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Nonlinearity-induced localization in a periodically driven semidiscrete system

R. Driben,1 V. V. Konotop,2 B. A. Malomed,3,4,5 T. Meier,1 and A. V. Yulin5

1Department of Physics and CeOPP, University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
2Centro de Física Teórica e Computacional and Departamento de Física, Faculdade de Ciências,

Universidade de Lisboa, Campo Grande, Ed. C8, Lisbon 1749-016, Portugal
3Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering,

Tel Aviv University, P.O.B. 39040, Tel Aviv, Israel
4Center for Light-Matter Interaction, Tel Aviv University, P.O.B. 39040, Tel Aviv, Israel

5ITMO University, 49 Kronverskii Ave., St. Petersburg 197101, Russian Federation

(Received 12 January 2018; published 18 June 2018)

We demonstrate that nonlinearity plays a constructive role in supporting the robustness of dynamical localization
in a system which is discrete in one dimension and continuous in the orthogonal one. In the linear regime,
time-periodic modulation of the gradient strength along the discrete axis leads to the usual rapid spread of
an initially confined wave packet. Addition of the cubic nonlinearity makes the dynamics drastically different,
inducing robust localization of moving wave packets. Similar nonlinearity-induced effects are also produced in
the presence of a combination of static and oscillating linear potentials. The predicted dynamical localization in
the nonlinear medium can be realized in photonic lattices and Bose-Einstein condensates.
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I. INTRODUCTION

The possibility of Bloch oscillations (BOs) [1], i.e., the
occurrence of a temporally oscillating (ac) electric current
originating from spatial oscillations of the electron charge
density in a crystal biased by a static uniform (dc) electric
field, in the absence of scattering effects, was predicted by
Bloch and Zener almost 90 years ago. Being initially far
from feasible experimental realizations, this prediction caused
debates regarding the actual existence of the BOs, which lasted
for several decades. The proof securing that the BOs should
be physically realizable, as predicted by effective Hamiltoni-
ans that include a finite number of bands, was theoretically
provided in the early 1990s when rigorous upper limits for
the interband tunneling rates had been established; see, e.g.,
Ref. [2]. Also in the 1990s, BOs had been first observed
experimentally in the temporal domain in electrically biased
semiconductor superlattices, using optical interband excitation
by femtosecond laser pulses [3]. A few years later, BOs were
realized with the use of ultracold atoms in optical lattices [4]
measured in the momentum space. Very recently BOs of a
Bose-Einstein condensate (BEC) were observed by the direct
measurement in the real space [5]. Also it was successfully
emulated in optics, using arrayed waveguides [6]. These results
prove that the BO is a general physical effect relevant for a large
class of systems, as also shown in detail by many further works
focused on the subject [7].

In Ref. [6] it was shown that, if the phase velocity of the
waves varies linearly as a function of discrete coordinate n

of waveguides in the array, the position of the light beam is
an oscillating function of propagation distance z, which is
the optical counterpart of the electronic BO dynamics. In the
latter context, the influence of the optical Kerr nonlinearity was
considered too. However, in models of arrayed waveguides,
which include solely the discrete diffraction, the nonlinearity

was shown to produce a destructive effect on the BO dynamics.
On the other hand, it was shown in a recent work [8] that
adding another dimension, with continuous diffraction in that
direction, may result in a constructive effect of the nonlinearity,
viz., localization of the wave packet in space and the emergence
of a quasisolitonic regime of the propagation. Thus, one may
expect the existence of a new species of robust nonlinear
hybrid wave packets, combining features of solitons and Bloch-
oscillating waves. In photonic systems, the robustness of the
hybrid wave packets in the presence of the anomalous group-
velocity dispersion may lead to prediction of resonant radiation
with nontrivial properties, similar to how it was predicted in
the spatial domain under the action of diffraction [9]. This
methodology is conceptually different from several proposed
ways to guide nonlinear waves experiencing BOs in a nonlinear
regime that includes variation of the nonlinearity strength in the
course of the evolution [10,11], in the spirit of the “nonlinearity
management” [12] techniques.

A phenomenon somewhat related to BOs, which may be
induced by time-modulated gradient potentials, is dynamical
localization (DL). It was predicted in Ref. [13] within the
framework of the tight-binding approximation for electrons in
solids. Whereas usually an initially localized wave packet will
spread out when driven by an oscillating bias, DL implies that
the wave packet remains localized. This is the case for a single-
band tight-binding system, when the ratio of the amplitude of
the bias and its modulation frequency takes resonant values,
namely, roots of Bessel function J0. Thus, the conductance,
provided for by the delocalization of the wave packets, vanishes
for such a special choice of the ac bias. Later DL was
studied theoretically for ultracold atoms trapped in optical
lattices [14], where it may be used for the coherent control of
atoms and for the realization of the phase transition between
the superfluid and Mott-insulator states [15]. Furthermore,
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spin-orbit-coupled atoms allow for implementation of DL in a
two-component spinor system [16]. DLs were also predicted
to exist in nonlinear discrete systems [17,18]. The same effect
was also predicted to significantly alter the optical absorption
in semiconductor superlattices and the effective dimensionality
of excitons [19]. In another solid-state setting, a similar
effect was theoretically studied under the action of combined
dc and ac electric fields [20]. DL has been experimentally
observed in atomic systems (see, e.g., Refs. [21] and [22])
and in transport properties of semiconductor superlattices (see
Ref. [23]). DL effects are known too in photonic settings [7,24],
where periodic corrugation of waveguides makes it possible
to optically emulate the time-periodic linear force acting on
a quantum particle and thus realize localization of optical
dynamical modes and Bloch oscillations, as was predicted
theoretically in Ref. [25] and realized experimentally in various
settings [7,24]; see also a review of photonic realizations of DL
and related phenomena in Ref. [26].

The main aim of the present work is to demonstrate that DL
persists in the nonlinear propagation regime for hybrid soliton-
BO wave packets in systems containing an extra continuous
dimension, in addition to the discrete one. We also report
results for a combination of static and oscillating gradient
potentials. In the latter case, the electronic transport is typically
supported by multi-photon-assisted tunneling [27–30]. As pre-
dicted in Ref. [27] for special relations between the amplitude
and modulation frequency of the fields, one can selectively
suppress particular single- or multiple-photon transitions, thus
designing specific transport properties, as shown in Ref. [30]
for semiconductor superlattices. We demonstrate that, in the
semidiscrete system considered here, these effects may persist
in the presence of significant nonlinearity (note that exact DL in
a nonlinear system can be observed only in integrable models
[17]).

The rest of the paper is organized as follows. In Sec. II we
introduce the model and present some considerations for it.
Numerical and analytical results are reported and discussed in
Sec. III. The paper is completed by Sec. IV.

II. THE MODEL AND ANALYTICAL RESULTS
FOR THE LINEAR CASE

Semidiscrete optical systems with intrinsic cubic and
quadratic nonlinearities were theoretically introduced, respec-
tively, in Refs. [31–34] and [35]. Here we start with the
semidiscrete model proposed in Ref. [8] as the system of
linearly coupled Gross-Pitaevskii equations [36] for a BEC
loaded into an array of waveguides or wires, written here in
the normalized form:

i
∂un

∂t
+ 1

2

∂2un

∂x2
+ κ(un−1 + un+1 − 2un)

+ γ (t)nun + g|un|2un = 0. (1)

Here un(x,t) is the mean-field wave function in the nth
waveguide, κ is the array’s coupling constant, γ (t) is the
strength of the time-dependent gradient potential acting in
the discrete direction (n ), and nonlinearity coefficient g > 0
accounts for the intrinsic self-attraction of the BEC. By means
of obvious rescaling, we fix values of κ = 2 and g = 1, except

for setting g = 0 in the consideration of the linear version of
the system.

In terms of optics, Eq. (1), with t and x replaced, respec-
tively, by the propagation distance, z, and reduced time, τ , is the
system of coupled nonlinear Schrödinger equations modeling
the light propagation in an array of coupled optical fibers in
the presence of a transverse linear gradient of the waveguide’s
effective index [31], with the magnitude of the gradient that
may be modulated along z. In the latter case, un are scaled
envelope amplitudes of the electromagnetic waves in the fibers,
the group-velocity dispersion is anomalous, and the cubic
term with g > 0 represents the focusing Kerr nonlinearity.
Alternatively, the same system (1), with x being the transverse
coordinate, models the spatial-domain light propagation in
a stack of parallel planar waveguides, the second derivative
representing the paraxial diffraction in the waveguides [34,37].

As concerns estimates of physical parameters, most relevant
are ones for the above-mentioned spatial-domain realization in
the stacked waveguides. For a typical experimentally relevant
value of the transverse waist of the probe optical beam,
∼10 μm, and its per-layer power, ∼300 kW [38], the unit
of �t = 1 corresponds to ∼0.5 mm in physical units, hence
the modulation frequency ω ∼ 0.1 (relevant to results reported
below) implies the propagation distance ∼3 cm (the length of
the waveguide may be up to ∼10 times larger). Further, the
gradient’s strength γ ∼ 0.1 (which is also relevant to the actual
results) implies the difference in the refractive index between
adjacent cores of the waveguiding system �n ∼ 10−3, which
is a technologically feasible value.

First, we address the transport mechanism in the linear
system, with g = 0 in Eq. (1), keeping solely the discrete
direction in it. For the harmonic format of the time modulation
of the transverse gradient, with

γ (t) = γ0 cos(ωt). (2)

DL is realized if condition

J0(γ0/ω) = 0, (3)

with Bessel function J0, is satisfied [13,14,17,18]. The com-
bined ac-dc-driven regime was analyzed in Ref. [27], and
realization of this effect was elaborated for the photoexcited
electronic transport in semiconductor superlattices in Ref. [30].
Based on those studies, one can predict that, for the time
modulation of the gradient’s strength of the form

γ (t) = γdc + γ0 cos(ωt), (4)

the dynamical transport is suppressed if the following two
conditions are met simultaneously, for integer m:

γdc = mω,Jm(γ0/ω) = 0, (5)

since in this case the m-photon-assisted tunneling vanishes in
the tight-binding limit.

For an initial pulse that is smooth with respect to n, one can
approximate the finite difference in Eq. (1) by the continuum
limit [39], which leads to the two-dimensional (2D) equation
with two continuous coordinates, x and n:

i
∂u

∂t
+ 1

2

∂2u

∂x2
+ κ

∂2u

∂n2
+ γ (t)nu + g|u|2u = 0. (6)
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FIG. 1. Evolution of the wave packet in the linear regime, i.e.,
with g = 0 in Eq. (1), is displayed in the (n,t) (a) and (x,t) (b) planes.
The gradient strength is γ0 = 0.1 and the modulation frequency is
ω = 0.0416, i.e., the ratio γ0/ω ≈ 2.4 is very close to the first root
of the zeroth-order Bessel function J0. Other parameters are κ = 2
and g = 0. The initial condition is taken as per Eqs. (7) and (8) with
a0 = 0.15 and w = 100 (i.e., the initial Gaussian is quite broad).

Bearing this in mind, in the numerical simulations used below
we consider the initial condition of the form

u(0)
n (x) = A(n)

cosh [A(n)x]
(7)

with the Gaussian envelope:

A(n) = a0 exp(−n2/w2). (8)

Thus, we will consider the evolution of the input localized as
sech in the continuous coordinate and as the Gaussian of width
w along the discrete coordinate.

III. RESULTS

First, we examine the evolution of the semidiscrete wave
packet in the linear regime by setting g = 0 in Eq. (1).
Figure 1(a) clearly shows that the wave packet performs regular
oscillations in the discrete (n) direction with period 2π/ω of the
modulation of the gradient potential. As we chose the values
of the gradient strength γ0 = 0.1 and frequency ω0 = 0.0416,
which correspond to the first root of J0 in Eq. (3), the wave
packet remains localized in the n-domain in the course of the
evolution, which is typical for DL; however, the localization
degree is decaying with the increase of t . Concomitantly, the
diffraction along the continuous x axis leads to rapid spreading
of the wave packet, as seen in Fig. 1(b). Thus, in the linear
regime the semidiscrete wave packet suffers delocalization in
the course of its evolution, even when the DL condition (3)
holds.

Next we launch the input into the full nonlinear system,
corresponding to Eq. (1) with g = 1. The other parameters
are same as in Fig. 1, i.e., the ratio of the gradient’s strength
and modulation frequency corresponds to the first root of
J0 in Eq. (3). Figures 2(a) and 2(b) display the nonlinear
evolution in the (n,t) and (x,t) planes, respectively. Now,
instead of the gradual decay of the linear wave packet displayed
in Fig. 1, robust permanent localization of the wave packet

FIG. 2. Long-time evolution of the wave packet in the nonlinear
system, displayed in the (n,t) (a) and (x,t) (b) planes. The figure
demonstrates dynamical localization of the wave packet driven by
the time modulation of the gradient potential, with the strength and
frequency corresponding to the first root of Bessel function J0. The
parameters are γ0 = 0.1 and ω = 0.0416. Other parameters are fixed
as κ = 2 and g = 1, as in other numerical simulations. The initial
condition is given by Eqs. (7) and (8) with a0 = 0.15 and w = 100.

is observed, in both the n and x directions. This and other
examples demonstrate that the nonlinear propagation creates
stable 2D dynamical semidiscrete solitons, which do not exist
in the linearized system.

The dynamical localization is also found when modulation
frequency ω is reduced so that the ratio of γ0 and ω corresponds
to the second root of J0 in Eq. (3), as shown in Figs. 3(a) and
3(b). However, in a still stronger nonlinear regime, correspond-
ing to amplitude a0 which is twice as large, the robustness
of the established wave packets drops significantly, as we
reach the quasi-collapse-driven dynamical regime [31], with
the wave packet splitting, similar to what was reported in
Ref. [8]. Figures 3(c) and 3(d) illustrate this situation. Thus,
similar to the case of the BO (cf. Ref. [8]), the well-pronounced
DL regime occurs at optimal strengths of nonlinearity, which
can be identified by systematic simulations with varying a0

and/or g.
To characterize the dynamics of the wave packet in both

the linear and nonlinear systems, we define the average of
a semidiscrete function, fn(x,t), carried by the wave packet
un(x,t), as

〈f 〉 = 1

P

∫ +∞

−∞

∑
n

fn(x,t)|un(x,t)|2 dx,

with norm P ≡ ∑
n

∫ +∞
−∞ |un(x,t)|2 dx. This definition allows

one to explore average positions of the wave packet along the
x and n directions, i.e., 〈x〉 and 〈n〉, respectively. Furthermore,
we define a deformation parameter characterizing “combined”
changes of the wave packet’s widths in the course of the
evolution [8]:

�(t) =
√

[N (t) − N (0)]2 + [X(t) − X(0)]2 , (9)

where average widths of the wave packet in the n and x

directions are

N (t) =
√

〈n2〉 − 〈n〉2, X(t) =
√

〈x2〉 − 〈x〉2. (10)
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FIG. 3. The long-time evolution of the wave packet in the nonlin-
ear system in the (n,t) (a) and (x,t) (b) planes, respectively. Panels (a)
and (b) display the dynamical localization of the wave packet driven
with the modulation frequency corresponding to the second root of
the Bessel function J0 [see Eq. (3)]. Accordingly, the parameters are
chosen as γ0 = 0.1, ω0 = 0.0181, and a0 = 0.15. Panels (c) and (d)
display the evolution for the same parameters as in (a) and (b), but
with a larger input amplitude, a0 = 0.3.

If deformations with respect to n and x are strongly anisotropic,
� estimates the largest one. For the ideal case of a totally robust
DL, �(t) would remain time independent, while growing or
decreasing �(t) corresponds to ongoing deformation of the
wave packet. These indicators, pertaining to the dynamical
regimes displayed in Figs. 2(a) and 2(b) and 3(a) and 3(b), are
presented, severally, in three top and three bottom panels of
Fig. 4. It is clearly observed that the growth of the soliton’s
width in the course of the long-time evolution is strongly
suppressed. Furthermore, the top panel in Fig. 4 demonstrates
that the soliton may even slowly shrink in the x direction. Thus,
we conclude that in the optimal nonlinear regime, supporting
the robust wave packets in the semidiscrete 2D model, a
system that was introduced in Ref. [8], supports stable DL
as well. In Fig. 4 the characteristics of the linear-propagation
regimes are plotted by dashed curves along with solid curves
representing their nonlinear counterparts for the same values
of the parameters, except for g = 0 in the linear system. It is
clearly seen that, in the latter system, the packets spread fast in
the x direction, leading to fast growth of �(t), in contrast with
the robust self-trapping of the quasisolitons in the full nonlinear

FIG. 4. The temporal evolution of the overall spread of the wave
packet �(t), together with its N and X components [see Eqs. (9)
and (10)]. Examples of the DL, displayed in Figs. 2(a) and 2(b)
and 3(a) and 3(b), are shown here in the three top and three bottom
panels, respectively. Dashed curves show the same characteristics for
the linear propagation regimes, with the same values of the control
parameters, except for g = 0.

model. For the comparison, all the parameters besides the
switched-off nonlinear interaction were taken as similar. After
a very long evolution, such as corresponding to t = 12 000
for the case presented in Fig. 2 and in three upper panels of
Fig. 4, the wave packets undergo splitting, which makes the
description in terms of Fig. 4 irrelevant. However, the estimate
of the values of physical parameters for the realization of the
present system in optics, given above, implies that so large
values of t correspond to the propagation distance which is
∼100 times larger than the limit achievable in the experimental
setting.

Our model also proves its effectiveness in the case of the
combined ac-dc modulation of the gradient’s strength, taken as
per Eq. (4). As mentioned above, in this case the stabilization

FIG. 5. The evolution of the wave packet in case of the combined
ac-dc modulation of the gradient’s strength, defined as per Eq. (4),
with the parameters corresponding to the first nontrivial zero of
J1, which is γ0/ω ≈ 3.8317. The parameters are γdc = ω = 0.0261,
which corresponds to m = 1 in Eq. (5), and γ0 = 0.1.
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occurs at frequencies obeying Eq. (5), i.e., they pertain to
zeros of the Bessel functions of the order higher than zero.
In particular, Fig. 5 demonstrates robust long-time evolution
of the wave packet under the action of the combined ac-dc
drive with γdc = ω = 0.0261, which corresponds to m = 1 in
Eq. (5), γ0 = 0.1 being the same as in Fig. 2. At other values of
parameters satisfying Eq. (5) the combined dc-ac modulation
pattern (4) produced very similar results.

IV. CONCLUSIONS

To study the effect of dynamical localization (DL) in
nonlinear settings, we have introduced a semidiscrete 2D
system, driven by the gradient potential with the time-periodic
(ac) strength, applied in the discrete direction. In the absence
of the nonlinearity, direct simulations demonstrate straightfor-
ward spreading of localized inputs, even if they satisfy the
specific DL condition known from previous studies of linear
models. The situation is found to be altogether different in
the system with the cubic nonlinearity: in a certain range
of the nonlinearity strength, the system features robust self-

trapping of well-localized wave packets. In the presence of
the nonlinearity, similar DL effects are also produced by the
application of the gradient potential subject to the combined
dc-ac temporal modulation. The DL effects predicted by the
present analysis may be implemented in an effectively 2D
BEC, loaded into a quasi-1D lattice potential, as well as
in optics, in the temporal and spatial domains alike, using,
respectively, an array of nonlinear fibers or a stack of planar
waveguides.
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