investigated as potential candidates for low level spike
processing tasks in integrated optical platforms. Following a small perturbation of a stable equilibrium, a single
and intense laser pulse can be generated before returning to rest. Motivated by recent experiments [Selmi et al.,
Phys. Rev. E 94, 042219 (2016)], we consider the rate equations for a laser containing a saturable absorber
(LSA) and analyze the effects of different initial perturbations. With its three steady states and following Hodgkin
classification, the LSA is a Type I excitable system. By contrast to perturbations on the intensity leading to the
same intensity pulse, perturbations on the gain generate pulses of different amplitudes. We explain these distinct
behaviors by analyzing the slow-fast dynamics of the laser in each case. We first consider a two-variable LSA
model for which the conditions of excitability can be explored in the phase plane in a transparent manner. We then
concentrate on the full three variable LSA equations and analyze its solutions near a degenerate steady bifurcation
point. This analysis generalizes previous results [Dubbeldam et al., Phys. Rev. E 60, 6580 (1999)] for unequal
carrier density rates. Last, we discuss a fundamental difference between neuron and laser models.
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I. INTRODUCTION

Excitable systems play an important role in biology and
medicine. Phenomena such as the transmission of impulses
between neurons, the cardiac arrhythmia, the aggregation of
amoebas, all derive from the activity of excitable media [1–3].
Common to all these excitable systems is the existence of a
stable equilibrium and an excited or firing regime. For weak
stimuli, the system returns more or less directly to rest. For
stronger stimuli, it makes a large detour, that is, emits a spike.
In the case of neuronal firing, two main types of excitable
responses have been classified by Hodgkin in the 1940s [4].
Type I axons have sharp threshold and can have long latency to
firing. Type I models are characterized by a set of three fixed
points, a stable one, a saddle, and an unstable one. Type II have
variable thresholds and short latency. Type II models exhibit
only one stable fixed point.

Excitable responses were also predicted and observed in
a large variety of optical systems, ranging from nonlinear
cavities with temperature dependent absorption [5] to lasers
with a saturable absorber (LSA) [6–10] or subject to either
optical feedback [11,12] or optical injection [13–15]. The re-
cent interest in spiking neural networks (SNN) using photonic
platforms has revived research activities on excitable lasers
[16–20]. The challenge is to produce an optical network where
each node has the response characteristics of a neuron and
is capable to process information at high speeds. In [17], a
nanoscale resonant tunneling diode behaves like an excitable
biological oscillator and drives an on-chip laser diode [21].
Recently, it was demonstrated that micropillar semiconduc-
tor lasers with integrated saturable absorbers may generate

excitable responses in time intervals of the order of 200 ps.
Threshold conditions and refractory periods were analyzed
experimentally and numerically in [22]. Numerical simulations
were realized by considering the three rate equations for a
LSA that relate the density of photons (intensity) to the carrier
densities (electrons) in the active and passive media. Particular
attention was devoted to the time needed for the emergence
of an active spike [23] (spike latency). With its three steady
states, the LSA is a Type I excitable system but, as we shall
demonstrate, the response of the laser may depend on the initial
perturbation.

In [23], excitable pulses were initiated by either perturbing
the laser intensity (coherent perturbation) or by perturbing
the carrier density (incoherent perturbation) [23]. Practically,
short optical pulses were injected into the laser with different
wavelengths. If the wavelength is close to the cavity resonance
wavelength, the perturbation was called “coherent”̇ On the
other hand, if the wavelength of the stimulation is quite
different from the cavity resonance wavelength and only affects
the carrier density, the perturbation was called “incoherent”
and its effect is described by a change of the initial gain value.
Figure 1 shows experimental time traces resulting from these
two types of perturbations. From left to right, we represent the
laser intensity after a below, a slightly above, and a well above
critical perturbation. We note that the maximum intensity of
the pulse increases with the initial perturbation in the case
of an incoherent perturbation [Fig. 1(a)] while it remains
quasi-constant in the case of a coherent perturbation [Fig. 1(b)].
The effect of an incoherent perturbation is not observed for
Type I neurons and need to be clarified. To this end, we first
consider a two-variable LSA model for which conditions for
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FIG. 1. Experimental temporal traces following an incoherent (a)
or a coherent (b) perturbation. For each case, we show the laser
response (top) and the initial perturbation (bottom). From left to right,
the initial perturbation is below, slightly above, and well above the
critical perturbation for excitability. The response signal is vertically
shifted for clarity. In both figures, we note that the laser response
follows the initial perturbation after a delay.

excitability can be discussed in phase-space in a transparent
manner.

The solution of the three laser equations exhibits different
amplitude and time scales which motivate the application of
asymptotic methods. Dubbeldam et al. [6] consider the case of
equal relaxation rates of the gain and absorber and examined
the effects of initial intensity perturbations. They obtained
analytical approximations for the excitability threshold and
the delay between input and output pulses. Here, we consider
unequal relaxation rates for the gain and absorber and propose
a systematic perturbation analysis of the LSA equations. This
generalization is physically motivated by the fact that there
are usually different recombination rates in the gain and in the
absorber regions because of either different carrier densities or
materials.

The organization of the paper is as follows. In Sec. II,
we formulate the laser rate equations and specify the initial
conditions for a coherent and an incoherent perturbation. In
Sec. III, we consider a two variable reduction of the LSA
equations and analyze the conditions for an excitable pulse
for both coherent and incoherent perturbations. In Sec. IV, we
then consider the three variable LSA equations and analyze
the pulse solutions near a degenerate bifurcation point. Finally,
we contrast neuron and LSA slow fast responses in Sec. V by
showing that the laser pulse is of Lotka-Volterra type rather
than van der Pol type.

II. FORMULATION

In a LSA, two spatially separated sections are placed in the
laser cavity. The role of the two sections is quite different:
one of them is pumped so as to have a positive population
inversion (active or amplifying medium), the other one is left
with a negative population inversion (passive or absorbing
medium). As these two media are in general different, they
saturate at different power levels. The most interesting case

corresponds to the situation where the absorber saturates more
easily than the active medium, introducing nonlinear losses
inside the cavity. The output of many LSAs is well described
as the solution of three rate equations for the field in the laser
cavity and the population inversions (or carrier densities) in the
active and passive cells [25]. Here, we follow the formulation
successfully used in [22,23] to simulate the experiments given
by

I ′ = (G − Q − 1)I, (1)

G′ = b1[μ1 − G(1 + I )], (2)

Q′ = b2[μ2 − Q(1 + sI )]. (3)

In these equations, I is the laser intra-cavity intensity. G

and Q are the scaled excess carrier densities with respect
to transparency in the gain and in the saturable region (SA),
respectively. μ1 denotes the gain generated through pumping,
μ2 is the non-saturable loss, and s is the saturation parameter.
Prime means differentiation with respect to time t rescaled to
the cavity lifetime. b1,2 are the rescaled recombination rates
of carriers in the gain and SA regions, respectively. They are
typically O(10−3) small. Note that s depends on b1 and b2

[24]. Throughout this paper, we consider the following values
of b1, b2, μ2, and s appropriate for the laser used in the
experiments [22,23]

b1 = 10−3, b2 = 2 × 10−3, μ2 = 2, and s = 10. (4)

Our control parameter is the pump parameter μ1. Its value
as well as the initial conditions will be specified later. In all
our simulations, we have added the constant c = 10−35 in the
right-hand side of Eq. (1) in order to avoid extremely low values
of the intensity. This is physically justified by the presence of
spontaneous emission in the laser cavity.

Before we analyze Eqs. (1)–(3), we need to specify some
of the bifurcation properties of the steady states. From the
linearized equations, we obtain the following growth rates
for the stability of the zero intensity steady state (I,G,Q) =
(0,μ1,μ2):

λ1 = μ1 − μ1th, λ2 = −b1, λ3 = −b2, (5)

where μ1th ≡ 1 + μ2 is called the laser threshold. The zero
intensity steady state is stable if

μ1 < μ1th (6)

and unstable otherwise. Similarly, we may analyze the stability
of the non-zero intensity steady state. The latter emerges from
the steady bifurcation point μ1 = μ1th. The bifurcation is
subcritical if

μ1th − sμ2 < 0 (7)

and leads to a branch of unstable steady states. Close to its
bifurcation point, the steady state intensity is given by

Is = μ1 − μ1th

μ1th − sμ2
, |μ1 − μ1th| → 0. (8)

The branch of unstable steady states grows in intensity as μ1

further deviate from μ1th and folds back at μ1 = μ1L < μ1th.
It then continues to grow in intensity and finally stabilizes
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through a Hopf bifurcation point at μ1H � μ1th [25]. The
condition (7) is verified for the parameters listed in Eq. (4).

The inequality (6) restricts the values of μ1 for a stable
zero intensity steady state. With μ1 < μ1th fixed, we wonder
if a small perturbation may or may not lead to a excitable
laser pulse. A coherent perturbation is described as an initial
perturbation of a stable zero intensity steady state. The initial
conditions then are

I (0) = Ip, G(0) = μ1, and Q(0) = μ2. (9)

This problem was previously considered in [6] in the case
of equal carrier recombination rates (b1 = b2). The authors
developed approximations that do not generalize easily in
the case b1 �= b2. Here, we propose an alternative and more
systematic analytical approach that applies both to coherent
and incoherent perturbations.

The case of an incoherent perturbation considers perturba-
tions on the gain and is described by the initial conditions

I (0) = I0, G(0) = Gp �= μ1, and Q(0) = μ2. (10)

III. TWO VARIABLE LSA EQUATIONS

In order to clearly explain the two types of excitable
responses observed experimentally, we examine the case of
a fast absorber (b2 � b1). In this case, we may eliminate the
carrier for the absorber by a quasi-steady state approximation
and obtain

I ′ =
(

G − 1 − μ2

1 + sI

)
I, (11)

G′ = b1[μ1 − G(1 + I )]. (12)

A. Coherent perturbation

Equations (11) and (12) allow us to analyze trajectories
in the phase-plane (G,I ) without any assumptions on the
parameter values. The I and G nullclines are lines satisfying
Eq. (11) with I ′ = 0 and Eq. (12) with G′ = 0, respectively.
They are given by

(1a) I = 0 and (1b) G = 1 + μ2

1 + sI
(G � 1 + μ2), (13)

(2) G = μ1

1 + I
(G � μ1), (14)

and are shown in Fig. 2. Successful excitable trajectories are
possible if the initial perturbation surpasses the stable manifold
of the saddle. From the equation for the trajectories G = G(I ),

dG

dI
= b1[μ1 − G(1 + I )](

G − 1 − μ2

1+sI

)
I

, (15)

we deduce that the stable manifold is either the straight line
I = 0 or G = Gs(I,b1) given by

Gs = 1 + μ2

1 + sI
+ O(b1) (b1 → 0) (16)

which is close to the nullcline (1b). On the other hand, the
fast unstable manifold G = Gu(I,b1) verifies dG/dI = 0 as
b1 → 0, i.e., Gu equals its steady state value at the saddle. The
two manifolds are shown by broken lines in Fig. 2.

FIG. 2. Coherent perturbation. The curves labeled by 1 and 2
are the nullclines (13) and (14). Their intersections are fixed points
namely, the stable zero intensity steady state (G,I ) = (2,0), the
unstable saddle (G,I ) = (1.7,0.2), and the unstable focus (G,I ) =
(1.3,0.5). Parameter values are μ2 = 2, s = 10, b1 = 10−3,μ1 =
2, G(0) = μ1, and I (0) = 0.11 which is larger than the critical
perturbation Ipc = 0.10. The inset shows the intensity I as a function
of time t .

For a coherent perturbation, we start with the laser resting
at its stable zero intensity steady state (G,I ) = (μ1,0) and
consider the initial conditions:

I (0) = Ip and G(0) = μ1. (17)

Figure 2 represents the early stage of a successful excitable
pulse in the phase-plane (G,I ). The pulse is possible pro-
vided Ip surpasses the stable manifold (separatrix) (16). From
Eq. (16) with Gs = μ1, we determine the critical perturbation
Ipc. The condition for a successful intensity pulse then is

Ip > Ipc ≡ μ2 + 1 − μ1

(μ1 − 1)s
(1 < μ1 < μ1th). (18)

As soon the pulse is initiated, the intensity quickly moves to
high values. Assuming I = O(b−1

1 ), Eqs. (11) and (12) reduce
to

I ′ = (G − 1)I, (19)

G′ = −b1GI (b1 → 0), (20)

in first approximation. Equations (19) and (20) can be inte-
grated in the phase plane because the first-order equation for
dI/dG is separable [25]. We find

I − I (0) = b−1
1 (−(G − G(0)) + ln(G/G(0)). (21)

From Eq. (18), we note that the maximum intensity appears at
G = 1. Since G(0) = μ1 and I (0) = Ip � I , Eq. (21) leads
to ([25] (8.38) p. 190)

Im = b−1
1 [μ1 − 1 − ln(μ1)]. (22)

μ1 is fixed and Ip does not appear in Eq. (22). Therefore, the
amplitude of the excitable pulse doesn’t depend on its initial
stimulus.
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FIG. 3. Perturbation on the gain. The curves labeled by 1 and 2
refer to the two nullclines defined by Eqs. (13) and (14). The parameter
values are μ2 = 2, s = 10, b1 = 10−3, μ1 = 2,I0 = 0.2, and Gp =
3.5. The inset shows the intensity I as a function of t .

B. Incoherent perturbation

An incoherent perturbation is defined as a perturbation on
the gain. The initial conditions now are

I (0) = I0 and G(0) = Gp, (23)

where I0 �= 0 (if I0 = 0, the trajectory follows the line I = 0
until G = μ1). Analyzing the trajectories in the phase-plane
(see Fig. 3) now provides the following conditions for an
excitable pulse:

μ1 < μ1th : Gp > Gpc = 1 + μ2

1 + sI0
+ O(b1), (24)

μ1 > μ1th : Gp arbitrary, (25)

where Gpc is the stable manifold (16) evaluated at I = I0. The
maximum intensity again appears at G = 1. Using Eq. (21)
with G(0) = Gp and I (0) = I0 � b−1

1 , we obtain

Im = b−1
1 [−(1 − Gp) + ln(1/Gp)]. (26)

By contrast to the case of a coherent perturbation, increasing
the perturbation Gp leads to an increase of the maximum
intensity. Physically, the gain perturbation changes the carrier
density and hence the gain of the laser itself, leading to an
increase of the response pulse amplitude.

IV. CLOSE TO THE LSA BIFURCATION POINT

We now wish to analyze the full LSA equations (1)–(3). To
this end, we apply bifurcation techniques and consider |μ1 −
μ1th| and b1,2 as small parameters. Specifically, we analyze the
singular limit b1,2 → 0 and μ1 − μ1th → 0− of Eqs. (1)–(3).
The limit is singular because all three eigenvalues in Eq. (5)
are zero if b1,2 = μ1 − μ1th = 0. The steady bifurcation point
at μ1 = μ1th corresponds to a triple zero eigenvalue.

A. Coherent perturbation

We first analyze the case of a coherent perturbation by
considering the initial conditions (9). Figure 4 illustrates the
emergence of a excitable pulse for different perturbations Ip.
We note in Fig. 4(a) that the amplitude of the intensity remains

FIG. 4. Excitable pulses initiated by a coherent perturbation. The
critical perturbation for excitability verifies the inequality 0.15 <

Ipc < 0.16. (a) Two intensity pulses are initiated by a perturbation Ip

close and far from Ipc.(b) Low intensity phase-plane (G,I ) showing
trajectories for a below and an above critical perturbation. The values
of the parameters are listed in Eq. (4) and μ1 = 2.9.

quasi-constant if we increase Ip. This is consistent with the
experimental observations [see Fig. 1(b)]. Only the spiking
time decreases with Ip. Figure 4(b) shows two trajectories for
two different values of Ip. Only one leads to a successful ex-
citable pulse (Ip = 0.16). The critical perturbation Ipc (0.15 <

Ipc < 0.16) has an analytical approximation derived below and
given by Eq. (42). Using the parameters listed in Eq. (4) and
μ1 = 2.9, we find Ipc � 0.14.

To remove the singularity appearing when b1,2 → 0, we
reformulate Eqs. (1)–(3) in a form whereb1 andb2 are no longer
multiplying the right-hand sides of Eqs. (2) and (3). This is
realized by a particular scaling between b1,2 and the deviations
of G and Q from their steady state values G = μ1 and Q =
μ2, respectively. This scaling is inspired by the singularity
appearing in the equations for a single mode laser and the
method used to remove it (see [25], p. 119). Specifically, we
first introduce a small parameter ε defined by

ε ≡
√

b1 (27)

and assume

b2 = ε2b21 and μ1 = μ1th + εα, (28)

where both b21 and α < 0 are O(1) quantities. Because G(0)
and Q(0) are equal to their steady state values, we introduce
the deviations εg and εq defined by

εg ≡ G − μ1 and εq ≡ Q − μ2, (29)

where both g and q are O(1) functions of time. After inserting
Eqs. (27) and (29) into Eqs. (1)–(3), we obtain

I ′ = (α + g − q)I, (30)

g′ = −εg − (μ1th + εα + εg)I, (31)

q ′ = b21[−εq − (μ2 + εq)sI ], (32)

where prime now means differentiation with respect to time
T ≡ εt . The limit of small recombination rates b1,2 now
correspond to the limit ε → 0 which is no longer singular.
Setting ε = 0 in Eqs. (30)–(32) leads to the following reduced
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FIG. 5. Two trajectories initiated by slightly different perturba-
tions Ip are shown in the (x,I ) phase plane. They have been obtained
by solving numerically Eqs. (37) and (38) with Ip = 0.13 < Ipc �
0.135 and Ip = 0.14 > Ipc. The values of the parameters are listed in
Eq. (4) and μ1 = 2.9.

problem for I , g, and q:

I ′ = (α + g − q)I, (33)

g′ = −μ1thI, (34)

q ′ = −b21μ2sI. (35)

Next introducing

x ≡ g − q, (36)

we obtain from Eqs. (33)–(35) two coupled equations for I and
x given by

I ′ = (α + x)I, (37)

x ′ = (b21μ2s − μ1th)I. (38)

From Eqs. (9) and (29), we note that g(0) = q(0) = 0. The
initial conditions for I and x then are

I (0) = Ip and x(0) = 0. (39)

Dividing Eqs. (37) and (38) side by side, we obtain a first-order
equation for I = I (x) which can be integrated. We find

I = Ip + 1

2(b21μ2s − μ1th)
((α + x)2 − α2). (40)

Figure 5 shows two trajectories in the phase plane (x,I ) for two
distinct values of Ip. A successful excitable pulse is possible
if Ip > Ipc. Ipc is defined as the initial condition that leads to
the saddle (x,I ) = (−α,0). Using Eq. (40), we obtain

Ipc = α2

2(b21μ2s − μ1th)
, (41)

or equivalently, in terms of the original parameters

Ipc = (μ1 − μ1th)2

2(b2μ2s − b1μ1th)
. (42)

We note that a positive value of Ipc requires the inequality

b2μ2s − b1μ1th > 0 (43)

which matches the condition for a subcritical steady bifurcation
(7) only if b2 = b1. If b2 �= b1, the inequality (43) depends on
both b1 and b2 and is a necessary condition for excitability.

With Eq. (41), we may rewrite Eq. (40) as

I = Ip − Ipc + Ipc

α2
(α + x)2. (44)

If Ip < Ipc, the trajectory terminates at I = 0 and

x = −α +
√

α2
Ipc − Ip

Ipc

. (45)

On the other hand if Ip > Ipc, the trajectory is parabolic with a
minimum at x = −α. Using Eqs. (44), (38), and the definition
of Ipc given by Eq. (42), we obtain the following equation for
u = x + α:

u′ = 1

2

(
α2 Ip − Ipc

Ipc

+ u2

)
, u(0) = α. (46)

Equation (46) is the normal form equation for a saddle-node
bifurcation and can be integrated. The onset of a successful
intensity pulse occurs after a time delay. Dubbeldam et al. [6]
defined this delay as the critical time when I (T ) has reached
its minimal value before quickly increasing. The minimum of
I occurs at u = 0 when T = Tc defined as

Tc ≡ − 2

α

√
Ip−Ipc

Ipc

arctan

⎛
⎝ 1√

Ip−Ipc

Ipc

⎞
⎠ (α < 0). (47)

Using Eq. (28) for α and tc = Tc/ε, we obtain

tc = 2

(μ1th − μ1)
√

Ip−Ipc

Ipc

arctan

⎛
⎝ 1√

Ip−Ipc

Ipc

⎞
⎠. (48)

The effect of b2 �= b1 appears in Eq. (48) through Ipc. If Ip −
Ipc → 0, the arctan function approaches π/2 and tc essentially
follows an (Ip − Ipc)−1/2 scaling law typical of trajectories
near a saddle node bifurcation point (see [26], p. 100). On the
other hand, tc is inversely proportional to μ1th − μ1. This is
consistent with the critical slowing down as we approach the
transcritical steady bifurcation point μ1 = μ1th.

B. Incoherent perturbation

We next consider the case of an incoherent perturbation
defined by the initial conditions (10). Figure 6 illustrates the
emergence of an excitable pulse for different perturbations Gp.
By contrast to the case of a coherent perturbation, we note in
Fig. 6(a) that the maximum of the intensity pulse increases
with Gp which is in agreement withe the analysis in Sec. II.
Figure 6(b) shows two numerical trajectories starting from
below and above the critical perturbation Gp = Gpc (2.98 <

Gpc < 2.99). Using the parameters listed in Eq. (4), μ1 = 2.9
and I0 = 10−2, we evaluate the analytical approximation (53)
derived below and obtain Gpc � 2.97 which is close to the
numerical estimate.
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FIG. 6. Excitable pulses initiated by an incoherent perturbation.
(a) Two intensity pulses were initiated by a perturbation Gp close and
far from the critical perturbation. (b) Low intensity phase-plane (G,I )
showing trajectories resulting from a below (Gp = 2.98) and an above
critical perturbation (Gp = 2.99). The values of the parameters are
listed in Eq. (4), μ1 = 2.9, and I (0) = I0 = 10−2.

The analysis of the laser equations in the limit b1,2 → 0 is
similar to the one detailed in the previous subsection. Instead
of Eq. (39), the initial conditions for I and x now are

I (0) = I0 � 1 and x(0) = gp = Gp − μ1th

ε
= O(1).

(49)

A first integration of Eqs. (37) and (38) leads to the trajectory

I = I0 + 1

2(b21μ2s − μ1th)
((α + x)2 − (α + gp)2). (50)

The critical initial condition gp = gpc corresponds to the tra-
jectory leading to the saddle (I,x) = (0, − α). Using Eq. (50),
we find that

gpc = −α −
√

2(b21μ2s − μ1th)I0. (51)

The condition for a successful excitable pulse now is

gp > gpc. (52)

In terms of the original parameters, Eq. (51) takes the form

Gpc = μ1th −
√

2(b2μ2s − b1μ1th)I0. (53)

Using Eq. (51), we may rewrite Eq. (50) as

I = I0 + I0

(gpc + α)2
((α + x)2 − (α + gp)2). (54)

Using then Eqs. (54), (38), and the definition of gpc given
by Eq. (51), the equation for u = x + α takes the form

u′ = 1
2 ((gpc + α)2 − (gp + α)2 + u2), u(0) = gp + α.

(55)

This equation can be integrated. The onset of an intensity pulse
appears after a delay. However, we need to be careful about
its definition. If we define the delay as the time for which the
intensity reaches its minimum as in the previous subsection and
as illustrated in Fig. 6(b) for Gp = 2.99, the initial perturbation
gp needs to satisfy the inequalities

gpc < gp � −α. (56)

See Fig. 7. If gp > −α, the intensity increases monotonically
but without exhibiting a minimum. From the solution, we find

FIG. 7. Two trajectories in the phase plane (x,I ) (a) and their
associated time traces I = I (T ) (b). Parameters are listed in Eq. (4),
μ1 = 2.9, and I (0) = I0 = 10−2. The two trajectories are starting
from initial conditions where (1) x(0) < −α and (2) x(0) > −α,

respectively.

that the minimum of the intensity appears at

Tc = 2√
(gpc + α)2 − (gp + α)2

× arctan

(
−(gp + α)√

(gpc + α)2 − (gp + α)2

)
. (57)

In terms of the original parameters, Eq. (57) implies that tc =
Tc/ε is given by

tc = 2√
F

arctan

(−(Gp − μ1th + μ1 − μ1th)√
F

)
, (58)

where Gpc is defined by Eq. (53) and

F ≡ (Gpc − μ1th + μ1 − μ1th)2

− (Gp − μ1th + μ1 − μ1th)2. (59)

If Gp → G+
pc, F ∼ Gp − Gpc and tc→ ∞ as the inverse of

the square root of Gp − Gpc. This scaling law is again typical
of a solution near a saddle.

V. DISCUSSION

Based on single fiber recordings, Hodgkin [4] identified
different classes of excitability. Type I excitability is char-
acterized by an ‘all-or-nothing’ behavior consisting either of
a significant pulse (that is, an action potential) or a simple
decay back to rest. If the action potential occurs, it has always
roughly the same amplitude. Mathematically, spike generation

062214-6
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FIG. 8. Large pulses in phase-plane. (a) Excitable pulse solution
of Eqs. (11) and (12). μ2 = 2, s = 10, b1 = 10−3, μ1 = 2, G(0) =
3.5. The approximation (21) is the red parabola that perfectly
match the numerical solution. (b) Closed orbit of the Lotka-Volterra
equations. ε = 10−2, u(0) = 10−3, and v(0) = 2. The red parabola is
given by Eq. (64) with v0 = 0.345.

is essentially a two-dimensional phenomenon of the van der
Pol type involving fast activation to produce the rapid upstroke
and slower recovery to produce the subsequent downstroke.
The LSA exhibits the properties of a Type I excitable system
and an initial perturbation of the intensity above threshold
indeed leads to the expected behavior. However, if the initial
perturbation is on the gain, the amplitude of the laser spike sig-
nificantly depends on the amplitude of the initial perturbation.
By analyzing the two variable LSA equations in Sec. III, we
found that the fast dynamics is described by Eqs. (19) and (20),
in first approximation. These equations are not of the van der
Pol type because they admit a one-parameter family of orbits
in phase-plane. Instead, the slow-fast dynamics of the LSA is

of Lotka-Volterra (LV) type as we shall now demonstrate. In
dimensionless form, the LV equations are given by [27]

u′ = u(1 − v), (60)

v′ = εv(u − 1), (61)

where ε is the only parameter. If ε → 0,u = O(ε−1) and v =
O(1), a large part of the orbit in phase-plane is well described
by the reduced equations [28]

u′ = u(1 − v), (62)

v′ = εvu (63)

which are equivalent to Eqs. (19) and (20). With the initial
conditions u = u0 = 0 and v = v0 < 1, trajectories in terms
of u = u(v) are given by

u = ε−1[ln(v/v0) − (v − v0)]. (64)

Figure 8 illustrates the similitude of the LSA and LV responses.
In conclusion we have investigated the emergence of ex-

citable spikes in microlasers with integrated saturable absorber.
Our results clarify the dynamical differences between coherent
and incoherent perturbations and emphasize particular features
of the slow-fast response of the LSA.
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