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Influence of spatial delay on the modulational instability in a composite system
with a controllable nonlinearity
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A theoretical investigation of the modulational instability (MI) in a composite system with a nonlocal response
function is presented. A composite system of silver nanoparticles in acetone is chosen, whose nonlinearity can be
delicately varied by controlling the volume fraction of the constituents, thus enabling the possibility of nonlinearity
management. A pump-probe counterpropagation configuration has been assumed, and the interplay between the
competing nonlinearities and the nonlocalities in the MI dynamics is systematically explored. A different class
of nonlocalities have been considered, and the study reveals that the nonlocality critically depends on the kind of
nonlocal function. However, the general behavior is that the strength of nonlocality suppresses the MI gain, while
for a rectangular function it assists the emergence of new spectral windows. We also show that the cross coupling
effects are significant in enhancing MI, especially in the defocusing nonlinearity. We also emphasize the impact
of the relative strength of the nonlinearities in the MI dynamics at different settings of competing nonlinearities.
Thus, we emphasize the importance of the different class of nonlocal response in the MI dynamics and explore the
interplay between the higher order nonlinear effects and nonlocalities in the counterpropagating configurations.
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I. INTRODUCTION

Advancements in material chemistry and photonic tech-
nologies have opened new frontiers in research on plasmonics
and nanophotonics. Of late, particularly, “composites” with
interesting controllable physical properties played a vital
role in the development of novel plasmonic applications. A
composite is a material made from two or more constituent
materials with distinct physical and chemical properties, that
when combined produce a material with different characteris-
tics from individual components. Commonly used composites
are of two types: (1) spatially separated metal nanoparticles
embedded in a dielectric host and (2) fractal aggregates of
metal nanoparticles [1]. For systems containing a metallic
nanoparticle, the surface plasmon resonance (SPR) plays an
important role, modifying, for instance, linear and nonlinear
optical properties of the material [2,3].

In the development of the novel materials aiming at photonic
applications, colloidal systems containing metal nanoparticles
are very promising owing to the enhancements of the nonlinear
absorption and nonlinear refractive index observed in such
systems [4,5]. These changes in the nonlinear optical properties
of a colloid can be mainly attributed to two different origins:
a local field effect and large nonlinear response of metals.
Thermal properties of metal nanocomposites critically depend
on the concentration of nanoparticles and play an important
role in the determination of the colloid characteristics of the
composite structure. For example, it was found in a colloidal
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system of gold nanoparticles in castor oil, that, even though the
laser wavelength was not resonant with the surface plasmon
absorption band, significant enhancement of electronic and
thermal nonlinearities was observed. The presence of nanopar-
ticles enhanced both local (electronic) and nonlocal (thermal)
nonlinear response of the colloids. The electronic part of the
nonlinearity was enhanced by at least two orders of magnitude
depending on the particle-filling fraction. On the other hand
the thermo-optical properties of the colloidal systems is rather
more sensitive and changes dramatically as the filling fraction
was increased [6].

During the last century or so, optical properties of nanopar-
ticles have been extensively studied, and metal-dielectric
nanocomposites (MDNCs) have found various applications in
different fields of science and technology. Since the optical
properties of metal nanoparticles are typically governed by
SPR, they are strongly dependent on the nanoparticles size,
shape, concentration, and spatial distribution as well as on
the properties of the surrounding matrix. Control over these
parameters enables such MDNCs to become promising media
for the development of novel nonlinear materials, nanodevices,
and optical elements [7]. Especially, in the context of nonlinear
plasmonics, the MDNCs are promising contenders and play
an indispensable role in realizing a system endowed with
nonlinearity management [8]. The emergence of nonlinear
plasmonics has developed a renewed interest in the studies
related to higher-order nonlinearities (HONs). MDNCs hap-
pened to be an ideal candidate to serve the purpose of delicate
management of nonlinearity by an appropriate ratio of the
volume fraction of nanoparticles to that of the host. This way
of controlling the nonlinearity of the system is advantageous
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indeed, as it would enable “on demand” control on each order
of nonlinear susceptibility in the system. For instance, by a
proper choice of the volume fraction of nanoparticles, one
can even nullify the cubic nonlinearity while the quintic or
septimal nonlinearities can still be finite [9]. This enables
one to tailor-make the effective nonlinearity, making MDNCs
potential choices for nonlinear management. In the recent
past, competing nonlinearities also have drawn much attention.
Such nonlinearities occur in media where a few different
physical processes contribute to the overall nonlinear response.
A few examples to mention are Bose-Einstein condensates
with simultaneous local and long-range interactions [10] and
nematic liquid crystals with comparable thermal and orienta-
tional nonlinearities [11].

Another interesting feature typical to the systems like
MDNCs is the nonlocal nonlinearity, meaning that the nonlin-
earity is a nonlocal function of the incident field. Even though
there are a lot of studies on nonlocal nonlinearities in the soliton
context, most of them are related to the studies on propagation
in the fibers and BECs [11–13]. For instance, in the case of
single dark spatial solitons, nonlocality tends to expand the
width of the solitons. Spatial nonlocality provides stabilization
of bright solitons and induces their attraction, even if they are
out of phase, and in the case of dark solitons, attraction induced
by nonlocality can lead to the formation of their band states,
and in the case of vortices nonlocality can stabilize the vortex
propagation [14].

One of the intriguing manifestations in the propagation
dynamics of any nonlinear media is the so-called modulation
instability (MI). MI is a nonlinear phenomenon, where a
continuous wave (CW) or a quasi-CW undergoes a modulation
of its amplitude or phase in the presence of noise or any other
weak perturbations. The modulation process may eventually
grow and lead to the breakdown of the wave into a train of short
pulses or filaments. The phenomenon of MI has been studied
in a wide variety of physical systems like fluid dynamics
[15,16], plasma physics [17,18], nonlinear fiber optics [19],
Bose-Einstein condensates [20–22], liquid crystals [23–25],
and various plasmonic systems [26–28]. It has been shown
that MI is strongly affected by various mechanisms in the
nonlinear system [29–32], and in particular, the nonlocality
in nonlinear response [33,34] is another intriguing effect that
plays a substantial role in the dynamics of the system.

Recently Reyna et al. reported an experimental study on a
composite system made up of silver nanoparticles suspended
in acetone. In this important work, the authors successfully
realized a composite system with flexible nonlinearity manage-
ment where the effective Kerr nonlinearity can be controlled
at will, by merely changing the volume fraction of the silver
nanoparticles. In this way, they demonstrated different aspects
of nonlinearity management, and one interesting case would
be the zero cubic nonlinearity with finite quintic nonlinearity.
Indeed, this particular case is interesting, as it is not possible
in the conventional system. In a similar context, they also
studied the dynamics of spatial MI at different settings in
the limit of effective local nonlinear response. In principle,
in composite systems as in Ref. [35], the nonlinearity is
not strictly local, and the effective nonlinearity is a nonlocal
function of the incident field. This is particularly true because
of the strong confinement of electric field due to the formation

of plasmonic modes in metal nanoparticles, which can enhance
the nonlinear effects whose strength crucially depends on
the particular function of nonlocality. Therefore in order to
accurately model the dynamics, one has to incorporate the
nonlocality in the nonlinear response. Of late, there had been
a few studies on MI in nonlocal nonlinear media. To mention
a few, Krolikowski et al. studied MI in nonlocal nonlinear
Kerr media with different kinds of nonlocalities like weak,
strong, and general nonlocal effects [36]. Wang et al. studied
MI in nonlocal Kerr media with sine-oscillatory response [37].
Tiofack et al. studied the effect of competing cubic-quintic
nonlinearities on MI in non-Kerr-type media showing equal
nonlocal response functions [38], and MI in media with a
local quintic and nonlocal cubic nonlinearities was studied in
Ref. [39].

Most cases of nonlocal MI studies are primarily based on
single optical beam, and such a kind of MI is termed a scalar
MI. The copropagation(or counterpropagation) of two or more
optical beams can lead to interesting and peculiar phenomena
which could not be realized in the single-beam case [40,41]. In
fact, one of the breakthroughs in MI is the realization of MI in
normal dispersion (or diffraction) regime [40]. As is known the
normal group velocity dispersion (GVD) regime is not subject
to the MI process, due to the lack of phase matching between
the dispersion and nonlinear components of the system. But
the nonlinear coupling between the two copropagating beams
due to the cross-phase modulation (XPM) (i.e., refractive index
seen by one wave depends on the intensity of the copropagating
wave through the XPM coefficient) destabilizes the steady
state, leading to frequency modulation even in the normal GVD
regime [40,41]. These interesting results set the benchmark for
the extensive work on two-color light propagation in the optical
system.

Motivated by the interesting nonlinear properties associated
with the composite structure, and the physical importance of a
coupled nonlinear system in the MI process, in what follows,
we study the XPM-induced spatial MI in a composite system
with a nonlocal nonlinear response. Taking the advantage of
the recent experimentally realized composite system made up
of silver nanoparticles suspended in acetone by Reyna et al.,
our study focuses on the coupled system in the same settings,
with particular emphasis on the different functional forms of
nonlinear responses. The paper is organized as follows: Sec. II
describes the theoretical model and the propagation equation.
In Sec. III we have applied linear stability analysis followed
by the study of modulation instability with various nonlocal
response functions for different competing nonlinearities in
Sec. IV. Section V gives the conclusions.

II. THEORETICAL MODEL

The counterpropagation of pump-probe beams in the com-
posite medium is governed by the modified coupled nonlinear
Schrödinger equation of the form

(−1)j i
∂Aj

∂ξ
+ 1

2

∂2Aj

∂ρ2
+ α1

(|Aj |2 + 2|A3−j |2
)
Aj

+α2
(|Aj |4 + 6|Aj |2|A3−j |2 + 3|A3−j |4

)
Aj = 0, (1)

062208-2



INFLUENCE OF SPATIAL DELAY ON THE … PHYSICAL REVIEW E 97, 062208 (2018)

where Aj with j = 1,2 the amplitude of the pump and probe
beams in the composite medium, respectively. Here the spatial
coordinates have been normalized to K−1 = λ

2πn0
, where n0

is the linear refractive index of the host medium and λ is
the wavelength of the laser pump. ξ is the dimensionless
direction of propagation, which is defined as ξ = zK and the
dimensionless transverse coordinate ρ is given by ρ = xK . α1

and α2 are the strengths of the competing cubic and quintic
nonlinearities, respectively, and it takes a positive (negative)
sign for self-focusing (defocusing) nonlinearities.

Reyna et al. proposed this model for light propagation in
MDNC and studied the nonlinearity management and spatial
modulation instability for cubic quintic nonlinearity [35],
the two-dimensional solitons for a quintic septimal medium
[9], and the spatial phase modulation in the medium with
quintic septic nonlinearity [42]. The theoretical model was
developed using the generalized Maxwell-Garnet model under
the assumption of a homogenous, isotropic medium with the
nanoparticles uniformly distributed. The particle size a is
smaller than the interparticle distance b, which is smaller than
the incident light wavelength λ.

Spatial nonlocality comes into the picture when the nonlin-
ear refractive index at a given point is determined not only by
the light intensity at that point but also by the intensity near that
point. A phenomenological generic form of nonlocal nonlinear
response induced by an optical beam of intensity I (ρ,ξ ) [36]
is given by

�n(I ) = S

∫ ∞

−∞
R(ρ − ρ ′)I (ρ ′,ξ ) dρ ′, (2)

where �n(I ) is the intensity-dependent change in the refractive
index of the medium, and the right-hand side gives a spa-
tial convolution integral with R(ρ) as the nonlocal response
function defining the nonlocal character of the nonlinearity
and its width (compared to the spatial extent of the beam)
determines the degree of nonlocality with S representing the
strength and sign of the nonlinear contribution. In the limiting
case of R(ρ) = δ(ρ) Eq. (2) describes the local response
[38,43,44]. Even though the nonlocality model mentioned by
Eq. (2) is phenomenological, it very well describes the features
of nonlocal media. Typical nonlocal systems involve media
with transport processes such as ballistic atomic transport
or heat diffusion as in atomic vapors or charge transport in
photorefractive crystals or charge separation in thermal media
or plasma. Also long-range interactions are responsible for
nonlocal responses in liquid crystals or dipolar BECs [14,45].

The coupled NLSE with the phenomenological generic
model of competing nonlocal nonlinear responses is given by
[35,38]

(−1)j i
∂Aj

∂ξ
+ 1

2

∂2Aj

∂ρ2
+ α1

∫ ∞

−∞
R1(ρ − ρ ′)(|Aj |2

+ 2|A3−j |2)Aj dρ ′ + α2

∫ ∞

−∞
R2(ρ − ρ ′)(|Aj |4

+ 6|Aj |2|A3−j |2 + 3|A3−j |4)Aj dρ ′ = 0, j = 1,2. (3)

The model (3) refers to the evolution of pump-probe pulses
in the MDNC media where we have incorporated the phe-
nomenological generic model of the nonlocal response of

TABLE I. Various nonlocal response functions and their Fourier
transforms.

Function R(ρ) R̂(κ)
Exponential 1

2σ
exp ( −|ρ|

σ
) 1

1+σ 2κ2

Gaussian 1
σ
√

π
exp ( −ρ2

σ 2 ) exp ( −σ 2κ2

4 )

Rectangular

{
1

2σ
−σ � ρ � σ

0 otherwise
sin(κσ )

κσ

Sine-oscillatory 1
2σ

sin ( −|ρ|
σ

) 1
1−σ 2κ2

nonlinearity. The response function
∫ ∞
−∞ R(ρ − ρ ′) shows the

surrounding spatial region, range, or domain of a homogenous
isotropic MDNC medium responding to the refractive index
change due to the intense pump pulse intensity at a point
ρ ′ in the medium. We take the intensity profile I (ρ ′) and
the width of the nonlocal response function R(ρ − ρ ′) as
comparable, owing to the general nonlocal nonlinear response.
The cause of the nonlocal nonlinear response in the composite
can be due to the phenomenon of advection or the thermal
nonlinearity due to the presence of metal nanoparticles as
described by Souza et al. [6]. The nonlinear response of
the composite medium is given by various nonlocal response
functions. Here we study the influence of various response
functions on MI for different cases of nonlocal nonlinearities.
The functions can be conveniently put into two classes based on
whether the spectrum corresponding to the function is positive
definite or not. The exponential and Gaussian functions belong
to a positive definite spectrum, while rectangular and sine-
oscillatory are not characterized by positive definite spectrum.
For detailed study of the MI phenomenon, we specifically use
the Gaussian and the rectangular response functions as the two
representative categories. The various response functions and
their Fourier transforms are tabulated in Table I and graphically
represented as a function of the κ vector in Fig. 1.

III. LINEAR STABILITY ANALYSIS

The stability of the steady-state solution against small
perturbation for the propagation equation is studied using
linear stability analysis. To be more realistic, we assume
the asymmetric plane wave solutions whose intensity of

FIG. 1. Various response functions in the κ space.
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probe-pump beams is in the ratio 1:10 with a pump power of
31 kW and probe beam power of 3.1 kW [42]. The steady-state
solution of Eq. (3) is given by

Aj (ρ,ξ ) = √
Pj exp(i φj ξ ), j = 1,2, (4)

where Pj is the normalized pump and probe beam powers for
j = 1,2. Perturbing the plane wave solution in its amplitude
with the complex perturbations and further linearizing, we get
the model equation in terms of the perturbations aj (ρ,ξ ) and
a3−j (ρ,ξ ) as

∫ ∞

−∞

√
Pj [2a3−j (ρ ′,ξ )

√
P3−j [r1α1 + 3(Pj + P3−j )r2α2]

+ aj (ρ ′,ξ )
√

Pj [r1α1 + 2(Pj + 3P3−j )r2α2]

+√
Pj [r1α1 + 2(Pj + 3P3−j )r2α2]a∗

j (ρ ′,ξ )

+ 2
√

P3−j [r1α1 + 3(Pj + P3−j )r2α2]a∗
3−j (ρ ′,ξ )] dρ ′

+ 1

2

∂2aj (ρ,ξ )

∂ρ2
+ (−1)j i

∂aj (ρ,ξ )

∂ξ
= 0, (5)

where r1 = R1(ρ − ρ ′) and r2 = R2(ρ − ρ ′). We assume the
following form of perturbation:

aj (ρ,ξ ) = aj1(ρ,ξ ) + i aj2(ρ,ξ ), j = 1,2, (6)

where aj1(ρ,ξ ) and aj2(ρ,ξ ) are the real and the imaginary
parts of the perturbation with a∗

j (ρ,ξ ) as its complex conjugate.
Substituting Eq. (6) into Eq. (5) and separating the real and
imaginary parts from the linearized equation, we get

∂aj1(ρ,ξ )

∂ξ
+ (−1)j

2

∂2aj2(ρ,ξ )

∂ρ2
= 0,

∫ ∞

−∞
{[2Pjr1α1 + 2(Pj + 3P3−j )r2α2]aj1(ρ ′,ξ )

+ 4
√

Pj

√
P3−j [r1α1 + 3(Pj+P3−j )r2α2]a(3−j )1(ρ ′,ξ )} dρ ′

+ (−1)j+1 ∂aj2(ρ,ξ )

∂ξ
+ 1

2

∂2aj1(ρ,ξ )

∂ρ2
= 0, j = 1,2. (7)

We apply the convolution theorem and use the Fourier trans-
form [36] of the following form:

âj (κ,ξ ) =
∫ ∞

−∞
aj (ρ,ξ )eiκρ dρ,

R̂(κ) =
∫ ∞

−∞
R(ρ)eiκρ dρ. (8)

We have the set of four differential equations as follows:

∂âj1

∂ξ
+ (−1)j

(iκ)2

2

∂âj2

∂ρ2
= 0,

2P1[R̂1α1 + 2(Pj + 3P3−j )R̂2α2]âj1

+ 4
√

Pj

√
Pj−1

[
R̂1α1 + 3(Pj + P3−j )R̂2α2

]
â(3−j )1

+ (−1)j+1 ∂âj2(ρ,ξ )

∂ξ
+ (iκ)2

2

∂2âj1

∂ρ2
= 0, j = 1,2. (9)

The coefficient matrix of the above equation can be obtained
as ⎛

⎜⎜⎝
0 − κ2

2 0 0
m1 0 −m2 0
0 0 0 κ2

2
m2 0 m3 0

⎞
⎟⎟⎠

where

m1 = 1
2 [κ2 − 4P1R̂1α1 − 8P1(P1 + 3P2)R̂2α2],

m2 = 4
√

P1

√
P2[R̂1α1 + 3(P1 + P2)R̂2α2],

m3 = 1
2 [−κ2 + 4P2R̂1α1 + 8P2(3P1 + P2)R̂2α2].

We consider λ as the eigenvalue of the above matrix, and
one can write the characteristic equation of the above matrix
as

|A − λI | = 0. (10)

Hence the eigenvalue λ [36] of the coefficient matrix is given
by

λ = ± 1
2

√
λa ± λb, (11)

where

λa = [−κ4 + 2κ2P2R̂1α1 + 4κ2P 2
1 R̂2α2 + 4κ2P 2

2 R̂2α2

+ 2κ2P1(R̂1α1 + 12P2R̂2α2)
]

(12)

and

λb = 2κ2√[
4P 4

1 R̂2
2α

2
2 + P 2

2 (R̂1α1 + 2P2R̂2α2)2

+ 4P 3
1 R̂2α2(R̂1α1 + 36P2R̂2α2) + 2P1P2

(
7R̂2

1α
2
1

+ 46P2R̂1R̂2α1α2 + 72P 2
2 R̂2

2α
2
2

) + P 2
1

(
R̂2

1α
2
1

+ 92P2R̂1R̂2α1α2 + 280P 2
2 R̂2

2α
2
2

)]
. (13)

Hence λ has four different values. The MI gain is given by

G(κ) = Re λ. (14)

We note that MI is possible only for the eigenvalue
λ = + 1

2

√
λa + λb where both λa and λb are real for the

condition 4R̂2
2α

2
2(P 4

1 + P 4
2 + 36P 3

1 P2 + 36P 2
2 + 70P 2

1 P 2
2 ) +

R̂2
1α

2
1(P 2

2 + 14P1P2 + P 2
1 ) > 4(P 2

2 + P 3
1 + 23P 2

1 P2)R̂1R̂2

α1α2. The spatial frequency corresponding to the maximum
MI gain gives the optimum modulation frequency, which is
given by

dG(κ)

dκ
= 0. (15)

IV. MODULATIONAL INSTABILITY

As described earlier, one of the most sought features of
the composite system is its ability to tailor the effective
nonlinearity of the system, which can enable one to naively
control the plasmonic effect of the system. By assuming a
different combination of cubic and quintic nonlinearity in the
nonlocal response regime, we study various features of MI.
Along similar lines to the studies on MI, we first study the effect
of power on MI due to nonlocal nonlinearity. Further keeping
the cubic nonlinearity constant, we vary the coefficient of the
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quintic nonlinearity and study the role of nonlocal responses
on MI for various combinations of nonlinearities and strength
of nonlocalities. We also consider an intriguing special case
relevant to a composite system, where the cubic nonlinearity
of the composite is null, while the effective nonlinearity can
take finite values. For uniformity, we have used dotted lines to
represent the rectangular response function and solid lines to
represent the Gaussian response function.

A. Effect of power

To start, it is customary to understand the influence of
pump power on MI for different kinds of nonlinear response
functions. We have considered three representative combina-
tions of powers composing both symmetric and asymmetric
solutions: (1) P1 = 1, P2 = 0.1 and (2) P1 = 4, P2 = 0.4
are the choice of powers for the asymmetric case, while
(3) P1 = 1, P2 = 1 corresponds to the symmetric solution.
We have plotted the Gaussian and the rectangular response
functions separately with the nonlinear coefficients as α1 = 1
and α2 = 0.1 in Figs. 2(a) and 2(b), respectively. It is noted
from Figs. 2(a) and 2(b) that MI gain increases with power for
both response functions as expected. The rectangular response
function showed an increase in the MI gain and number of
bands with power. For a Gaussian response function, MI gain
increases with power for all cases of nonlinearities. In Fig. 2(c),
where we have considered the Gaussian response function
with symmetric power and the strength of nonlinearities as
α1 = 1 and α2 = −0.1 an anomaly noted is that here MI gain
decreases for P1 = P2 = 1 to P1 = P2 = 2. At a power of
2 there is absolutely no MI, and a further increase in power
increases the MI gain. Apart from this, the symmetric solution
in particular doesn’t have any distinguished effect on MI from
the asymmetric solution. Hence for further discussion, we
consider only the asymmetric solutions.

B. Effect of nonlocal strength

As the nonlocality plays a crucial role in the dynamics of MI,
in Fig. 3 we show the contour map of MI spectra as a function
of nonlocal strength. A general behavior noticeable in the MI
spectrum is that the nonlocal strength monotonously decreases
both the gain and bandwidth of the MI bands [Figs. 3(a) and
3(b)]. Thus the nonlocal effect suppresses the MI. Interestingly,
the rectangular response function shows additional sidebands
at higher κ , whose gain shows an unusual increase with σ as
shown in Fig. 3(b). The MI features due to different nonlocal
response will be highlighted and comprehensively analyzed at
different settings of nonlinearity in the following sections.

C. MI at different settings of nonlinear response

The study of MI in the HON regime is interesting as it
could lead to many new features, which would otherwise
be impossible in the conventional system with only cubic
nonlinearity. For instance, the quintic nonlinearity can either
enhance or suppress MI and at some parametric conditions can
promote new sidebands. In what follows, we consider three
different regimes of nonlinearity based on the sign of cubic
nonlinearity and study MI with a particular emphasis on the
nonlocal nonlinear response and quintic nonlinearity.

FIG. 2. The variation of MI gain spectra with power for the
focusing nonlinearity with (a) Gaussian response function and
(b) rectangular response function varying power as P1 = 1,P2 = 0.1,
P1 = 1,P2 = 1, and P1 = 4,P2 = 0.4, and the strength of nonlocality
is σ = 10 and the strength of nonlinearity as (a) α1 = 1,α2 = 0.1,
(b) α1 = 1,α2 = 0.1, (c) α1 = 1,α2 = −0.1, and the power varying
symmetrically as P1 = P2 = 1, 2, 3, and 4 for the Gaussian response
function.

1. Focusing nonlinearity (α1 > 0)

This is a typical case of spatial MI, where MI is generally
possible owing to the phase matching between the positive
nonlinearity and diffraction. Two distinct types of nonlocal
response, namely, Gaussian and rectangular response function,
have been considered, and the MI is studied for different
combinations of cubic and quintic nonlinearities as portrayed
in Fig. 4. With proper understanding of the effect of nonlocal
strength from the previous section, to highlight other interest-
ing features due to interplay between HON and nonlocality, we
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FIG. 3. The MI gain spectra as a function of strength of nonlo-
cality for (a) the Gaussian response and (b) rectangular response for
P1 = 1, P2 = 1 and α1 = 1,α2 = −0.1.

choose two representative values of σ = 5 and 10. Figure 4(a)
represents the case of α1 > 0 and α2 > 0, where both nonlinear
effects constructively reinforce to cause MI through phase
matching with diffraction effects, as in the case of conventional
scalar MI. This case is characterized by higher gain due
to the enhancement of the effective nonlinearity as a result of
the accumulated nonlinearity due to cubic and quintic effects.
The rectangular function behaves qualitatively different lead-
ing to the emergence of new spectral sidebands which we refer
to as secondary bands, while the Gaussian response behaves
quite similarly to conventional MI. Figure 4(b) corresponds to
the case of α1 > 0 and α2 < 0, where both nonlinear effects
compete due to the opposite sign, and the resulting instability
spectrum shows MI bands with reduced gain, regardless of the
nature of nonlocality. In this case, both the Gaussian (solid line)
and rectangular functions behave quite close, except the fact
that the gain of primary band of the rectangular function is more
than, and conversely the bandwidth is lesser than, the Gaussian
function. It is also apparent from Fig. 4 that the increase in the

FIG. 4. The MI gain spectra for the focusing nonlinearity with
different nonlocal response function and varying the strength of
nonlocality as σ = 5,10 and the strength of nonlinearity as (a) α1 =
1,α2 = 0.1, (b) α1 = 1,α2 = −0.1 with other parameters as P1 = 1
and P2 = 0.1.

strength of the nonlocality decreases the gain of MI, and in
particular, new spectral bands originate for higher values of σ .

2. Zero cubic nonlinearity (α1 = 0)

This is particularly an intriguing situation (α1 = 0 and α2 �=
0) typically characteristic to the composite structures. Here,
by proper choice of the volume fraction of the nanoparticles
in the composite, one can delicately nullify the lower order
nonlinear effects (cubic nonlinearity in the present setting),
leaving only the next higher order effects to take control
on the nonlinear effects of the system. Taking advantage of
this unique feature, we consider a different combination of
quintic nonlinearity based on its sign. Figure 5(a) represents
the instability spectra for α1 = 0 and α2 > 0, where the
much needed phase-matching condition for the MI process
is satisfied by the positive (focusing) quintic nonlinearity,
a process quite similar to the conventional MI with cubic
nonlinearity. Figure 5(b) is the situation where the quintic
nonlinearity takes negative value, but MI still is made possible
due to XPM effects because of the destabilization of the steady
state by XPM. It should be noted that, once the XPM effects are
ignored, this particular case is implausible for MI. In both cases
of quintic nonlinearity, the rectangular function dominates the
gain, with additional sidebands for the case of α2 < 0. The
effect of nonlocal strength in this case is rather interesting,
such that the secondary spectral bands register a higher gain
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FIG. 5. The MI gain spectra for the absence of cubic nonlinearity
with varying the strength of nonlocality as σ = 5,10 and the strength
of nonlinearity as (a) α1 = 0,α2 = 0.1, (b) α1 = 0,α2 = −0.1 with
the other parameters as P1 = 1 and P2 = 0.1.

whose peak gain is more than twice the gain of the primary
band. This is attributed to the fact that the quintic nonlinearity
generally promotes higher order spectral bands, and with an
increase in the strength of the nonlocality, both collectively act
to enhance the gain. As this case is particularly dominated by
quintic nonlinearity, it is interesting to understand the strength
of quintic nonlinearity in the MI spectrum. Figure 6 shows the
evolution of spectral bands with strength of quintic nonlinearity
for both cases of nonlocal functions. In both cases, |α2| enhance
MI by increasing the gain of MI as well as the number of
sidebands. In particular, the effect of α2 is more pronounced in
a rectangular function with additional spectral bands of higher
gain [Fig. 6(a)], while the Gaussian function behaves rather
in a straightforward way, indicating a monotonous increase of
gain with α2 as shown in Fig. 6(b).

3. Defocusing nonlinearity (α1 < 0)

The defocusing nonlinearity is characterized by the negative
values of the cubic nonlinearity, and therefore, the MI can
be realized either by virtue of quintic nonlinearity or through
the XPM effects. Like in the previous section, two different
combinations of cubic and quintic nonlinearities given by
different signs of α2 are considered. Figure 7(a) represents the
MI spectra corresponding to α1 < 0 and α2 > 0. In this case
MI is possible by means of the focusing quintic nonlinearity
and crucially depends on the relative strength of α1 and α2, as
both are in the opposite sign. One interesting feature of this

FIG. 6. The MI gain spectra for the varying strength of quin-
tic nonlinearity for the (a) rectangular and (b) Gaussian response
functions with the other parameters as σ = 10, α1 = 0 P1 = 1, and
P2 = 0.1.

particular case is the emergence of the additional sidebands
even for a lower value of σ for the rectangular response func-
tion. This emphasizes the relevance of the quintic nonlinearity
in the promotion of additional sidebands. Also, the relative
secondary to primary peak gain is higher than the previous
case of zero cubic nonlinearity. This quite clearly establishes
the constructive interplay between quintic nonlinearity and the
nonlocal strength in the emergence of higher order sidebands.
The Gaussian response shows a monotonous variation with
strength of nonlocality as predicted in other cases. However,
the registered MI gain is lower than the focusing cubic
nonlinearity, which is clearly due to the weakened quintic
nonlinearity of choice in this present case.

Figure 7(b) is the case of α1 < 0 and α2 < 0 where both
nonlinearities are defocusing and the MI is realized purely by
means of XPM effects and when the cross coupling effects are
turned off, and there is no instability in the case. So XPM
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FIG. 7. The MI gain spectra for the defocusing nonlinear-
ity with different nonlocal response function and varying the
strength of nonlocality as σ = 5,10 and the strength of nonlinear-
ity as (a) α1 = −1,α2 = 0.1, (b) α1 = −1,α2 = −0.1, and P1 = 1,
P2 = 0.1.

plays a critical role in the origin of MI in this regime. In
this case, the nonlinearities only enhance the gain and are not
fundamental to the existence of instability. As in the previous
case, the nonlocal strength decreases the MI gain, but for
the choice of the parameters no higher order sidebands are
noticed.

D. Results and discussions

For a comprehensive picture and to make the discussion
self-explanatory, we reproduce some of the results corre-
sponding to the scalar spatial MI [38,39] and compare with
the present results on a counterpropagating coupled system.
Figure 8 shows the MI spectra for three different cases of cubic

nonlinearity as discussed above. As the spectrum is symmetric
G(−κ) = G(κ), we are content to show only the positive spec-
trum. To facilitate comparison with the previous discussion
of the counterpropagating case, we ideally choose the same
configuration of signs of α1 and α2 as before. Figure 8(a)
shows the MI of the focusing cubic media, where the solid
line represents the Gaussian response, while the dashed line
is the case of a rectangular nonlocal response. Two choices of
quintic nonlinearity have been considered depending on the
sign of α2. Figure 8(a) corresponds to the conventional MI,
which has been studied extensively, and an indepth discussion
is needless here. It is apparent that the MI gain is significantly
lower than the gain corresponding to Fig. 4, which agrees with
the results reported in the MI with local nonlinear response
[41]. The case of zero cubic nonlinearity shown in Fig. 8(b)
clearly shows the absence of MI when α2 < 0, which is
due to the lack of phase matching between diffraction and a
defocusing nonlinear effect. However, for the present problem
on counterpropagation case as shown by Fig. 5, MI has been
realized regardless of the sign of the quintic nonlinearity. The
last is the case of defocusing cubic nonlinearity: in this case the
origin of MI critically depends on the relative strength of α1 and
α2. Defocusing quintic nonlinearity [Fig. 8(c)] is generally not
feasible for MI; however, for the case of a rectangular nonlocal
function, a secondary spectral band at higher κ is noted, while
the Gaussian function is not unstable and no MI is noticed.
This observation is different from Fig. 7 for a coupled system,
where regardless of the combination of signs α1 and α2 the
instabilities are inevitably noticed.

For better insight and to give a global picture of the effect
of various forms of popular nonlocal responses in the MI of
a composite system, we plot in Fig. 9 the MI spectrum for
different forms of available nonlocal functions. As discussed
earlier, the various nonlocal functions are broadly classified
into two classes, namely, a definite and indefinite positive
spectrum. So far, our whole study has been based on a
representative case of nonlocal functions from each category,
namely, Gaussian and rectangular functions. It is quite evident
that both classes of nonlocal functions behave qualitatively
different, which is also evident from Fig. 9.

The solid curve corresponds to exponential and Gaussian
responses belonging to a positive definite spectrum, where
the behavior of MI bands is similar to the local nonlinear
system, the difference being the magnitude of MI gain as a
result of the change in the effective nonlinearity. However, the
nonlocal response without a positive definite spectrum such as
rectangular and sine-oscillatory is in fact interesting for MI,

FIG. 8. The MI gain spectra for the scalar NLS equation with the strength of nonlinearity as (a) α1 = 1, (b) α1 = 0, (c) α1 = −1 and with
the other parameters as P1 = 1, P2 = 0, σ = 10, and α2 having values 0.1 and −0.1 in each case.
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FIG. 9. The MI gain spectra for different nonlocal response
function with the various parameters as σ = 10, α1 = 1,α2 = 0.1,
P1 = 1, and P2 = 0.1.

as it would lead to increased gain and an additional instability
window at higher κ as represented by dashed lines in Fig. 9. The
strength of nonlinearity also plays an important role, especially
for the case of a rectangular function, as a new spectral band
originates, which is found to be sensitive to σ (refer to Fig. 9).

Moreover, it should be noted that in addition to the nonlo-
cality, the relative strength of the nonlinearity (α1/α2) and the
cross coupling effects are decisive in the origin and the control
of MI dynamics. For instance, there are cases like zero cubic

FIG. 10. The direct simulation of the evolution of the (a) pump
and the (b) probe beams with the the nonlocal response function as
the Gaussian function and the other parameters as α1 = 0, α2 = 0.1,
σ = 10, A10 = 1, A20 = 0.1, and ω0 = 0.5.

FIG. 11. The direct simulation of the evolution of the (a) pump
and the (b) probe beams with the the nonlocal response function as
the rectangular function and the other parameters as α1 = 0,α2 = 0.1,
σ = 10, A10 = 1, A20 = 0.1, and ω0 = 0.5.

and defocusing quintic nonlinearity [Fig. 5(b)] and defocusing
cubic and quinitic [Fig. 7(b)], where the MI is attributed to
the XPM effects, which destabilize the steady-state solution to
cause MI [refer to Figs. 5(b) and 7(b)]. However, in the case
of focusing quintic nonlinearity, regardless of the sign of cubic
nonlinearity, the phase matching for MI is satisfied through
focussing quintic nonlinearity [Figs. 5(a) and 7(a)]. Apart
from XPM effects, the relative strength of nonlinearity plays
a substantial role in the emergence of additional sidebands in
MI, which is particularly true for rectangular functions. It is
noticed that depending on the value of the relative strength of
nonlinearity, more additional bands are observed. Interestingly,
for a zero cubic and defocusing cubic, for the parameter of
choice, the MI gain of the secondary bands dominates, whose
gain is nearly double than the conventional band.

For numerical appreciation, we numerically simulate
Eq. (3) and we choose the perturbed solution as A1 = A2 =
Aj0 + a0Cos(ω0ρ), where Aj0 is the amplitude of the propa-
gating pump-probe beams, a0 = 10−4 is the small perturbation
in the amplitude, and ω0 is the optimum modulation frequency.
ξ = 2000 is the dimensionless length of beam propagation,
such that z = ξK−1 gives 0.121 cm as the length in units and
ρ is the dimensionless transverse direction in the range −200
to 200. We consider the strength of nonlocality as σ = 10.
Figures 10 and 11 show the qualitative results of the numerical
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simulation showing the instability as the wave propagates along
the z direction.

V. CONCLUSION

We have theoretically studied the modulational instability
of a composite system showing a nonlocal nonlinear response.
For our purposes, we have chosen the recent experimentally
realized composite system of silver nanoparticels in acetone.
Such a system enables one to realize a desired nonlinearity
by properly choosing the volume fraction of the nanoparticles
in the composite. This striking feature of such a system
is particularly attractive for nonlinear management. Taking
advantage of this feature we have assumed different combina-
tions of signs of nonlinearity, and we systematically studied
the dynamics of MI with particular emphasis on nonlocal
nonlinearity. To generalize the impact of nonlocality, the
commonly available form of nonlocal response functions has
been considered. It is quite obvious from our study that the
nonlocal response decreases the gain and bandwidth of MI,
while at a particular combination of the quintic nonlinearity it
can even promote new spectral bands. The rectangular response
function is particularly attractive in MI dynamics, as it enables
additional instability windows, whose width and numbers
crucially depend on the strength of nonlocality. As far as cross
coupling effects are concerned, the MI is typically enhanced
by XPM, and especially in the defocusing nonlinearity, the
XPM effects are found to be fundamental to the origin of
MI. The relative strength of nonlinearity is another factor

playing a substantial role either by increasing the gain or
by promoting new spectral bands. We also noticed that the
choice of the nonlocal response is indeed crucial, and the
interplay with the nonlinearity accordingly impacts the MI
dynamics. Thus we comprehensively studied the MI dynamics
in the composite system with competing nonlinearities with
a particular emphasis on the nonlocal nonlinear response. As
there are few works on the fabrication of composite systems, we
believe our theoretical results could simulate new experiments,
especially in the context of nonlinear plasmonics.
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