
PHYSICAL REVIEW E 97, 062209 (2018)

Finding the Hannay angle in dissipative oscillatory systems via conservative perturbation theory
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Usage of a Hamiltonian perturbation theory for a nonconservative system is counterintuitive and, in general,
a technical impossibility by definition. However, the time-independent dual Hamiltonian formalism for the
nonconservative systems has opened the door for using various conservative perturbation theories for investigating
the dynamics of such systems. Here we demonstrate that the Lie transform Hamiltonian perturbation theory can
be adapted to find the perturbative solutions and the frequency corrections for the dissipative oscillatory systems.
As a further application, we use the perturbation theory to analytically calculate the Hannay angle for the van der
Pol oscillator’s limit cycle trajectory when its parameters—the strength of the nonlinearity and the frequency of
the linear part—evolve cyclically and adiabatically. For this van der Pol oscillator, we also numerically calculate
the corresponding geometric phase and establish its equivalence with the Hannay angle.
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I. INTRODUCTION

In 1956 [1], Pancharatnam identified a geometrical phase
while investigating the rotation of the polarization of the
light beams interacting with crystals. Thereafter, there have
been reports of geometric phases in various types of phys-
ical systems [2], e.g., in neutron optics, nuclear magnetic
resonance, quantum mechanics [3], molecular systems [4],
robotics [5,6], control theory [7], and even in stock trading [8].
The phase exclusively depends on the geometrical pathway
followed by the system in the parameter space; hence the
adjective geometrical. Although nonadiabatic counterparts
exist, the geometric phases are more traditionally recognized
with the phase changes accumulated as the time-dependent
periodic parameters evolve adiabatically. The discovery of the
mechanical analog of such a phase was surprisingly delayed
and is now known as the Hannay angle [9] after its discoverer.

The calculation of the Hannay angle for conservative
systems is a textbook exercise [10] in which the system needs
to be expressed in terms of the action-angle variables. This
presents a problem for the case of dissipative systems where an
action-angle formalism is not possible. However, this problem
has been circumvented for a class of dissipative systems, and a
method to find their geometric phases has been proposed [11].
Such geometrical phases have been calculated for nonlinear
dissipative systems with continuous spatial symmetries [12]
and applied to laser physics [13]. This theory has been further
exploited to calculate the phase shift of a wave front in a
reaction-diffusion model [14]. The geometrical phase shift has
also been identified in cell division cycles [15]. Intriguingly,
one can show [16] that the Hannay angle of a generalized
harmonic oscillator, possessing a Hamiltonian, is related to
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the geometric phase of a damped harmonic oscillator with
time-dependent parameters. It is, however, not known if the
geometric phase of any high-dimensional dissipative oscilla-
tory system is equivalent to the Hannay angle of a related
conservative system. Moreover, the aforementioned method
has a limited scope and cannot be extended to find the quantum
mechanical analogs of the geometrical phases because of the
absence of Hamiltonians.

Fortunately, Hamilton’s principle of stationary action, in
principle, allows for writing Lagrangians for nonconservative
systems and connecting them with corresponding equations of
motions via the principle of stationary action. This is so because
the principle has a subtle advantage over some other action
principles (e.g., Maupertuis principle): It does not require
energy to be conserved over the paths for which actions are
calculated and extremized to arrive at the equations of motion.
The only problem is, although for a conservative system
there is a general prescription of writing Lagrangian (viz.,
the Lagrangian is the difference between the potential and the
kinetic energies of the system), no such general prescription is
available otherwise. But researchers have found some such La-
grangians and hence their Legendre duals, Hamiltonians, e.g.,
the Caldirola-Kanai Hamiltonian [17,18] for a damped simple
harmonic oscillator, Hamiltonians for dissipative nonlinear
oscillators via the Jacobi last multiplier method [19,20] and via
the extended Prelle-Singer method [21,22], etc. All these are
either time-dependent Hamiltonians or are time independent
but globally not defined in the corresponding phase spaces.
With a view to writing time-independent globally defined
Hamiltonians for general nonlinear systems and subsequently
investigating the issue of quantization of such systems, one
can improvise on Bateman’s dual Hamiltonian [23] for the
damped harmonic oscillator to propose a scheme [24] for
writing Hamiltonians for Liénard systems [25].

Such a scheme can be formalized by the use of Hamilton’s
principle with initial data [26]. However, this formalism has
a caveat that, in order to write the Hamiltonian, the phase
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space of the system under consideration is extended such
that there are double the original number of canonically
conjugate variables. As a consequence, the Hamiltonian leads
to two coupled equations of motion that includes an auxiliary
equation of motion describing the evolution of those variables
which are not a part of the original system. In this paper,
however, we put this caveat to good use by inventing an
oxymoronic perturbation method. In this method, the Lie
transform Hamiltonian perturbation theory (LTHPT) [27–29]
has been employed to find the amplitude and the frequency
perturbatively for an oscillatory state of a nonconservative
Liénard system. The preceding sentence appears counterin-
tuitive because the perturbation theory is, by definition and
construction, meant to be explicitly used only for conservative
Hamiltonian systems. It must be appreciated that, in the context
of the present paper, developing such a perturbation method
is of paramount practical importance because, even if one
manages to obtain a Hamiltonian formalism for the nonlinear
limit cycle systems (and hence find the corresponding action-
angle variables and the Hannay angles), one must calculate the
Hannay angle via perturbation techniques because nonlinear
differential equations are mostly not analytically solvable.

Another such perturbation method specific to Hamilto-
nian systems, viz., canonical perturbation theory (see, e.g.,
Ref. [10]), has recently been generalized [24] to accommodate
the van der Pol oscillator (vdPO) [30]—which is a Liénard
system that possesses a stable limit cycle solution by virtue
of its nonlinear and dissipative nature—in its scope (see also
Refs. [31,32]). The main idea is to choose the initial conditions
pertaining to the auxiliary equation to the vdPO—termed the
auxiliary van der Pol oscillator—in such a way that the inherent
problem of small denominators is avoided order by order up to
second order in nonlinearity. Such a liberty with the auxiliary
vdPO is possible because its unidirectional coupling with the
vdPO makes it dynamically inconsequential as far as the evolu-
tion of the vdPO is concerned. But there are at least two practi-
cal limitations of this generalization: (i) The method becomes
analytically intractable as results for higher orders in nonlin-
earity are sought, and (ii) even if the higher order calculations
are addressed by brute force, the notorious problem of small
denominators makes the method useless beyond second order.

In this paper, using the paradigmatic vdPO for the sake of
concreteness and without any loss of generality, we illustrate
how our method—based on the LTHPT—can yield the ampli-
tude, the frequency, and most importantly the Hannay angle
for the limit cycle systems. To this end, we first succinctly
discuss the classical geometric phases in Sec. II and then
proceed to develop the method in Sec. III. Before concluding
in Sec. V, we find the Hannay angle perturbatively in Sec. IV
by employing the method on the vdPO when its parameters
are time dependent. We also establish the angle’s equivalence
with the corresponding geometric phase associated with the
limit cycle systems.

II. CLASSICAL GEOMETRIC PHASES

Consider a system with “d” degrees of freedom,
described by time-dependent Hamiltonian H [q,p; λ(t)],
where q = {q1,q2, . . . ,qd} are the generalized coordinates,
p = {p1,p2, . . . ,pd} are the generalized momenta, and λ(t) =

{λ1(t),λ2(t), . . . ,λN (t)} are N � 2 time-dependent parame-
ters. When the parameters are constant, the system is assumed
to be completely integrable which implies that one can express
the Hamiltonian in terms of the action-angle variables (I,φ).
The total change over a time T in one of the angle variables,
when the parameters are allowed to change with time, can be
written as

�φ =
∫ T

0
ω(λ(t))dt +

∫ T

0
dt λ̇ ·

(
∂φ

∂λ

)
q,p

. (1)

Here, ω is the corresponding frequency of the system with the
parameters held constant. The first term in Eq. (1) is known
as the dynamic phase. It is the second term, which is of our
interest, which is almost impossible to calculate exactly if a
priori knowledge ofφ as a function ofλ is not known. However,
if the parameters are varied adiabatically and periodically with
a time period of T � 2π/ω, then one can approximate this
term by averaging to define the Hannay angle (φH ) as follows:

φH ≡
∮

A · dλ, (2)

where

A ≡ 1

(2π )d

∫ 2π

0

∫ 2π

0
· · ·

∫ 2π

0

d∏
i=1

dφi

(
∂φ

∂λ

)
q,p

. (3)

Note that we have closed a loop in the parameter space to obtain
the Hannay angle (φH ).

It is evident that the action-angle variables and, hence, the
Hamiltonian formulation is of the central most importance in
obtaining the Hannay angle for a given system. This presents
a problem for the case of dissipative systems where such a
Hamiltonian formulation is difficult to obtain. Nevertheless, a
geometric phase for dissipative oscillatory systems with limit
cycles has been proposed in Ref. [11] and numerically obtained
for various models of chemical oscillators [33,34]. We now
very briefly discuss the geometric phase for a two-dimensional
dissipative system (viz., the vdPO) possessing limit cycles.
Such a system with slowly varying parameters is represented
by the following set of differential equations:

dr

dt
= f (r,θ,λ), (4a)

dθ

dt
= 	(r,θ,λ), (4b)

in radial-polar coordinates.
Let the equation for the limit cycle, which exists for constant

λ, be given by r = R(θ,λ). The parameters are changing
adiabatically and periodically with the time period T , i.e.,
1/ω � T . Therefore, the dynamics about the limit cycle can
be described by the variable z = r − R(θ,λ) that denotes
the small deviations about the limit cycle. It can further be
shown [11] that z = λ̇ · ζ (θ,λ) up to first order in (ωT )−1,
where ζ is a vector function with no explicit time dependence.
Thus, up to the first order in z, Eq. (4b) becomes

dθ

dt
= 	(θ,λ) + z

∂	

∂z
(θ,λ), (5)

where 	(θ,λ) ≡ 	[R(θ,λ),θ,λ].
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Now, it is customary to use a reparametrizing variable (ψ)
such that the angular frequency is well defined and constant
(for a fixed value of λ) up to leading order in z, i.e., we define

ψ(θ,λ) ≡ ω(λ)
∫ θ

0

dθ ′

	(θ ′,λ)
. (6)

Here, ω(λ) ≡ 2π [
∫ 2π

0 dθ/	(θ,λ)]
−1

is the frequency of the
limit cycle trajectory when the parameters are held constant.
Hence,

ψ̇ = ∂ψ

∂θ
θ̇ + ∂ψ

∂λ
· λ̇, (7)

⇒ dψ = ω(λ)dt + dλ · ζω(λ)
∂ ln 	

∂z
(θ,λ) + ∂ψ

∂λ
, (8)

where we make use of Eq. (5). The dynamic phase is given
by

∫ T

0 ω(λ)dt . The geometric phase (ψG) is obtained from the
remaining two terms in Eq. (8) which are averaged over a full
cycle parametrized by ψ followed by an integration over the
closed loop in the parameter space, i.e.,

ψG ≡
∮

A(diss) · dλ, (9)

where

A(diss) ≡ ω(λ)

2π

∫ 2π

0

dθ

	(θ,λ)

(
ζω(λ)

∂ ln 	

∂z
(θ,λ) + ∂ψ

∂λ

)
.

(10)

It is intriguing to note that, although the second term on the
right hand side of Eq. (10) also appears in phase shifts for
one-dimensional flows on a circle, the first term is exclusive
to two-dimensional limit cycle systems—which are our main
interest in this paper.

Now consider a case where we fortunately have some sort of
Hamiltonian formulation for a dissipative oscillatory system.
Then a situation arises where both ψG and φH can exist when
the parameters are varying adiabatically. Is there a relation
between them? We anticipate that the answer to this question
is in the affirmative because, for the case of one-dimensional
flow on a circle, it has been shown [35] that, in principle,
the geometric phase follows from the canonical equations of
motion and can be identified with the Hannay angle of the
underlying Hamiltonian system. However, it is nontrivial to
formally prove a similar connection generically for higher-
dimensional systems. In this paper, we confine ourselves in
trying to illustrate a similar connection for two-dimensional
Liénard systems possessing limit cycles by taking the example
of the vdPO. It must also be emphasized that the vdPO,
along with its variations, has been very useful in model-
ing several realistic systems across disciplines, e.g., physics
[36–39], chemistry [40], biology [41,42], mathematics [43],
economics [44], and seismology [45]. It must be emphasized
that in our endeavor we have to surmount the technical obstacle
of calculating the Hannay angle perturbatively because most
often (e.g., for the vdPO) we cannot solve the equations exactly.
To this end, in the next section, after utilizing the auxiliary
vdPO to construct a Hamiltonain formalism for the vdPO, we
lay out the procedure of the LTHPT tuned to our purpose.

III. THE LTHPT FOR THE vdPO

The LTHPT is a specific type of Lie transform perturbation
theory wherein, such as in canonical perturbation theory,
canonically conjugate variables of the Hamiltonian systems
are explicitly put into use. Its variational formulation has
also been developed [46]. It may be mentioned that the
symplectic structure of Hamiltonian systems has been utilized
in developing other methods, e.g., ones that handle strongly
perturbed systems [47]. Although debatable [48,49], it is
generally believed that Hamiltonian perturbation theories are
advantageous in comparison to non-Hamiltonian perturbation
theories because, in contrast to finding normal forms of vector
fields in the latter, one only has to formally deal with a scalar
function (Hamiltonian) in the former.

It must be remarked that the idea of introducing an auxiliary
equation is a well-established concept. In fact, it can be
shown [32] that any n-dimensional nonconservative motion
can be embedded in a 2n-dimensional space to arrive at a
canonical structure for the extended system. Specifically, if
there is an arbitrary n-dimensional autonomous system ẋ =
f(x) (x being the position vector of a phase point and f being
a smooth phase velocity vector field), it can be augmented
by introducing another coupled n-dimensional equation ẏ =
−[Df(x)]T y so that the entire 2n-dimensional system admits
a Hamiltonian, H = yT f(x) (yT is a transpose of y). However,
such an extended system and, thus, its Hamiltonian are not
unique. Although this Hamiltonian when used for the per-
turbative analysis of the vdPO does not explicitly encounter
the problem of small denominators, the Hamiltonian given by
Eq. (13) does. The main advantage of the latter Hamiltonian is
that it can be seen as an extension of the Bateman Hamiltonian
which forms the basis of several attempts [50,51] for develop-
ing a formalism of quantizing dissipative systems. Hence, how
to use this particular Hamiltonian for carrying out the LTHPT
while confronting the problem of small denominators is not
only an open problem, but also of important research interest.

Without further ado, we now employ the LTHPT on the
vdPO and discuss in a fairly detailed fashion how the Hamil-
tonian perturbation theory can be employed for the dissipative
system.

This mathematical process plays a pivotal role in obtaining
the action-angle variable of our system in the form of a series.
As a side result we will obtain the frequency correction and
the amplitude correction for the vdPO up to O(ε4) and O(ε3),
respectively. The vdPO can be mathematically described by
the following second order differential equation:

ẍ(t) + ε[x(t)2 − 1]ẋ(t) + ω2x(t) = 0, (11)

where ω can be considered as the unperturbed frequency
when the nonlinearity is absent i.e., ε = 0. It possesses a
limit cycle of amplitude two units and frequency ω for small
positive ε. Naturally, the presence of the attractor means that
the system is dissipative and cannot be described globally by
a time-independent Hamiltonian. However, by extending the
phase space of the vdPO by including a unidirectionally driven
auxiliary system mathematically given by

ÿ(t) − ε[x(t)2 − 1]ẏ(t) + ω2y(t) = 0, (12)

a Hamiltonian formulation can be effected.
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Note that Eqs. (11) and (12) describe how a phase point
(x,ẋ,y,ẏ) moves in a four-dimensional Euclidian space; the
projection of the corresponding phase trajectory on the (x,ẋ)
plane represents the solution of the vdPO. Most importantly
the auxiliary vdPO equation [Eq. (12)] is dynamically incon-
sequential for our purpose as it does not give any feedback to
the vdPO. Both equations for the vdPO and the auxiliary vdPO
are obtainable from the following single Hamiltonian:

H (x,y,px,py) = pxpy + ω2xy + ε(x2 − 1)ypy. (13)

Here, the corresponding Lagrangian is L = ẋẏ − ω2xy −
ε(x2 − 1)ẋy, and hence the generalized momenta are given
by px = ∂L/∂ẋ and py = ∂L/∂ẏ.

Coming back to our main calculations, we now perform a
canonical transformation (x,y,px,py) → (X,Y,PX,PY ) using
a generating function F2(x,y,PX,PY ) = PX(x + y)/

√
2 +

PY (x − y)/
√

2 to write the unperturbed part of the Hamil-
tonian in terms of a Hamiltonian resembling the one for
two uncoupled harmonic oscillators. The new Hamiltonian
H (X,Y,PX,PY ) is found to be

H (X,Y,PX,PY )

= P 2
X

2
+ ω2 x2

2
−

(
P 2

Y

2
+ ω2 Y 2

2

)

+ ε

(
PX − PY√

2

)(
X − Y√

2

)[
1

2
(X + Y )2 − 1

]
. (14)

In the LTHPT, the Hamiltonian of Eq. (14) is initially written
in terms of (α(0)

1 ,α
(0)
2 ,β

(0)
1 ,β

(0)
2 ) coordinates which are obtained

by solving the Hamilton-Jacobi equation for the unperturbed
(ε = 0) Hamiltonian. The new variables (α(0)

1 ,α
(0)
2 ,β

(0)
1 ,β

(0)
2 )

are related to the old variables (X,Y,PX,PY ) by the following
relations:

X =
√

2α
(0)
1

ω
sin

[
ω

(
t + β

(0)
1

)]
, (15a)

Y =
√

2α
(0)
2

ω
sin

[
ω

(
t − β

(0)
2

)]
, (15b)

PX =
√

2α
(0)
1 cos

[
ω

(
t + β

(0)
1

)]
, (15c)

PY = −
√

2α
(0)
2 cos

[
ω

(
t − β

(0)
2

)]
. (15d)

The transformed Hamiltonian H (α(0)
1 ,α

(0)
2 ,β

(0)
1 ,β

(0)
2 ,t) thus

is expressible as a formal series,

H
(
α

(0)
1 ,α

(0)
2 ,β

(0)
1 ,β

(0)
2 ,t

) =
∞∑

n=0

εn

n!
Hn, (16)

where Hi = δi1H1, δi1 being the standard Kronecker δ. A
near-identity transformation is introduced from the variables
(α(0)

1 ,α
(0)
2 ,β

(0)
1 ,β

(0)
2 ) to another set of variables (α1,α2,β1,β2).

Let the generating function of infinitesimal canoni-
cal transformation S(α1,α2,β,β2,t) result in Hamiltonian

K(α1,α2,β1,β2,t). We also write

K(α1,α2,β1,β2,t) =
∞∑

n=0

εn Kn

n!
, (17a)

S(α1,α2,β1,β2,t) =
∞∑

n=0

εn Sn+1

n!
. (17b)

Up to O(ε4), i.e., fourth order in ε, Hn and Kn are related
as [52]

K0 = H0 = 0, (18a)

K1 = H1 − DS1

Dt
, (18b)

K2 = H2 + L̂1H1 + Ĝ1K1 − DS2

Dt
, (18c)

K3 = H3 + L̂1H2 + 2L̂2H1 + 2Ĝ1K2

+ Ĝ2K1 − DS3

Dt
, (18d)

K4 = H4 + L̂1H3 + 3L̂2H2 + 3L̂3H1 + 3Ĝ1K3

+3Ĝ2K2 + Ĝ3K1 − DS4

Dt
. (18e)

Here,

DSn

Dt
= ∂Sn

∂t
− L̂nH0, n � 1, (19a)

L̂nf =
2∑

i=1

∂f

∂βi

∂Sn

∂αi

− ∂f

∂αi

∂Sn

∂βi

, (19b)

Ĝ1 = L̂1, (19c)

Ĝ2 = L̂2 − L̂2
1, (19d)

Ĝ3 = L̂3 − L̂1
(
L̂2 − L̂2

1

) − 2L̂2L̂1. (19e)

In Eqs. (18b)–(18e), Kn and Sn are unknowns.
According to the LTHPT, Kn is chosen to contain long-

period terms, whereas Sn contains short-period terms. Here,
long and short periods are with respect to the period of the
oscillatory dynamics described by the unperturbed Hamilto-
nian. A standard procedure [29] is employed to obtain Kn

and Sn, e.g., in Eq. (18b) K1 is obtained by averaging the
equation over the time period of the unperturbed oscillatory
state. Consequently, S1 is obtained after solving the first
order partial differential equation that results on putting the
value of K1 back in Eq. (18b). The final objective of the
method is to make the transformed Hamiltonian integrable,
meaning K should be a function of only α1 and α2. However,
as illustrated in Appendix A, if any resonance condition is
satisfied by the Hamiltonian (e.g., two constituent frequencies
of the unperturbed part are same), the problem of small
denominators appears making S1 (for that matter any Sn)
divergent and aperiodic. In a bid to get rid of the divergences
in S1, the long-period secular terms on the rhs of equation
∂S1/∂t = H1 − K1 may be absorbed in K1. Unfortunately,
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such a scheme yields K1 (and similarly Kn) that is a function
of β1 and β2 as well. Clearly, if one can propose a scheme to
bypass this problem to reach at the correct perturbative results
for the vdPO’s limit cycle, then that would be a useful result.
In what follows, we accomplish exactly this.

To this end, we try to see whether there exists an initial
condition for which it is possible to solve the canonical equa-
tions of motion analytically. For convenience, the equations of
motion are represented symbolically as

α̇1 = −∂K

∂β1
= f1(α1,α2,β1,β2), (20a)

β̇1 = + ∂K

∂α1
= f2(α1,α2,β1,β2), (20b)

α̇2 = −∂K

∂β2
= f3(α1,α2,β1,β2), (20c)

β̇2 = + ∂K

∂α2
= f4(α1,α2,β1,β2). (20d)

The exact expressions are given in Appendix B. Henceforth,
in this section, all the equations are written up to O(ε4)
unless otherwise specified. Now the plan is to make use of
the expressions of f1, f2, f3, and f4 as explained below in
order to choose an initial condition for which it is convenient
to solve Eqs. (20a)–(20d).

We observe that f1 = f3 which implies if the initial condi-
tion is chosen to be such that

α1(0) = α2(0), (21)

then we conclude, after subtracting Eq. (20a) from Eq. (20c),

α1(t) = α2(t). (22)

Using the immediately preceding relation, the four first order
differential equations (20a)–(20d) reduce to the following three
independent first order differential equations:

α̇1 = g1(α1,β1,β2) = f1(α1,α1,β1,β2), (23a)

β̇1 = g2(α1,β1,β2) = f2(α1,α1,β1,β2), (23b)

β̇2 = g4(α1,β1,β2) = f4(α1,α1,β1,β2). (23c)

Next, we note that if we choose the initial conditions such
that

β1(0) = −β2(0), (24)

then it can be shown that

β1(t) = −β2(t). (25)

This can be proved by the change in variables (α1,β1,β2) →
(α1,γ1,γ2) in Eqs. (23a)–(23c), where γ1 = β1 + β2 and γ2 =
β1 − β2 and the equations reduce to the following form:

γ̇1 = h1(α1,γ1,γ2) = h10(α1,γ1,γ2) sin γ1, (26a)

γ̇2 = h2(α1,γ1,γ2), (26b)

α̇1 = h3(α1,γ1,γ2). (26c)

Hence, γ1(0) = β1(0) + β2(0) = 0 is a fixed point of the
γ1’s flow. We remark here that h10 is finite for γ1 = 0.

Owing to Eqs. (22) and (25), Eqs. (20a)–(20d) reduce to
two unidirectionally coupled first order differential equations
which are found to be

α̇1 =
(

α1 − α2
1

ω2

)
ε +

(−9α4
1 + 16α3

1ω
2 − 8α2

1ω
4

32ω8

)
ε3, (27a)

β̇1 =
(−11α2

1 + 12α1ω
2 − 2ω4

16ω6

)
ε2 +

(
− 2527α4

1

3072ω12
+ 5032α3

1ω
2 − 3052α2

1ω
4 + 528α1ω

6 − 24ω8

3072ω12

)
ε4. (27b)

These two equations can, in principle, be solved by quadra-
ture. In order to appreciate the meaning of Eqs. (27a) and (27b)
in the context of the dynamics of original variables (x,ẋ) of the
vdPO, we first need to write the relationship between the initial
coordinate values [as in Eqs. (21) and (24)] in terms of original
variables (x,y,ẋ,ẏ) of the dual vdPO system. Recall that the
vdPO and the auxiliary vdPO are unidirectionally coupled, i.e.,
the dynamics of the vdPO is not affected by the dynamics of
the auxiliary vdPO. Hence, no initial condition for the auxiliary
vdPO alters the dynamics of the isolated vdPO.

It is easily shown that the specific choice of initial
conditions—y(0) = 0 and ẏ(0) = 0—for the auxiliary vdPO
corresponds to

X(0) = Y (0), PX(0) = −PY (0), (28)

which means for (α(0)
1 ,α

(0)
2 ,β

(0)
1 ,β

(0)
2 ),

α
(0)
1 (0) = α

(0)
2 (0), β

(0)
1 (0) = −β

(0)
2 (0). (29)

Now, by writing the variables (α1,α2,β1,β2) in terms of the
variables (α(0)

1 ,α
(0)
2 ,β

(0)
1 ,β

(0)
2 ) using the inverse transformation

algorithm of Lie transforms, one concludes that Eqs. (21)
and (24) are satisfied when y(0) = ẏ(0) = 0. Summarizing, we
have essentially exercised our freedom in choosing an arbitrary
initial condition for the auxiliary vdPO and shown that the
selection of its fixed point as the preferred initial condition
leads to Eqs. (27a) and (27b).

The fixed point of Eq. (27a) is

α1 = α1(t) = ω2 − ε2

32
+ O(ε4), (30)

apart from the trivial one α1 = 0. The physical meaning of
the fixed points is easily understandable in the phase space of
the vdPO and the auxiliary vdPO. Note that we have already
chosen the full system to be at the fixed point of the auxiliary
vdPO. Therefore we need to concern ourselves only with the
phase space of the vdPO. Fixed point α1 = 0 corresponds
to the fixed point (focus or spiral) at the origin of the phase
space for the vdPO. The more interesting fixed point is the
one given by Eq. (30). This must correspond to the limit cycle
in the vdPO’s phase space. Recall that we are interested in
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the corrections to the frequency of this limit cycle due to
nonlinearity. Coming back to our calculations, substituting
Eq. (30) in Eq. (27b) leads to

β̇1 = − ε2

16ω2
+ 17ε4

3072ω4
. (31)

Now, using Eqs. (15a)–(15d) and the canonical relation
(x,y,px,py) → (X,Y,PX,PY ), we obtain

x =
√

α
ł(0)
1

ω
sin[ω(t + β

(0)
1 )] +

√
α

(0)
2

ω
sin[ω(t − β

(0)
2 )]. (32)

Using Eqs. (22), (25), and (30), the analytical solution for the
vdPO up to O(ε3) is obtained by rewriting Eq. (32) in terms
of variables (α1,α2,β1,β2),

x(t) = 2 sin B1 − ε

(
cos 3B1

4ω

)

+ε2

(
sin B1

64ω2
+ 3 sin 3B1

32ω2
− 5 sin 5B1

96ω2

)

+ε3

(
13 cos B1

256ω3
+ 15 cos 3B1

512ω3

− 85 cos 5B1

2304ω3
+ 7 cos 7B1

576ω3

)
. (33)

Here, B1 = ω(t + β1). From the immediately preceding
equation, the frequency of the limit cycle of the vdPO comes
out to be

Ḃ1 = ω(1 + β̇1) = ω − ε2

16ω
+ 17ε4

3072ω3
+ O(ε5). (34)

These frequency corrections would be exactly in conformity
with the results obtained using other perturbation methods [29],
such as the Poincaré-Lindstedt technique, the multiple time
scales method, equivalent linearization [53], etc.

IV. THE HANNAY ANGLE VIA THE LTHPT

We are now prepared to apply the LTHPT to calculate the
Hannay angle for the limit cycle trajectory of the vdPO using a
time-independent Hamiltonian given by Eq. (14). We, however,
must use the action-angle variables instead of the canonical
coordinates used in the previous section because the Hannay
angle is defined through them.

We allow λ = {λ1,λ2} ≡ {ω,ε} to be the time-dependent
parameters. The vdPO with time-dependent ε is interesting in
its own right [54]. For the purpose at hand, we assumeω and ε to
adiabatically change with time. Once a Hamiltonian formalism
for the vdPO is obtained, we can calculate the Hannay angle
via the standard technique mentioned in Sec. II. Therefore, our
next task is to calculate the action-angle variables for the dual
vdPO system when the parameters are constant. The primary
challenge towards this objective is that the vdPO system cannot
be solved analytically and therefore the angle variables for the
entire system are attained perturbatively as a power series in ε.
The terms of this series will be calculated up to O(ε2) via the
LTHPT [29].

We proceed to write the Hamiltonian of Eq. (14) in terms
of the action-angle variables (I (0)

1 ,I
(0)
2 ,φ

(0)
1 ,φ

(0)
2 ) of the unper-

turbed Hamiltonian. As outlined in the preceding section, the

action-angle variables for the entire system (I1,I2,φ1,φ2) are
related to the variables (I (0)

1 ,I
(0)
2 ,φ

(0)
1 ,φ

(0)
2 ) via a near-identity

transformation, and we again assume that the new Hamiltonian
and the generating function can be expressed as a series [as in
Eqs. (17a) and (17b)].

The canonical equations of motion, i.e., equations anal-
ogous to Eqs. (20a)–(20d), can be obtained by following
the procedure outlined in the preceding section. As stated
earlier, these equations are solvable, and the auxiliary system
is decoupled when the initial conditions are chosen to be as
follows: y(0) = 0 and ẏ(0) = 0, which means for the variables
(I (0)

1 ,I
(0)
2 ,φ

(0)
1 ,φ

(0)
2 ):

φ
(0)
1 (0) + φ

(0)
2 (0) = 0,

√
I

(0)
1 (0) +

√
I

(0)
2 (0) = 0. (35)

The above conditions imply

φ
(0)
1 (t) + φ

(0)
2 (t) = 0,

√
I

(0)
1 (t) +

√
I

(0)
2 (t) = 0, (36)

φ1(t) + φ2(t) = 0,
√

I1 +
√

I2 = 0, (37)

up to O(ε4). After considering the above initial conditions, the
canonical equations of motion up to O(ε3) can be obtained as

İ1 =
(

I1 − I 2
1

ω

)
ε +

(−9I 4
1 + 16I 3

1 ω − 8I 2
1 ω2

32ω5

)
ε3, (38)

φ̇1 = ω −
(

11I 2
1 − 12I1ω + 2ω2

16ω3

)
ε2. (39)

The nonzero real fixed point of Eq. (38) is

I1 = I1(t) = ω − ε2

32ω
+ O(ε3). (40)

It is instructive to note that Eqs. (38)–(40) are similar to
Eqs. (27a), (27b), and (30), respectively.

Before embarking on the calculation of the Hannay angle
for the limit cycle trajectory of the vdPO, we remind ourselves
about the set of variables’ transformation performed until now,
i.e.,

(x,y,px,py) → (X,Y,PX,PY ) → (
φ

(0)
1 ,φ

(0)
2 ,I

(0)
1 ,I

(0)
2

)
→ (φ1,φ2,I1,I2). (41)

The transformation of variables (x,y,px,py) ↔
(φ(0)

1 ,φ
(0)
2 ,I

(0)
1 ,I

(0)
2 ) requires a simple substitution of the

variables corresponding to the relations between the adjacent
variables’ set. The transformation (φ(0)

1 ,φ
(0)
2 ,I

(0)
1 ,I

(0)
2 ) ↔

(φ1,φ2,I1,I2) is obtained perturbatively as a power series in ε

via the algorithm of Lie transforms [29].
Now, we follow the procedure outlined in Sec. II for the

calculation of the Hannay angle: First, the angle variables
φ1 are written in terms of the action-angle variables of the
unperturbed Hamiltonian, i.e., (I (0)

1 ,I
(0)
2 ,φ

(0)
1 ,φ

(0)
2 ). A further

change in variables from (I (0)
1 ,I

(0)
2 ,φ

(0)
1 ,φ

(0)
2 ) to (x,y,px,py)

is performed before the derivatives (∂φ1/∂ε)x,y,px ,py
and

(∂φ1/∂ω)x,y,px ,py
can be calculated. Writing these derivatives

in terms of (φ1,φ2,I1,I2) via the Lie transform algorithm, the
average over φ1 and φ2 is performed. Finally, the conditions
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FIG. 1. Equivalence of the Hannay angle (φH ) with the geometric
phase (ψG) for the vdPO. ψG is plotted against the ratio of the time
period (T ) of the parameters to the time period [2π/ω(0)] of the
system when the parameters are held fixed. The green color and
the square markers correspond to the square loop in the parameter
space (see the text), and the blue color and the circular mark-
ers correspond to the elliptical loop (see the text). Note that, as
T ω(0)/2π → ∞, the solid lines (aid to the eyes) for the numerical
values of ψG converge to 0.0103 and 0.013, respectively, for the square
and the elliptical loops. The corresponding dashed lines represent the
analytically calculated φH —0.0104 and 0.0147, respectively.

given in Eqs. (37) and (40) are used to obtain A = {A1,A2} up
to O(ε),

A1(ω,ε) = − ε

8ω2
, A2(ω,ε) = 0. (42)

As concrete examples, we calculate the Hannay angles for the
following two cases:

(1) Square loop: We take a counterclockwise square loop
on parameter plane (ω,ε) such that ω ∈ (0.6,0.8) and ε ∈
(0.1,0.3). The Hannay angle is obtained using Eq. (2), and
it comes out to be 0.0104.

(2) Elliptical loop: We similarly calculate the Han-
nay angle for an anticlockwise elliptical loop in the pa-
rameter space where ω = 0.8 + 0.2 cos(2πt/T ), ε = 0.1 +
0.1 sin(2πt/T ), and t ∈ [0,T ]. The Hannay angle comes out
to be 0.0147.

Additionally, we can calculate the geometric phase ψG

[Eq. (9)] without tapping into the Hamiltonian formalism.
For that we start with Eq. (11) and numerically integrate it
while simultaneously varying the parameters. Of course, it is
assumed that the time scale of relaxation to the limit cycle as the
parameters are varied is negligible compared to the time scale
of variation of the parameters. To remove the transients we let
the simulation run until the system settles (within the desired
level of precision) into the limit cycle before the parameters
are varied. As the time period T of the parameters tends to
infinity, the numerical values of the geometric phases for both
loops tend to match with the corresponding Hannay angles.
Figure 1 depicts this equivalence of the Hannay angle and the
geometric phase. Therefore, it gives weight to the assertion
that the geometric phase of a two-dimensional limit cycle
system can be seen as a Hannay angle for the corresponding

extended system possessing a Hamiltonian. More importantly,
what we have achieved is that we can adapt a conservative
perturbation method, the LTHPT to be precise, for analytically
calculating the Hannay angle and hence the geometric phase
of a nonconservative system.

V. DISCUSSION AND CONCLUSIONS

A time-independent Hamiltonian formalism for the damped
oscillator has been formulated by Bateman [23]. In it the
phase space of the system is extended by adding an auxiliary
equation. The same idea of extending the phase space has been
utilized a few years back to propose a Hamiltonian for the vdPO
unidirectionally coupled to an auxiliary equation [24]. Once
the Hamiltonian is formulated, one could apply the canonical
perturbation theory to calculate the frequency corrections up
to second order. In this paper, we have used the same Hamil-
tonian but a fundamentally different Hamiltonian perturbation
method, viz., the LTHPT. We have shown that it also yields
similar frequency corrections for the vdPO but now we can
go to even higher orders of correction analytically. It is worth
mentioning that, since we are not interested in the dynamics
of the auxiliary system, its being unidirectionally coupled to
the original system allows us to choose any arbitrary initial
conditions for it. This arbitrariness in the choice of the initial
conditions has the benefit that it bypasses the (in)famous
problem of small denominators which show up implicitly
as our inability to solve Eqs. (20a)–(20d), and ultimately
yields the correct perturbative expansions for the solutions
and the frequencies for the limit cycle oscillations. The other
main result of this paper is that, by using the LHTPT, we
have successfully calculated the Hannay angle for the vdPO
having adiabatically and periodically evolving time-dependent
parameters. Furthermore, we have established the equivalence
between the Hannay angle and the numerically found geomet-
ric phase for the limit cycle trajectory of the vdPO. This is a
demonstration of equivalence in a two-dimensional system.

Our adaptation of the LTHPT for nonconservative systems
and its application in finding the Hannay angle is useful, in
principle, for any weakly nonlinear system that is described
by a dual Hamiltonian à la the Bateman formalism [23].
Needless to say, it means that the technique is generalizable
to bring several other Liénard systems under its scope. The
technique of the LTHPT is a well-established one that has been
successfully applied to various Hamiltonian systems with weak
nonlinearity. Our addition to this technique is the judicious use
of the initial conditions on the auxiliary equation which helps
in further simplification of this process. We again bring it to the
readers’ attention that it is generally suggested that, compared
to the canonical perturbation theory, Lie transform perturbation
theory is better suited [55] to calculate higher order corrections
to unperturbed frequency and the LTHPT has a numerical edge
since it is much easily numerically implementable using a
symbolic algebra package [56]. Thus, the method discussed
in this paper, when applied to other relevant systems, may be
more involved, but one still expects to obtain fruitful results.

The method discussed in this paper can have applications in
the realistic situations wherever a geometric phase is realized in
a limit cycle system. For example, consider the intriguing topic
of bird songs [57]. Here, the vocalizations may be modeled by
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a slightly modified vdPO [58] that describes the departure of
the midpoint of the labia from the prephonatory position in
a Chingolo sparrow (say), thus, modeling the generation of
the various syllables of the song of the sparrow. Interestingly,
two of the system’s parameters—the restitution constant of the
labia and a linear function of the net driving pressure of the
labia—are time dependent and form a closed elliptical loop
of a time period of 100 ms (approximately) in the parameter
space. This time period is about 5 × 102 times more than the
time of the oscillations of the labia. Now, although Fig. 1
has been plotted for the vdPO oscillator, we observe that an
elliptical loop in its parameter space yields an almost saturated
value of the geometric phase when T ω(0)/2π = 5 × 102 thus
encouraging one to take up the analytical calculation of the
geometric phase in the bird song. Another very interesting
occurrence of the geometric phase, and hence an avenue for
applying our method, is in cell cycles [15]. A Hamiltonian, its
associated action-angle variables, and the expression for the
Hannay angle have been found for the linearized version [15]
of Goodwin’s model [59] of the cell cycle. Furthermore, a
geometric phase has also been found for the full nonlinear
Goodwin’s model [60]. The geometric phase is supposed
to account for the high cell-to-cell variability observed in
experiments with artificial gene circuits introduced into the
cells. Also, owing to the finite geometric phase, a population
of cells with synchronous biological oscillations to start with
can become desynchronized after a few cell divisions. As yet
another example we may cite the replicator-mutator dynamics
of the well-known rock-paper-scissors game that possesses
limit cycle oscillations [61]. Here, making the the payoff matrix
elements and the rate of mutation periodic and slowly varying
with time may give rise to a geometric phase whose analytical
evaluation may use our ideas developed in this paper. Last but
not the least, the Bonhoeffer–van der Pol model—a modified
version of the vdPO—for a nerve membrane [62] may also
make use of the methods described in our paper. This model
consists of variables, such as excitability and refractoriness of
the neuron membrane. It is quite possible that some biological
process renders these parameters time dependent in such a way
that the existence of the geometric phase is facilitated in the
dynamics of the neuron membrane.

Before ending, we remark that it is definitely of interest to
find out what the quantization of the Liénard systems using
the corresponding dual Hamiltonian implies. Subsequently,
it would be an intriguing problem to investigate if a Berry
phase [3] can be found in dissipative systems upon consistent
quantization and how it would be related to the corresponding
Hannay angle discussed in this paper.
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APPENDIX A: THE LTHPT FOR TWO NONLINEARLY
COUPLED OSCILLATORS

Consider the Hamiltonian,

H (q1,q2,p1,p2) = p2
1

2
+ 1

2
ω1q

2
1 + p2

2

2
+ 1

2
ω2q

2
2

+ εω2
1ω

2
2q

2
1q2

2 . (A1)

The above Hamiltonian describes the dynamics of two har-
monic oscillators coupled by a nonlinear interaction term
εω2

1ω
2
2q

2
1q2

2 . The nonlinearity parameter ε is small, and hence
the dynamics can be understood by employing a perturba-
tion theory. The Hamiltonian is initially written in terms
of variables (α(0)

1 ,α
(0)
2 ,β

(0)
1 ,β

(0)
2 ). A near-identity transforma-

tion is performed from variables (α(0)
1 ,α

(0)
2 ,β

(0)
1 ,β

(0)
2 ) to vari-

ables (α1,α2,β1,β2). Using Eq. (18b), one finds that trans-
formed Hamiltonian K(α1,α2,β1,β2,t) and generating func-
tion S(α1,α2,β1,β2,t) of the infinitesimal canonical transfor-
mation are related at first order as

K1 = −∂S1

∂t
+ α1α2 − α1α2 cos[2(t + β1)ω1]

−α1α2 cos[2(t + β2)ω2]

+α1α2

2
cos[2(ω1 − ω2)t + 2(β1ω1 − β2ω2)]

+α1α2

2
cos[2(ω1 + ω2)t + 2(β1ω1 + β2ω2)]. (A2)

K1 and S1 are obtained in a similar manner as that for the case
of the vdPO, i.e., by employing the technique of averaging
over the unperturbed system’s time period. For ω1 not close
to ω2, K1 = α1α2, and one can easily calculate the frequency
correction by solving the canonical equations of motion. Note
this is possible because there is no β1,2 in K1. However, if ω1 ≈
ω2, the cos[2(ω1 − ω2)t] containing term is relatively constant
over the unperturbed period. Therefore, it is a long-period term
and should be included in K1. As a result, for ω1 ≈ ω2, it make
sense to take

K1 = α1α2 + α1α2

2
cos[2(ω1 − ω2)t + 2(β1ω1 − β2ω2)].

(A3)

Consequently, the canonical equations of motion up to O(ε)
are

α̇1 = εα1α2ω1 sin[2(ω1 − ω2)t + 2(β1ω1 − β2ω2)],

(A4a)

α̇2 = −εα1α2ω2 sin[2(ω1 − ω2)t + 2(β1ω1 − β2ω2)],

(A4b)

β̇1 = εα2 + ε

2
α2 cos[2(ω1 − ω2)t + 2(β1ω1 − β2ω2)],

(A4c)

β̇2 = εα1 + ε

2
α1 cos[2(ω1 − ω2)t + 2(β1ω1 − β2ω2)].

(A4d)
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We observe that the new Hamiltonian for the case of ω1 ≈
ω2 is no longer only a function of α1 and α2. Equations (A4a)–
(A4d) are nonlinearly coupled and analytically intractable to
solve even for the case of ω1 = ω2. This should be seen as the
manifestation of the problem of small denominators. Alter-
natively but equivalently, while performing the LTHPT using
action-angle variables [10], the problem of small denominators
in S1 is similarly tried [28] to be avoided by including in K1

the terms responsible for small denominators. For example, in
the case of the coupled oscillators being studied, such a term
is cos[2(ω1 − ω2)t].

However, owing to the inability to solve Eqs. (A4a)–
(A4d) analytically, the problem still lingers hinting that the
aforementioned trick of redefining K1 is not of much practical
use. We remark here that, for the case of the vdPO, the
liberty in the choice of initial conditions of the auxiliary
vdPO equation helps in successfully overcoming this very
type of problem. However, for the case of the coupled os-
cillator we cannot use our method developed for the vdPO
because none of the equations of motion, Eqs. (A4a)–(A4d),
can be considered as a dynamically inconsequential auxiliary
equation.

APPENDIX B: EXPLICIT EXPRESSIONS FOR THE CANONICAL EQUATIONS OF MOTION OF THE vdPO

Below we provide full explicit expressions for Eqs. (20a)–(20d) as obtained using Mathematica software [63].

α̇1 = f1(α1,α2,β1,β2)

= ε

[
− 1

4ω2

√
α1α2{(α1 + α2 − 4ω2) cos[(β1 + β2)ω] + 2

√
α1

√
α2 cos[2(β1 + β2)ω]}

]

+ε2

[
− 1

64ω5

√
α1α2(α1 − α2){22

√
α1

√
α2 cos[(β1 + β2)ω] + 11α1 + 11α2 − 24ω2} sin[(β1 + β2)ω]

]

+ε3

[
− 1

2048ω8

√
α1α2

{(
9α3

1 + 54α2
1α2 − 64ω2α2

1 + 54α1α
2
2 − 192α1α2ω

2 + 128α1ω
4 + 9α3

2 − 64α2
2ω

2

+128α2ω
4
)

cos[(β1 + β2)ω] + 2
√

α1α2
(
27α2

1 + 27α2
2 − 128α2ω

2 + 128ω4 + 72α1α2 − 128α1ω
2
)

cos[2(β1 + β2)ω]

+3
√

α1α2(27α1 + 27α2 − 64ω2) cos[3(β1 + β2)ω] + 36
√

α1α2 cos[4(β1 + β2)ω]
}]

+ε4

[
− 1

98 304ω11

√
α1α2(α1 − α2)

{
2527α3

1 + 22 743α2
1α2 + 22 743α1α

2
2 + 2527α3

2 − 15 096α2
1ω

2

−60 384α1α2ω
2 − 15 096α2

2ω
2 + 24 416α1ω

4 + 24 416α2ω
4 − 8448ω6 + 2

√
α1α2

(
7581α2

1 + 22 743α1α2

+7581α2
2 − 30 192α1ω

2 − 30 192α2ω
2 + 24 416ω4) cos[(β1 + β2)ω] + 6α1α2(2527α1

+2527α2 − 5032ω2) cos[2(β1 + β2)ω] + 5054α1α2
√

α1α2 cos[3(β1 + β2)ω]
}]

. (B1)

β̇1 = f2(α1,α2,β1,β2)

= ε

[
1

8
√

α1ω3

√
α2{3α1 + α2 − 4ω2 + 4

√
α1α2 cos[(β1 + β2)ω]} sin[(β1 + β2)ω]

]

+ε2

[
1

256
√

α1ω6

(
2
√

α2
( − 55α2

1 + 72α1ω
2 + 11α2

2 − 24α2ω
2
)

cos[(β1 + β2)ω]

+√
α1

{ − 33α2
1 − 66α1α2 + 33α2

2 + 96α1ω
2 − 32ω4 − 22α2(2α1 − α2) cos[2(β1 + β2)ω]

})]

+ε3

[
1

4096
√

α1ω9

√
α2

{
63α3

1 + 405α2
1α2 + 243α1α

2
2 + 9α3

2 − 320α2
1ω

2 − 768α1α2ω
2

−64α2
2ω

2 + 384α1ω
4 + 128α2ω

4 + 4
√

α1α2
(
81α2

1 + 162α1α2 + 27α2
2 − 256α1ω

2

−128α2ω
2 + 128ω4

)
cos[(β1 + β2)ω] + 6α1α2(45α1 + 27α2 − 64ω2)

× cos[2(β1 + β2)ω] + 72α1α2
√

α1α2 cos[3(β1 + β2)ω]
}

sin[(β1 + β2)ω]

]

+ε4

[
1

786 432
√

α1ω12

(
4
√

α2
[ − 22 743α4

1 + α3
1(−88 445α2 + 105 672ω2)
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+80α2
1(1887α2ω

2 − 1526ω4) + α2(2527α3
2 − 15 096α2

2ω
2 + 24 416α2ω

4 − 8448ω6)

+3α1
(
12 635α3

2 − 30 192α2
2ω

2 + 8448ω6)] cos[(β1 + β2)ω]

+√
α1

{ − 12 635α4
1 − 151 620α3

1α2 − 151 620α2
1α

2
2 + 101 080α1α

3
2 + 37 905α4

2

+80 512α3
1ω

2 + 483 072α2
1α2ω

2 − 161 024α3
2ω

2 − 146 496α2
1ω

4 − 292 992α1α2ω
4

+146 496α2
2ω

4 + 67 584α1ω
6 − 6144ω8

+4α2
[ − 30 324α3

1 + α2
1(−37 905α2 + 90 576ω2) + 14α1

(
1805α2

2 − 3488ω4
)

+α2
(
7581α2

2 − 30 192α2ω
2 + 24 416ω4

)]
cos[2(β1 + β2)ω]

−4α2
√

α1α2
(
17 689α2

1 − 7581α2
2 − 25 160α1ω

2 + 15 096α2ω
2)

× cos[3(β1 + β2)ω] + ( − 15 162α2
1α

2
2 + 10 108α1α

3
2

)
cos[4(β1 + β2)ω]

})]
. (B2)

α̇2 = f3(α1,α2,β1,β2) = f1(α1,α2,β1,β2), (B3)

β̇2 = f4(α1,α2,β1,β2)

= ε

[
1

8
√

α2ω3

√
α1{3α2 + α1 − 4ω2 + 4

√
α1α2 cos[(β1 + β2)ω]} sin[(β1 + β2)ω]

]

+ε2

[
1

256
√

α2ω6

( − 2
√

α1
(−55α2

2 + 72α2ω
2 + 11α2

1 − 24α1ω
2
)

cos[(β1 + β2)ω]

+√
α2

{ − 33α2
1 + 66α1α2 + 33α2

2 − 96α2ω
2 + 32ω4 − 22α1(α1 − 2α2) cos[2(β1 + β2)ω]

})]

+ε3

[
1

4096
√

α2ω9

√
α1

{
63α3

2 + 405α1α
2
2 + 243α2

1α2 + 9α3
1 − 320α2

2ω
2 − 768α1α2ω

2

−64α2
1ω

2 + 384α2ω
4 + 128α1ω

4 + 4
√

α1α2

×(
81α2

2 + 162α1α2 + 27α2
1 − 256α2ω

2 − 128α1ω
2 + 128ω4)

× cos[(β1 + β2)ω] + 6α1α2(45α2 + 27α1 − 64ω2)

× cos[2(β1 + β2)ω] + 72α1α2
√

α1α2 cos[3(β1 + β2)ω]
}

sin[(β1 + β2)ω]

]

+ε4

[
1

786 432
√

α2ω12

( − 4
√

α1[2527α4
1 + 3α3

1(12 635α2 − 5032ω2)

+α2
1(−90 576α2ω

2 + 24 416ω4) + α1
( − 88 445α3

2 + 150 960α2
2ω

2 − 8448ω6
)

+α2
( − 22 743α3

2 + 105 672α2
2ω

2 − 122 080α2ω
4 + 25 344ω6

)]
cos[(β1 + β2)ω]

+√
α2[−37 905α4

1 − 101 080α3
1α2 + 151 620α2

1α
2
2 + 151 620α1α

3
2 + 12 635α4

2

+161 024α3
1ω

2 − 483 072α1α
2
2ω

2 − 80 512α3
2ω

2

−146 496α2
1ω

4 + 292 992α1α2ω
4 + 146 496α2

2ω
4 − 67 584α2ω

6 + 6144ω8

−4α1
(
7581α3

1 + α2
1(25 270α2 − 30 192ω2)

−7α1
(
5415α2

2 − 3488ω4
) − 4α2

(
7581α2

2 − 22 644α2ω
2 + 12 208ω4

)]
× cos[2(β1 + β2)ω] − 4α1

√
α1α2

(
7581α2

1 − 17 689α2
2 − 15 096α1ω

2 + 25 160α2ω
2
)

× cos[3(β1 + β2)ω] + ( − 10 108α3
1α2 + 15 162α2

1α
2
2

)
cos[4(β1 + β2)ω]

})]
. (B4)
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